首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
1 Aim of the present study was to investigate the effects of norbormide, a selective vasoconstrictor agent of the rat peripheral vessels, on the whole-cell voltage-dependent L-type Ca(2+) current (I(Ca(L))) of freshly isolated smooth muscle cells from the rat caudal artery, using either the conventional or the amphotericin B-perforated whole-cell patch-clamp method. 2 Norbormide decreased L-type Ca(2+) current in a concentration- and voltage-dependent manner, without modifying the threshold and the maximum of the current-voltage relationship. Norbormide-induced I(Ca(L)) inhibition was reversible upon wash-out. 3 Norbormide both shifted the voltage dependence of the steady-state inactivation curve to more negative potentials by about 16 mV, without affecting the activation curve, and decreased the slope of inactivation. Norbormide, however, did not modify both the activation and the inactivation kinetics of the I(Ca(L)). 4 Norbormide decreased I(Ca(L)) progressively during repetitive step depolarizations, with inhibition depending on the stimulation frequency (use-dependent block) as well as on the holding potential. 5 Addition of 50 micro M norbormide caused the contraction of all freshly isolated cells and also of those impaled with the perforated method, but not of those impaled with the conventional method (i.e. dialysed). 6 In conclusion, these results prove norbormide to be a vascular L-type Ca(2+) channel inhibitor, which preferentially acts on the inactivated and/or open state of the channel. In rat caudal artery smooth muscle, however, this mechanism does not result in a vasodilating effect since it is overwhelmed by the mechanism underlying norbormide-induced vasoconstriction.  相似文献   

2.
1. The aim of the present study was to investigate the effects of extracellular application of some sterically-hindered phenols, namely 3-t-butyl-4-hydroxyanisole (BHA), 3,5-di-t-butyl-4-hydroxyanisole (DTBHA) and the dimer of BHA, 2,2'-dihydroxy-3,3'-di-t-butyl-5,5'-dimethoxydiphenyl (DIBHA), on the whole-cell Ca(2+) current (I(Ca)) of freshly isolated smooth muscle cells from the guinea-pig gastric fundus, in the presence of a range of Ca(2+) concentrations (1 -- 5 mM) using the patch-clamp technique. The influx of Ca(2+) had characteristics of L-type I(Ca) (I(Ca(L))). 2. BHA as well as DTBHA inhibited I(Ca(L)) in a concentration-dependent manner, during depolarization to 10 mV from a holding potential of -50 mV. Bath application of BHA (50 microM) and DTBHA (30 microM) decreased I(Ca(L)) by 48.9% and 45.2%, respectively. This inhibition was only partially reversible. In contrast, DIBHA (up to 50 microM) was devoided of effects on I(Ca(L)). 3. BHA inhibition of I(Ca(L)) was voltage-dependent and inversely related to the external concentration of Ca(2+). On the other hand, DTBHA inhibition was only voltage-dependent. 4. BHA and DTBHA shifted the voltage range of the steady-state inactivation curve to more negative potentials by 8 mV at the mid-potential of the curve, without affecting the activation curve. Furthermore, BHA and DTBHA did not modify the time-course of the current decay. 5. We conclude that the inhibition of I(Ca(L)) by BHA and DTBHA is qualitatively similar to that of a Ca(2+) channel blocker and is characterized by the stabilizing effect of the inactivated state of the channel.  相似文献   

3.
As it has been suggested that protein acylation plays a role in nutrient stimulus-secretion coupling in the pancreatic beta-cell, we examined the insulin-secreting INS 832/13 beta-cell line for evidence that protein acylation was involved. The perforated whole-cell configuration was employed to voltage-clamp INS 832/13 cells. Voltage pulses were applied and Ca(2+) currents measured in the presence and absence of the protein acylation inhibitors cerulenin and tunicamycin. Both inhibitors enhanced the peak amplitude of I(Ca,L). Both increased the peak inward current in the range between -40 and +30mV and shifted the apparent maximum current by 10mV in the hyperpolarizing direction without affecting the activation threshold of -40mV. The two drugs had qualitatively and quantitatively similar effects. Steady-state activation curves revealed that cerulenin and tunicamycin shifted the activation curves in the hyperpolarization direction. Activation time constants were significantly reduced in the presence of both drugs. The Ca(2+) charge influx was increased by the drugs at all potentials tested. In contrast to these effects on the L-type Ca(2+) channel, the two inhibitors of protein acylation had no effect on the ATP-sensitive K(+) channel. The results suggest that protein acylation exerts a tonic inhibitory effect on L-type Ca(2+) channel function in the insulin-secreting beta-cell.  相似文献   

