首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human P2Y1 receptor (P2Y1-R) was purified after high-level expression from a recombinant baculovirus in Sf9 insect cells. Quantification by protein staining and with a radioligand binding assay using the high-affinity P2Y1-R antagonist [3H]MRS2279 ([3H]2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bis-phosphate) indicated a nearly homogenous preparation of receptor protein. Ki values determined in [3H]MRS2279 binding assays for antagonists with the purified P2Y1-R were in good agreement with the Ki and KB values determined for these molecules in membrane binding and activity assays, respectively. Availability of P2Y1-R in purified form allowed direct determination of nucleotide agonist affinities under conditions not compromised by nucleotide metabolism/interconversion, and an order of affinities of 2-methylthio-ADP (2MeSADP) > ADP = 2-methylthioATP = adenosine-5'-O-(3-thio)triphosphate = adenosine-5'-O(2-thiodiphosphate) > ATP was obtained. The signaling activity of the purified P2Y1-R was quantified after reconstitution in proteoliposomes with heterotrimeric G proteins. Steady-state GTP hydrolysis in vesicles reconstituted with P2Y1-R and Galpha(q)beta(1)gamma(2) was stimulated by the addition of either 2MeADP or RGS4 alone and was increased by up to 50-fold in their combined presence. EC50 values of agonists for activation of the purified P2Y1-R were similar to their respective Ki values determined in radioligand binding experiments with the purified receptor. Moreover, ATP exhibited 20-fold higher EC50 and Ki values than did ADP and was a partial agonist relative to ADP and 2MeSADP under conditions in which no metabolism of the nucleotide occurred. Both RGS4 and PLC-beta1 were potent and efficacious GTPase-activating proteins for Galphaq and Galpha11 in P2Y1-R-containing vesicles. These results illustrate that the binding and signaling properties of the human P2Y1-R can be studied with purified proteins under conditions that circumvent the complications that occur in vivo.  相似文献   

2.
Pharmacological characterization of the human P2Y13 receptor   总被引:6,自引:0,他引:6  
The P2Y13 receptor has recently been identified as a new P2Y receptor sharing a high sequence homology with the P2Y12 receptor as well as similar functional properties: coupling to Gi and responsiveness to ADP (Communi et al., 2001). In the present study, the pharmacology of the P2Y13 receptor and its differences with that of the P2Y12 receptor have been further characterized in 1321N1 cells (binding of [33P]2-methylthio-ADP (2MeSADP) and of GTPgamma[35S]), 1321N1 cells coexpressing Galpha16 [AG32 cells: inositol trisphosphate (IP3) measurement, binding of GTPgamma[35S]) and Chinese hamster ovary (CHO)-K1 cells (cAMP assay)]. 2MeSADP was more potent than ADP in displacing [33P]2MeSADP bound to 1321N1 cells and increasing GTPgamma[35S] binding to membranes prepared from the same cells. Similarly, 2MeSADP was more potent than ADP in stimulating IP3 accumulation after 10 min in AG32 cells and increasing cAMP in pertussis toxin-treated CHO-K1 cells stimulated by forskolin. On the other hand, ADP and 2MeSADP were equipotent at stimulating IP3 formation in AG32 cells after 30 s and inhibiting forskolininduced cAMP accumulation in CHO-K1 cells. These differences in potency cannot be explained by differences in degradation rate, which in AG32 cells was similar for the two nucleotides. When contaminating diphosphates were enzymatically removed and assay of IP3 was performed after 30 s, ATP and 2MeSATP seemed to be weak partial agonists of the P2Y13 receptor expressed in AG32 cells. The stimulatory effect of ADP on the P2Y13 receptor in AG32 cells was antagonized by reactive blue 2, suramin, pyridoxal-phosphate-6-azophenyl-2',4'disulfonic acid, diadenosine tetraphosphate, and 2-(propylthio)-5'-adenylic acid, monoanhydride with dichloromethylenebis (phosphonic acid) (AR-C67085MX), but not by N6-methyl 2'-deoxyadenosine 3',5'-bisphosphate (MRS-2179) (up to 100 microM). The most potent antagonist was N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-5'-adenylic acid, monoanhydride with dichloromethylenebis (phosphonic acid) (ARC69931MX) (IC50 = 4 nM), which behaved in a noncompetitive way. The active metabolite of clopidogrel was unable to displace bound 2MeSADP at concentrations up to 2 microM.  相似文献   

3.
P2Y receptor activation in many cell types leads to phospholipase C activation and accumulation of inositol phosphates, while in blood platelets, C6-2B glioma cells, and in B10 microvascular endothelial cells a P2Y receptor subtype, which couples to inhibition of adenylyl cyclase, historically termed P2Y(AC), (P2T(AC) or P(2T) in platelets) has been identified. Recently, this receptor has been cloned and designated P2Y(12) in keeping with current P2 receptor nomenclature. Three selective P(2T) receptor antagonists, with a range of affinities, inhibited ADP-induced aggregation of washed human or rat platelets, in a concentration-dependent manner, with a rank order of antagonist potency (pIC(50), human: rat) of AR-C78511 (8.5 : 9.1)>AR-C69581 (6.2 : 6.0)>AR-C70300 (5.4 : 5.1). However, these compounds had no effect on ADP-induced platelet shape change. All three antagonists had no significant effect on the ADP-induced inositol phosphate formation in 1321N1 astrocytoma cells stably expressing the P2Y(1) receptor, when used at concentrations that inhibit platelet aggregation. These antagonists also blocked ADP-induced inhibition of adenylyl cyclase in rat platelets and C6-2B cells with identical rank orders of potency and overlapping concentration - response curves. RT - PCR and nucleotide sequence analyses revealed that the C6-2B cells express the P2Y(12) mRNA. These data demonstrate that the P2Y(AC) receptor in C6-2B cells is pharmacologically identical to the P2T(AC) receptor in rat platelets.  相似文献   

4.
Activation of the P2Y(1) nucleotide receptor in platelets by ADP causes changes in shape and aggregation, mediated by activation of phospholipase C (PLC). Recently, MRS2500(2-iodo-N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate) was introduced as a highly potent and selective antagonist for this receptor. We have studied the actions of MRS2500 in human platelets and compared these effects with the effects of two acyclic nucleotide analogues, a bisphosphate MRS2298 and a bisphosphonate derivative MRS2496, which act as P2Y(1) receptor antagonists, although less potently than MRS2500. Improved synthetic methods for MRS2500 and MRS2496 were devised. The bisphosphonate is predicted to be more stable in general in biological systems than phosphate antagonists due to the non-hydrolyzable CP bond. MRS2500 inhibited the ADP-induced aggregation of human platelets with an IC(50) value of 0.95 nM. MRS2298 and MRS2496 also both inhibited the ADP-induced aggregation of human platelets with IC(50) values of 62.8 nM and 1.5 microM, respectively. A similar order of potency was observed for the three antagonists in binding to the recombinant human P2Y(1) receptor and in inhibition of ADP-induced shape change and ADP-induced rise in intracellular Ca(2+). No substantial antagonism of the pathway linked to the inhibition of cyclic AMP was observed for the nucleotide derivatives, indicating no interaction of these three P2Y(1) receptor antagonists with the proaggregatory P2Y(12) receptor, which is also activated by ADP. Thus, all three of the bisphosphate derivatives are highly selective antagonists of the platelet P2Y(1) receptor, and MRS2500 is the most potent such antagonist yet reported.  相似文献   

5.
Purification and functional reconstitution of the human P2Y12 receptor   总被引:5,自引:0,他引:5  
The human P2Y12 receptor (P2Y12-R) is a member of the G protein coupled P2Y receptor family, which is intimately involved in platelet physiology. We describe here the purification and functional characterization of recombinant P2Y12-R after high-level expression from a baculovirus in Sf9 insect cells. Purified P2Y12-R, Gbeta1gamma2, and various Galpha-subunits were reconstituted in lipid vesicles, and steady-state GTPase activity was quantified. GTP hydrolysis in proteoliposomes formed with purified P2Y12-R and Galphai2beta1gamma2 was stimulated by addition of either 2-methylthio-ADP (2MeSADP) or RGS4 and was markedly enhanced by their combined presence. 2MeSADP was the most potent agonist (EC50 = 80 nM) examined, whereas ADP, the cognate agonist of the P2Y12-R, was 3 orders of magnitude less potent. ATP had no effect alone but inhibited the action of 2MeSADP; therefore, ATP is a relatively low-affinity antagonist of the P2Y12-R. The G protein selectivity of the P2Y12-R was examined by reconstitution with various G protein alpha-subunits in heterotrimeric form with Gbeta1gamma2. The most robust coupling of the P2Y12-R was to Galphai2, but effective coupling also occurred to Galphai1 and Galphai3. In contrast, little or no coupling occurred to Galphao or Galphaq. These results illustrate that the signaling properties of the P2Y12-R can be studied as a purified protein under conditions that circumvent the complications that occur in vivo because of nucleotide metabolism and interconversion as well as nucleotide release.  相似文献   