4.
The aim of the present study was to investigate the effects of 2,5-di-t-butyl-1,4-benzohydroquinone (BHQ), an inhibitor of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), on the whole-cell voltage-dependent L-type Ca(2+) current (I(Ca(L))) of freshly isolated smooth muscle cells from the rat tail artery using the patch-clamp technique. BHQ, added to the perfusion solution, reduced I(Ca(L)) in a concentration- (IC(50)=66.7 microM) and voltage-dependent manner. This inhibition was only partially reversible. BHQ shifted the voltage dependence of the steady-state inactivation curve to more negative potentials by 7 mV in the mid-potential of the curve, without affecting the activation curve as well as the time course of I(Ca(L)) inactivation. Preincubation of the cells either with 10 microM cyclopiazonic acid, a SERCA inhibitor, or with 3 mM diethyldithiocarbamate, an inhibitor of intracellular superoxide dismutase (SOD), did not modify BHQ inhibition of I(Ca(L)). On the contrary, this effect was no longer evident when SOD (250 u ml(-1)) was added to the perfusion medium. Either in the presence or in the absence of cells, BHQ gave rise to superoxide anion formation, which was markedly inhibited by the addition of SOD. These results indicate that, at micromolar concentrations, BHQ inhibits vascular I(Ca(L)) by giving rise to the formation of superoxide anion which in turn impairs the channel function.  相似文献   

5.
The effects of sulfur dioxide (SO(2)) derivatives (bisulfite and sulfite, 1:3M/M) on voltage-dependent L-type calcium current (I(Ca,L)) in isolated rat ventricular myocytes were studied using the whole cell patch-clamp technique. SO(2) derivatives increased I(Ca,L) in a concentration-dependent manner. SO(2) derivatives shifted both the steady-state activation and the inactivation curves of I(Ca,L) to more positive potentials, the effect on the latter being more pronounced. SO(2) derivatives markedly accelerated the recovery of I(Ca,L) from inactivation. SO(2) derivatives also significantly shortened the fast and slow time constants of inactivation. These results suggested that SO(2) inhalation might cause cardiac myocyte injury through increasing intracellular calcium via voltage-gated calcium channels.  相似文献   

6.
beta-Adrenergic stimulation enhances the activity of L-type Ca(2+) channels through mechanisms mediated by adenosine 3'5'-cyclic monophosphate (cAMP) and protein kinase A in cardiac myocytes. However, in smooth muscle cells, the effect of beta-adrenoceptor stimulation on the L-type Ca(2+) channel activity has been controversial, and the exact mechanism is still unclear. The present study was aimed at elucidating the effect of beta-adrenergic stimulation upon the activity of L-type Ca(2+) channels in guinea-pig detrusor smooth muscle cells. Isoproterenol (0.1-1 microM) inhibited Ba(2+) currents through L-type Ca(2+) channels (I(Ba)). Isoproterenol (0.1 microM) shifted the steady-state inactivation curve to negative voltages by 11 mV without affecting activation curves. The stimulation of cAMP-mediated signal transduction pathway by forskolin, 8-bromoadenosine 3'5'-cyclic monophosphate (8-Br-cAMP), or the intracellular application of cAMP also mimicked the effects of isoproterenol on I(Ba), which was blocked by the inhibition of protein kinase A. These results indicate that, in detrusor smooth muscles, the stimulation of beta-adrenoceptors exerts negative modulation of L-type Ca(2+) channels via cAMP/protein kinase A-dependent mechanism.  相似文献   