6.
ADP is the endogenous agonist for both P2Y(1) and P2Y(12) receptors, which are important therapeutic targets. It was previously demonstrated that ADP and a synthetic agonist, 2-methylthioadenosine 5'-diphosphate (2MeSADP), can induce apoptosis by activating the human P2Y(1) receptor heterologously expressed in astrocytoma cells. However, it was not known whether the P2Y(12) receptor behaved similarly. We demonstrated here that, unlike with the G(q)-coupled P2Y(1) receptor, activation of the G(i)-coupled P2Y(12) receptor does not induce apoptosis. Furthermore, activation of the P2Y(12) receptor by either ADP or 2MeSADP significantly attenuates the tumor necrosis factor alpha (TNFalpha)-induced apoptosis in 1321N1 human astrocytoma cells. This protective effect was blocked by the P2Y(12) receptor antagonist 2-methylthioAMP and by inhibitors of phospholipase C (U73122) and protein kinase C (chelerythrin), but not by the P2Y(1) receptor antagonist MRS2179. Toward a greater mechanistic understanding, we showed that hP2Y(12) receptor activation by 10nM 2MeSADP, activates Erk1/2, Akt, and JNK by phosphorylation. However, at a lower protective concentration of 100pM 2MeSADP, activation of the hP2Y(12) receptor involves only phosphorylated Erk1/2, but not Akt or JNK. This activation is hypothesized as the major mechanism for the protective effect induced by P2Y(12) receptor activation. Apyrase did not affect the ability of TNFalpha to induce apoptosis in hP2Y(12)-1321N1 cells, suggesting that the endogenous nucleotides are not involved. These results may have important implications for understanding the signaling cascades that follow activation of P2Y(1) and P2Y(12) receptors and their opposing effects on cell death pathways.  相似文献   

7.
1. A P2Y (nucleotide) receptor activity in a clonal population (B10) of rat brain capillary endothelial cells is coupled to inhibition of adenylyl cyclase and has functional similarities to the P2Y(T) (previously designated 'P2T') receptor for ADP of blood platelets. However, the only P2Y receptor which was detectable in a previous study of B10 cells by mRNA analysis was the P2Y(1) receptor, which elsewhere shows no transduction via cyclic nucleotides. We have sought here to clarify these issues. 2. The inhibition of forskolin-stimulated adenylyl cyclase induced by purified nucleotides was measured on B10 cells. The EC(50) value for 2-methylthioADP (2-MeSADP) was 2.2 nM and, surprisingly, 2-MeSATP was an almost equally strong agonist (EC(50)=3.5 nM). ATP and 2-ClATP were weak partial agonists (EC(50)=26 microM and 10 microM respectively) and under appropriate conditions could antagonise the activity on 2-MeSADP. 3. A known selective antagonist of the platelet P2Y(T) receptor, 2-propylthioadenosine-5'-(beta,gamma)-difluoromethylene) triphosphonate (AR-C 66096), was a competitive antagonist of this B10 cell receptor, with pK(B)=7.6. That ligand is inactive at the P2Y(1) receptor in the same cells. Conversely, the competitive P2Y(1) receptor antagonists, the 3', 5'- and 2', 5'-adenosine bis-monophosphates, are, instead, weak agonists at the adenylyl cyclase-inhibitory receptor. 4. The inhibition of adenylyl cyclase by 2-MeSADP was completely abolished by pertussis toxin. 5. In summary, these brain endothelial cells possess a P2Y(T)-type receptor in addition to the P2Y(1) receptor. The two have similarities in agonist profiles but are clearly distinguishable by antagonists and by their second messenger activations. The possible relationships between the B10 and platelet P2Y(T) receptors are discussed.  相似文献   

8.
ADP, an important agonist in thrombosis and haemostasis, has been reported to activate platelets via three receptors, P2X(1), P2Y(1) and P2T(AC). Given the low potency of ADP at P2X(1) receptors and recognized contamination of commercial samples of adenosine nucleotides, we have re-examined the activation of P2X(1) receptors by ADP following HPLC and enzymatic purification. Native P2X(1) receptor currents in megakaryocytes were activated by alpha, beta-meATP (10 microM) and commercial samples of ADP (10 microM), but not by purified ADP (10 - 100 microM). Purified ADP (up to 1 mM) was also inactive at recombinant human P2X(1) receptors expressed in XENOPUS: oocytes. Purification did not modify the ability of ADP to activate P2Y receptors coupled to Ca(2+) mobilization in rat megakaryocytes. In human platelets, P2X(1) and P2Y receptor-mediated [Ca(2+)](i) responses were distinguished by their different kinetics at 13 degrees C. In 1 mM Ca(2+) saline, alpha,beta-meATP (10 microM) and commercial ADP (40 microM) activated a rapid [Ca(2+)](i) increase (lag time < or =0.5 s) through the activation of P2X(1) receptors. Hexokinase treatment of ADP shifted the lag time by approximately 2 s, indicating loss of the P2X(1) receptor-mediated response. A revised scheme is proposed for physiological activation of P2 receptors in human platelets. ATP stimulates P2X(1) receptors, whereas ADP is a selective agonist at metabotropic (P2Y(1) and P2T(AC)) receptors.  相似文献   

9.
The human P2Y(13) receptor is a new receptor characterized by coupling to Gi, responsiveness to adenine di-phospho-nucleotides and blockade by the P2Y antagonist AR-C69931MX. The mouse P2Y(13) ortholog has also been reported. Here we report, for the first time, the cloning of rat P2Y(13) receptor, its pharmacological analysis and tissue distribution. Rat P2Y(13) is 79% and 87% identical to human and mouse P2Y(13) receptors, respectively. Expression of rP2Y(13) receptor in 1321N1 cells induced the appearance of responses to the typical P2Y(13) receptor agonists ADP and 2MeSADP, as detected by stimulation of [(35)S]GTPgammaS binding. Agonist activities were higher in cells transfected with rP2Y(13) receptor in the presence of the Galpha(16) subunit; in all cases agonist effects were abolished by pertussis toxin pre-treatment. At variance from both human and mouse receptors, ADP was more potent than 2MeSADP. Other nucleotides and sugar-nucleotides were ineffective. Both in the absence and presence of Galpha(16), activation of rP2Y(13) receptor by ADP and 2MeSADP was completely inhibited by nM concentrations of AR-C69931MX. In contrast, no inhibition of rP2Y(13) receptor was induced by the selective P2Y(1) receptor antagonist MRS2179. rP2Y(13) receptor showed highest expression levels in spleen, followed by liver and brain (with particularly high levels in cortex and striatum as reported in man), suggesting important roles in the nervous and immune systems. Expression levels comparable to those of the other cloned P2Y receptors were found in primary rat astrocytes, indicating a possible role in reactive astrogliosis. Hence, rat P2Y(13) receptor displays several similarities but also interesting differences with its human and mouse orthologs, that will have to be taken into account when characterizing the pathophysiological roles of this receptor in the rat animal models.  相似文献   

10.
The rat P2Y(1) nucleotide receptor, the P2Y subtype abundant in the brain, was heterologously expressed in rat superior cervical ganglion neurones by micro-injection of the receptor cRNA or cDNA. ADP inhibited the N-type Ca(2+) current by 64%, with EC(50) 8.2 nM, an action blocked competitively by the P2Y(1) receptor antagonist adenosine 3', 5'-bis-phosphate (K(i) 0.7 microM). 2-Methylthio-ADP inhibited the Ca(2+) current likewise, but with EC(50) 0.57 nM, giving the highest potency reported therewith for P2Y(1). Significantly, ATP and 2-methylthio-ATP were also agonists, the latter again at a very high potency (EC(50) 2.5 nM). We propose that this neuronal receptor, when present in brain at a high density as at synapses, can respond to very low concentrations of ATP and ADP as agonists, and that this would result in inhibition of N-type Ca(2+) currents and hence can reduce transmitter release or increase neuronal excitability.  相似文献   