7.
The effects of osthole, a coumarin isolated from Cnidium monnieri (L.) Cusson, on ionic currents in a mouse neuroblastoma and rat glioma hybrid cell line, NG105-18, were investigated with the aid of the whole-cell voltage-clamp technique. Osthole (0.3-100 microM) caused an inhibition of voltage-dependent L-type Ca(2+) current (I(Ca,L)) in a concentration-dependent manner. Osthole produced no change in the overall shape of the current-voltage relationship of I(Ca,L). The IC(50) value of the osthole-induced inhibition of I(Ca,L) was 4 microM. The presence of osthole (3 microM) shifted the steady state inactivation curve of I(Ca,L) to a more negative potential by approximately -15mV. Osthole (3 microM) also produced a prolongation in the recovery of I(Ca,L) inactivation. Although osthole might suppress phosophodiesterases to increase intracellular adenosine-3',5'-cyclic monophosphate (cyclic AMP) or guanosine-3',5'-cyclic monophosphate (cyclic GMP), sp-cAMPS did not affect I(Ca,L) and 8-bromo-cyclic GMP slightly suppressed it. Thus, osthole-mediated inhibition of I(Ca,L) was not associated with intracellular cyclic AMP or GMP. However, no effect of osthole on voltage-dependent K(+) outward current was observed. Under a current-clamp mode, osthole could decrease the firing frequency of action potentials. Therefore, the channel-blocking properties of osthole may, at least in part, contribute to the underlying mechanisms by which it affects neuronal or neuroendocrine function.  相似文献   

8.
Wu SN  Chen H  Lin YL 《Planta medica》2003,69(2):118-124
The effects of S-petasin, a sesquiterpene isolated from Petasites formosanus Kitamura, on ion currents in a mouse neuroblastoma and a rat glioma hybrid cell line, NG108-15, were examined with the aid of the whole-cell voltage-clamp technique. S-Petasin (1 - 300 microM) caused a decrease in the amplitude of L-type Ca2+ current (I(Ca,L)) in a concentration-dependent manner, however, it did not change the overall shape of the current-voltage relationship of I(Ca,L). The IC50 value for S-petasin-induced inhibition of I(Ca,L) was 11 microM. S-Petasin (10 microM) shifted the steady-state inactivation of I(Ca,L) to a more negative membrane potential by approximately -10 mV. S-petasin could prolong the recovery of I(Ca,L) inactivation. The inhibitory effect of S-petasin on I(Ca,L) was found to exhibit tonic and use-dependent characteristics. S-Petasin could inhibit I(Ca,L) evoked by action potential waveforms effectively. S-Petasin also suppressed low voltage-activated I(Ca,L) in NG108-15 cells. S-Petasin at a concentration of 100 microM had little effect on voltage-dependent Na+ current; however, it did produce an inhibitory effect on delayed rectifier K+ current in a time-dependent manner. These results demonstrate that S-petasin can interact directly with L-type Ca2+ channels in NG108-15 cells. These effects could contribute to the regulation of neuronal activity if similar results were found in neurons in vivo.  相似文献   

9.
Protopine (Pro) from Corydalis tubers has been shown to have multiple actions on cardiovascular system, including anti-arrhythmic, anti-hypertensive and negative inotropic effects. Although it was thought that Pro exerts its actions through blocking Ca(2+) currents, the electrophysiological profile of Pro is unclear. The aim of this study is to elucidate the ionic mechanisms of Pro effects in the heart. In single isolated ventricular myocytes from guinea-pig, extracellular application of Pro markedly and reversibly abbreviates action potential duration, and decreases the rate of upstroke (dV/dt)(max), amplitude and overshoot of action potential in a dose-dependent manner. Additionally, it produces a slight, but significant hyperpolarization of the resting membrane potential. Pro at 25, 50 and 100 microM reduces L-type Ca(2+) current (I(Ca,L)) amplitude to 89.1, 61.9 and 45.8% of control, respectively, and significantly slows the decay kinetics of I(Ca,L) at higher concentration. The steady state inactivation of I(Ca,L) is shifted negatively by 5.9 - 7.0 mV (at 50 - 100 microM Pro), whereas the voltage-dependent activation of I(Ca,L) remains unchanged. In contrast, Pro at 100 microM has no evident effects on T-type Ca(2+) current (I(Ca,T)). In the presence of Pro, both the inward rectifier (I(K1)) and delayed rectifier (I(K)) potassium currents are variably inhibited, depending on Pro concentrations. Sodium current (I(Na)), recorded in low [Na(+)](o) (40 mM) solution, is more potently suppressed by Pro. At 25 microM, Pro significantly attenuated I(Na) at most of the test voltages (-60 approximately +40 mV, with a 53% reduction at -30 mV. Thus, Pro is not a selective Ca(2+) channel antagonist. Rather, it acts as a promiscuous inhibitor of cation channel currents including I(Ca,L), I(K), I(K1) as well as I(Na). These findings may provide some mechanistic explanations for the therapeutic actions of Pro in the heart.  相似文献   