11.
Rat brain P2Y(1) (rP2Y(1)) receptor-transfected human embryonic kidney cells (HEK 293) were recently shown to have enhanced reactivity to both ATP and ADP (V?hringer C, Sch?fer R, Reiser G. Biochem Pharmacol 2000;59:791-800). Here, we demonstrated the usefulness of this cell line as a system for further studying novel adenine nucleotide analogues (Halbfinger et al. J Med Chem 1999;42:5325-37) and for the biochemical characterization of the P2Y(1) receptor. By measurement of intracellular Ca(2+) release, for 2-butylthio-, 2-butylamino-, and 2-butyloxy-ATP (2-BuS-, 2-BuNH-, 2-BuO-ATP), EC(50) values of 1.3, 5, and 60 nM were determined, markedly lower than the value for ATP (130 nM). The EC(50) for 2-BuSADP was 1.1 nM. The corresponding 8-substituted ATP analogues showed a substantially lower potency than ATP (ATP > 8-BuSATP > 8-BuNHATP approximately 8-BuOATP). AMP induced intracellular Ca(2+) release with a very low potency; 2- and 8-substitutions on AMP caused no significant potency shift, except for 2-BuSAMP (EC(50) = 180 nM). Another new P2Y receptor probe, 2-[(6-biotinylamido)-hexylthio]ATP, was 22-fold more potent than ATP (EC(50) = 6 nM), revealing that even more bulky substituents linked to the C-2 position bind with high affinity at the P2Y(1) receptor. This biotinylated probe was successfully used for the enrichment of the P2Y(1) receptor tagged with green fluorescent protein from a crude membrane fraction. This one-step enrichment provides a substantial advance for P2Y(1) receptor purification. Thus, human embryonic kidney 293 cells stably transfected with the rP2Y(1) receptor represent a powerful model system for pharmacological characterization of the P2Y(1) receptor, circumventing problems associated with natural systems. They provide a means for the development of P2Y(1) ligands of high potency and a good source for obtaining purified P2Y(1) receptor.  相似文献   

12.
Plasmin-induced platelet aggregation has been considered to be a cause of reocclusion after thrombolytic treatment with plasminogen activators. However, little is known regarding the mechanism and regulation of plasmin-induced platelet aggregation. In this study, we demonstrated that plasmin causes the degranulation of platelets, and that ADP released from granules plays a crucial role in the induction of platelet aggregation. This conclusion is supported by results showing that both ADP antagonists and ADPase can inhibit the effect of plasmin on platelets. We also demonstrated that pretreatment of platelets with ADP makes the platelets more sensitive to plasmin, and plasmin-induced platelet aggregation is, therefore, observed at lower concentrations where no aggregation occurs in quiescent platelets. In other words, it is thought that ADP potentiates the plasmin-induced aggregation. The effect of ADP was inhibited by N(6)-[2-(methylthio)-ethyl]-2-(3,3, 3-trifluoropropyl)thio-5'-adenylic acid, monoanhydride with dichloromethylenebisphosphonic acid (AR-C69931), a selective antagonist for the P2T(AC) subtype of P2 receptor, but not by the P2Y1 receptor-selective antagonist adenosine 3'-phosphate 5'-phosphosulfate (A3P5PS). The P2X1 receptor agonist alpha, beta-methylene adenosine 5'-triphosphate (alpha,beta-MeATP) did not mimic the action of ADP. These data indicate that ADP potentiates plasmin-induced platelet aggregation via the P2T(AC) receptor. In addition, epinephrine, a typical G(i) agonist against platelets, could potentiate the plasmin-induced platelet aggregation, suggesting that the signal via the G(i) protein is involved in potentiating the plasmin-induced platelet aggregation, ADP is secreted from platelet granules, and concomitantly works in conjunction with plasmin in a P2T(AC) receptor-mediated manner.  相似文献   

13.
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) control the concentration of released extracellular nucleotides, but the precise physiological roles played by these isozymes in modulation of P2 receptor signaling remain unclear. Activation of the human P2Y(1) receptor was studied in the presence of NTPDase1 or NTPDase2 expressed either in the same cell as the receptor or in P2Y(1) receptor-expressing cells cocultured with NTPDaseexpressing cells. Coexpression of NTPDase1 with the P2Y(1) receptor resulted in increases in the EC(50) for 2'-methylthioadenosine 5'-diphosphate (2MeSADP; 12-fold), ADP (50-fold), and ATP (10-fold) for activation of phospholipase C. Similar effects were observed when the P2Y(1) receptor and NTPDase1 were expressed on different cells. These results are explained by the capacity of NTPDase1 to hydrolyze both nucleoside triphosphates and diphosphates. NTPDase2 preferentially hydrolyzes nucleoside triphosphates, and the presence of NTPDase2 under either coexpression or coculture conditions did not change the EC(50) of 2MeSADP, ADP, or adenosine 5'-O-(2-thiodiphosphate) for activation of the P2Y(1) receptor. However, the EC(50) for ATP was 15-fold lower in the presence of NTPDase2 than in cells expressing the P2Y(1) receptor alone. Whereas expression of NTPDase1 decreased basal activity of the P2Y(1) receptor, the presence of the NTPDase2 resulted in P2Y(1) receptor-dependent increases in basal activity. These results suggest that basal activity of the P2Y(1) receptor is maintained by paracrine or autocrine release of receptor agonists and that the biological and/or pharmacological response mediated by P2Y receptors in target tissues is highly dependent on the types of ectonucleotidases expressed in the vicinity of the receptor.  相似文献   

14.
Human platelets express two P2Y receptors: G(q)-coupled P2Y(1), and G(i)-coupled P2Y(12). Both P2Y(1) and P2Y(12) are ADP receptors on human platelets and are essential for ADP-induced platelet aggregation that plays pivotal roles in thrombosis and hemostasis. Numerous constitutively active G protein-coupled receptors have been described in natural or recombinant systems, but in the P2Y receptors, to date, no constitutive activity has been reported. In our effort to identify G protein coupling domains of the human platelet ADP receptor, we constructed a chimeric hemagglutinin-tagged human P2Y(12) receptor with its C terminus replaced by the corresponding part of human P2Y(1) receptor and stably expressed it in Chinese hamster ovary-K1 cells. It is interesting that the chimeric P2Y(12) mutant exhibited a high level of constitutive activity, as evidenced by decreased cAMP levels in the absence of agonists. The constitutive activation of the chimeric P2Y(12) mutant was dramatically inhibited by pertussis toxin, a G(i) inhibitor. The constitutively active P2Y(12) mutant retained normal responses to 2-methylthio-ADP, with an EC(50) of 0.15 +/- 0.04 nM. The constitutively active P2Y(12) mutant caused Akt phosphorylation that was abolished by the addition of pertussis toxin. Pharmacological evaluation of several P2Y(12) antagonists revealed (E)-N-[1-[7-(hexylamino)-5-(propylthio)-3H-1,2,3-triazolo-[4,5-d]-pyrimidin-3-yl]-1,5,6-trideoxy-beta-d-ribo-hept-5-enofuranuronoyl]-l-aspartic acid (AR-C78511) as a potent P2Y(12) inverse agonist and 5'-adenylic acid, N-[2-(methylthio)ethyl]-2-[(3,3,3-trifluoropropyl)thio]-, monoanhydride with (dichloromethylene)bis[phosphonic acid] (AR-C69931MX) as a neutral antagonist. In conclusion, this is the first report of a cell line stably expressing a constitutively active mutant of human platelet P2Y(12) receptor and the identification of potent inverse agonist.  相似文献   