10.
(1) We have determined the molecular basis of nicardipine-induced block of cardiac transient outward K(+) currents (I(to)). Inhibition of I(to) was studied using cloned voltage-dependent K(+) channels (Kv) channels, rat Kv4.3L, Kv4.2, and Kv1.4, expressed in human embryonic kidney cell line 293 (HEK293) cells. (2) Application of the dihydropyridine Ca(2+) channel antagonist, nicardipine, accelerated the inactivation rate and reduced the peak amplitude of Kv4.3L currents in a concentration-dependent manner (IC(50): 0.42 micro M). The dihydropyridine (DHP) Ca(2+) channel agonist, Bay K 8644, also blocked this K(+) current (IC(50): 1.74 micro M). (3) Nicardipine (1 micro M) slightly, but significantly, shifted the voltage dependence of activation and steady-state inactivation to more negative potentials, and also slowed markedly the recovery from inactivation of Kv4.3L currents. (4) Coexpression of K(+) channel-interacting protein 2 (KChIP2) significantly slowed the inactivation of Kv4.3L currents as expected. However, the features of DHP-induced block of K(+) current were not substantially altered. (5) Nicardipine exhibited similar block of Kv1.4 and Kv4.2 channels stably expressed in HEK293 cells; IC(50)'s were 0.80 and 0.62 micro M, respectively. (6) Thus, at submicromolar concentrations, DHP Ca(2+) antagonist and agonist inhibit Kv4.3L and have similar inhibiting effects on other components of cardiac I(to), Kv4.2 and Kv1.4.  相似文献   

11.
Curine is a novel bisbenzylisoquinoline alkaloid that has previously been reported as a vasodilator. The underlying mechanism(s) of the vasodilator effect of curine remains to be characterized. In this study, we investigated the cellular mechanism that is responsible for the vasodilator effect of curine in the rat aorta. The vasorelaxant activity of curine was recorded using a myograph. Ca(2+) currents in A7r5 cells were measured using the whole-cell patch-clamp technique. Intracellular Ca(2+) transients were determined using confocal microscopy. In a concentration-dependent manner, curine inhibited contractions elicited by high extracellular K(+) and Bay K8644 in the rat aorta and reduced the rise in the intracellular Ca(2+) concentration induced by membrane depolarization in response to an increase in extracellular K(+) concentration in vascular smooth muscle cells. Moreover, curine decreased the peak amplitude of L-type Ca(2+) currents (I(Ca,L)) in a concentration-dependent manner without changing the characteristics of the current density vs. voltage relationship and the steady-state activation of I(Ca,L). Furthermore, curine shifted the steady-state inactivation curve of I(Ca,L) toward more hyperpolarized membrane potentials. None of the following modified the effect of curine on I(Ca,L) amplitude: 3-isobutyl-1-methylxanthine, an inhibitor of phosphodiesterases; dibutyryl cyclic AMP, an activator of protein kinase A (PKA); or 8-Br-cyclic GMP, an activator of protein kinase G (PKG). Our results showed that curine inhibited the L-type voltage-dependent Ca(2+) current in rat aorta smooth muscle cells, which caused a decrease in intracellular global Ca(2+) transients that led to vasorelaxation.  相似文献   