15.
The Gi-linked platelet ADP receptor, now designated as P2Y12, accounts for ADP-induced inhibition of adenylyl cyclase in platelets and certain clonal rat cell lines. The pharmacology of this receptor is well characterized. Based on the functional approach of [35S]GTPgammaS autoradiography, we recently disclosed the widespread presence of Gi-linked ADP receptors in the rat nervous system. Based on initial pharmacological analysis, these receptors were strikingly similar with P2Y12. Here, we extend this analysis by comparing the potencies of six 2-alkylthio-substituted ATP analogues, including the adenosine-aspartate conjugate 2-hexylthio-AdoOC(O)Asp2 and five AR-C compounds (AR-C67085, AR-C69931, AR-C78511, AR-C69581, AR-C70300) with wide range of affinities towards P2Y12, in reversing 2-methylthio-ADP stimulated G protein activity in rat brain sections and human platelet membranes. Closely matching pIC50 values (r2=0.99) revealed pharmacological similarity between the two receptors with one exception: AR-C67085 more avidly recognized the platelet P2Y12. Further analysis of the rat brain pIC50 data against those available for three of the AR-C compounds in reversing P2Y12-mediated adenylyl cyclase inhibition in rat platelets (r2=0.96) and rat C6 glioma cells (r2=1.00) demonstrated that the three P2Y receptors are pharmacologically indistinguishable. We conclude that the rat brain Gi-linked ADP receptors, as revealed using [35S]GTPgammaS autoradiography, correspond to P2Y12.  相似文献   

16.
Pineal gland G-protein coupled P2Y(1) receptors potentiate noradrenaline-induced N'-acetylserotonin production, a long term response which occurs after 5 h incubation. In the current study we show that a short-term effect of stimulation of P2Y(1) receptors is the increase in extracellular acidification rate (ECAR), which is mediated by an increase in intracellular calcium concentration ([Ca(2+)](i)). The pD(2) values for ATP (3.06 +/- 0.12)-induced ECAR increase was significantly smaller (p < 0.01) than that for ADP (3.64 +/- 0.18), 2MeSATP (3.56 +/- 0.02) and 2MeSADP (3.65 +/- 0.13). The selective P2Y(1) receptor antagonists A3'P-5'P and A3'P-5'PS inhibited the increase in ECAR-induced by ADP. Clamping [Ca(2+)](i) with BAPTA (30 and 50 micromol/l) led to inhibition of ADP-induced increase in ECAR. Agonist and antagonist data indicate P2Y(1) activation leads to a [Ca(2+)](i)-dependent acidification of the extracellular medium.  相似文献   

17.
Platelets aggregation and thrombosis formation are major reasons of cardiovascular and cerebral vascular diseases.To develop new generative,potent and safe agents for inhibiting platelet aggregation and preventing above diseases are urgently required.Some traditional Chinese medicines of″Houxue Huayu″have been shown to inhibit platelet aggregation potently.In the present study the mechanisms and the molecular targets of puerarin,salvianolic acid B and the analogue of 3-n-butylphthalide,dl-PHPB were investigated and compared with ticlopidine.Four platelet aggregation inducers,ADP,arachidonic acid,collagen and thrombin were used in the study.It was found that puerarin and dl-PHPB specifically inhibited ADP induced platelet aggregation like ticlopidine did.However,salvianolic acid B inhibited both ADP and collagen induced platelet aggregations with similar potency.Due to existing two ADP receptor subtypes on platelets,P2Y1 and P2Y12,we studied the action of above compounds on the receptors and the signaling pathways.It was found that dl-PHPB decreased IP1 accumulation produced by ADP,but had no effect on IP1 level induced by m-3M3 FBS,an activator of PLC.M-3M3 FBS might attenuate the inhibitory effect of dl-PHPB on ADP-induced platelet aggregation.In addition,dl-PHPB did not affect cyclic AMP formation in platelets by ADP,which is different from P2Y12 antagonist ticlopidine.Puerarin showed the similar effects of dl-PHPB.Therefore,the actions of dl-PHPB and puerarin might be through P2Y1receptor-PLC-βpathway.Salvianolic acid B did not reduce the IP1 accumulation stimulated by ADP.It might act on the receptor subtype P2Y12.Our results suggest that components of Chinese herb medicine might be a resource for development of novel anti-platelet drugs.  相似文献   

18.
1. In the present study we have investigated the roles of P2Y(1) and P(2T) receptor subtypes in adenosine 5'-diphosphate (ADP)-induced aggregation of human platelets in heparinized platelet rich plasma. 2. The response to ADP can be characterized as the initial rate or the maximum or final extent of aggregation. The response profile is determined by the concentration of ADP used, being transient at lower and sustained at higher concentrations. 3. The P2Y(1) receptor antagonist, adenosine-3'-phosphate-5'-phosphate (A3P5P) competitively antagonized the initial rate of aggregation (pK(B) 5. 47) and transformed the response profile to a slowly developing but sustained response. Both maximum and final extents were also inhibited by A3P5P although not in a competitive manner (Schild slope <1). 4. The P(2T) receptor antagonist, AR-C67085, competitively antagonized the final extent of aggregation (pK(B) 8.54), transforming the response profile to one of rapid, transient aggregation. Its effect on maximum extent (the most widely used index of aggregation) was complex, and further supported the involvement of both receptor subtypes in the aggregation response. 5. ADP-induced aggregation is a complex phenomenon, the nature of which is determined by the relative occupancy of the two receptor subtypes. While P2Y(1) receptor activation causes a rapid and transient aggregation, the extent of sustained aggregation is determined by the level of P(2T) receptor occupancy. Hence, detailed analysis of the aggregation response is essential to correctly define the purinergic pharmacology of the platelet and interpretation of results is critically dependent on the response index chosen.  相似文献   

19.
A series of UTP, UDP, and UMP derivatives and analogues were synthesized and evaluated at the human pyrimidinergic P2Y receptor subtypes P2Y2, P2Y4, and P2Y6 stably expressed in 1321N1 astrocytoma cells. Substituents at N3 of UTP were poorly tolerated by P2Y2 and P2Y4 receptors. In contrast, a large phenacyl substituent at N3 of UDP was well tolerated by the P2Y6 receptor, yielding a potent and selective P2Y6 receptor agonist (3-phenacyl-UDP, EC50=70 nM, >500-fold selective). The most potent and selective P2Y2 receptor agonist of the present series was 2-thio-UTP (EC50=50 nM, >or=30-fold selective vs P2Y4 and P2Y6). All modifications at the uracil base of UTP led to a decrease in potency at the P2Y4 receptor. A beta,gamma-dichloromethylene modification in the triphosphate chain of 5-bromo-UTP was tolerated by all three receptor subtypes, thus opening up a new strategy to obtain ectonucleotide diphosphohydrolase- and phosphatase-resistant P2Y2, P2Y4, and P2Y6 receptor agonists.  相似文献   

20.
The nucleotide selectivities of the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor stably expressed in 1321N1 human astrocytoma cells were determined by measuring increases in intracellular [Ca(2+)] under conditions that minimized metabolism, bioconversion, and endogenous nucleotide release. In cells expressing the hP2Y(4) receptor, UTP, GTP, and ITP all increased intracellular [Ca(2+)] with a rank order of potency of UTP (0.55) > GTP (6.59) = ITP (7.38), (EC(50), microM). ATP, CTP, xanthine 5'-triphosphate (XTP), and diadenosine 5',5"'-P(1), P(4)-tetraphosphate (Ap(4)A), all at 100 microM, were inactive at the hP2Y(4) receptor. In cells expressing the rP2Y(4) receptor, all seven nucleotides increased intracellular [Ca(2+)] with similar maximal effects and a rank order of potency of UTP (0.20) > ATP (0. 51) > Ap(4)A (1.24) approximately ITP (1.82) approximately GTP (2. 28) > CTP (7.24) > XTP (22.9). Because ATP is inactive at the hP2Y(4) receptor, we assessed whether ATP displayed antagonist activity. When coapplied, ATP shifted the concentration-response curve to UTP rightward in a concentration-dependent manner, with no change in the maximal response. A Schild plot derived from these data gave a pA(2) value of 6.15 (K(B) = 708 nM) and a slope near unity. Additionally, CTP and Ap(4)A (each at 100 microM) inhibited the response to an EC(50) concentration of UTP by approximately 40 and approximately 50%, respectively, whereas XTP had no effect. The inhibitory effects of ATP, CTP, and Ap(4)A were reversible on washout. Thus, ATP is a potent agonist at the rP2Y(4) receptor but is a competitive antagonist with moderate potency at the hP2Y(4) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号