12.
2-sec-Butylphenyl N-methylcarbamate (BPMC) is a carbamate-type cholinesterase (ChE) inhibitor with unique toxicological properties such as noncholinergic cardiovascular collapse. Effects of BPMC on L-type Ca2+ channel currents (ICa(L)) were studied in isolated guinea pig ventricular myocytes using the whole-cell patch-clamp technique, since the examination of cardiovascular responses indicated its Ca2+ antagonistic action. BPMC induced bradycardic and hypotensive responses in vivo and inhibited contraction of isolated papillary muscles (IC50 = 1.3 x 10(-4) M) in guinea pigs. BPMC produced reversible block of ICa(L) in the concentration range of 10(-4) - 10(-3) M. At test potentials between -30 mV and +20 mV, BPMC at 3 x 10(-4) M caused marked acceleration of decay rate of ICa(L) with moderate reduction of peak ICa(L) amplitude. BPMC (3 x 10(-4) M) shifted the steady-state inactivation curve to the hyperpolarizing direction by 12.7 mV. Decay rate of Ba2+ currents (IBa(L)) was also accelerated by BPMC. Fitting analysis of inactivation kinetics of IBa(L) with a two-exponential equation revealed that BPMC accelerates the slow inactivation component. At concentrations for blocking peak IBa(L) by ca. 30%, the inactivation kinetics of IBa(L) were significantly accelerated by BPMC, but merely slightly accelerated by Ca2+ channel antagonists such as diltiazem, nifedipine, or verapamil. These results indicate that BPMC, in addition to the inhibition of ChE, blocks L-type Ca2+ channels by accelerating voltage-dependent inactivation.  相似文献   

13.
Rotundifolone is the major constituent of the essential oil of Mentha x villosa Hudson. In preliminary studies, rotundifolone induced significant hypotensive, bradycardic and vasorelaxant effects in rats. Thus, to gain more insight into the pharmacology of rotundifolone, the aim of this study was to characterize the molecular mechanism of action involved in relaxation produced by rotundifolone. The relaxant effect was investigated in rat superior mesenteric arteries by using isometric tension measurements and whole-cell patch-clamp techniques. Rotundifolone relaxed phenylephrine-induced contractions in a concentration-dependent manner. Pre-treatment with KCl (20 mM), charybdotoxin (10(-7) M) or tetraethylammonium (TEA 10(-3) or 3 × 10(-3) M) significantly attenuated the relaxation effect induced by rotundifolone. Additionally, whole-cell patch-clamp recordings were made in mesenteric smooth muscle cells and showed that rotundifolone significantly increased K(+) currents, and this effect was abolished by TEA (10(-3) M), suggesting the participation of BK(Ca) channels. Furthermore, rotundifolone inhibited the vasoconstriction induced by CaCl(2) in depolarizing nominally Ca(2+) -free medium and antagonized the contractions elicited by an L-type Ca(2+) channel agonist, S(-)-Bay K 8644 (2 × 10(-7) M), indicating that the vasodilatation involved inhibition of Ca(2+) influx through L-type voltage-dependent calcium channels (Ca(v) type-L). Additionally, rotundifolone inhibited L-type Ca(2+) currents (I(Ca) L), affecting the voltage-dependent activation of I(Ca) L and steady-state inactivation. Our findings suggest that rotundifolone induces vasodilatation through two distinct but complementary mechanisms that clearly depend on the concentration range used. Rotundifolone elicits an increase in the current density of BK(Ca) channels and causes a shift in the steady-state inactivation relationship for Ca(v) type-L towards more hyperpolarized membrane potentials.  相似文献   

14.
The effects of paeoniflorin, a glycoside isolated from the root of Paeonia lactiflora, on ion currents in a mouse neuroblastoma and rat glioma hybrid cell line, NG108-15 were investigated. Paeoniflorin (1-300 microM) reversibly produced an inhibition of L-type voltage-dependent Ca2+ current (I(Ca,L)) in a concentration-dependent manner. Paeoniflorin caused no change in the overall shape of the current-voltage relationship of I(Ca,L). The IC50 value of paeoniflorin-induced inhibition of I(Ca,L) was 14 microM. However, neither adenosine deaminase (1 U/ml) nor 8-cyclopentyl-1, 3-dipropylxanthine (10 microM) could reverse the inhibition by paeoniflorin of I(Ca,L). Paeoniflorin (30 microM) shifted the steady-state inactivation curve of I(Ca,L) to more negative membrane potentials by approximately -10 mV. It also prolonged the recovery of I(Ca,L). The inhibitory effect of paeoniflorin on I(Ca,L) exhibited tonic and use-dependent characteristics. Paeoniflorin could effectively suppress I(Ca,L) evoked by action potential waveforms. Paeoniflorin at a concentration of 30 microM produce a slight inhibition of voltage-dependent Na+ current and delayed rectifier K+ current. Under current-clamp configuration, unlike adenosine, this compound decreased the firing of action potentials. Taken together, this study indicates that paeoniflorin can block L-type Ca2+ channels in NG108-15 cells in a mechanism unlinked to the binding to adenosine receptors. The effects of paeoniflorin on ion currents may partly, if not entirely, contribute to the underlying mechanisms through which it affects neuronal or neuroendocrine function.  相似文献   

15.
The effects of mefenamic acid and Bay K 8644 on voltage-dependent nifedipine-sensitive inward Ba2+ currents in pig urethral myocytes were investigated by use of conventional whole-cell configuration patch clamp. Mefenamic acid increased the peak amplitude of voltage-dependent nifedipine-sensitive inward Ba2+ current without shifting the position of the current-voltage relationship. Mefenamic acid (300 microM) caused little shift in the activation curve although the voltage dependence of the steady-state inactivation was shifted to more positive potentials by 11 mV in the presence of mefenamic acid. Bay K 8644 (> or = 100 nM) enhanced voltage-dependent nifedipine-sensitive inward Ba2+ currents in a concentration- and voltage-dependent manner, shifting the maximum of the current-voltage relationship by 10 mV in the hyperpolarizing direction. Bay K 8644 (1 microM) significantly shifted the voltage dependence of the activation curve to more negative potentials by approximately 9 mV although Bay K 8644 caused little shift in the steady-state inactivation curve. These results indicate that mefenamic acid increased voltage-dependent nifedipine-sensitive inward Ba2+ currents through the activation of L-type Ca2+ channels with different kinetics from those of Bay K 8644 in pig urethral myocytes.  相似文献   

16.
Liu Y  Zhang H  Li X  Wang Y  Lu H  Qi X  Ma C  Liu J 《Neuropharmacology》2007,53(7):870-880
Salicylate is a medicine for anti-inflammation with a side effect of tinnitus. To understand the mechanisms of tinnitus induced by salicylate, we studied the effects of salicylate on voltage-gated ion channels and action potential firing rates in freshly dissociated rat pyramidal neurons in auditory cortex (AC) using the whole-cell patch technique. We found that salicylate reduced the voltage-gated sodium current (I(Na)), the delayed rectifier potassium current (I(K(DR))) and the L-type voltage-gated calcium current (I(Ca,L)) in concentration-dependent manner. An amount of 1mM salicylate shifted the steady-state inactivation curve of I(Na) negatively by about 5mV, shifted the steady-state activation and inactivation curve of I(K(DR)) negatively by approximately 14mV and 17mV, respectively, and shifted the steady-state activation curve of I(Ca,L) negatively by about 10mV. 1mM salicylate significantly increased the action potential firing rates, ultimately. From the results, we speculated that through affecting the voltage-gated ion channels in AC, an important position in auditory system, salicylate increased the firing rate of neurons and enhanced neuronal excitability on the one hand, increased the excitatory transmitters release and reduced the inhibitory transmitter release on the other hand, thus finally induced tinnitus.  相似文献   

17.
双苯氟嗪对豚鼠心室肌细胞L-钙电流的影响   总被引:16,自引:2,他引:14  
目的:观察双苯氟嗪(Dip)对豚鼠心室肌细胞L-型钙电流(I_(Ca-L))的影响。方法:酶解法制备单个心室肌细胞。应用全细胞膜片箝技术记录豚鼠单个心室肌细胞钙电流。结果:在0.3-30μmol/L范围内,Dip可浓度依赖性地降低电压依赖性激活I_(Ca-L)峰值,被Dip 3μmol/L所抑制的I_(Ca-L)在冲洗5min后可得到部份恢复。但Dip对I_(Ca-L)的电压依赖特征,最大激活电压,以及I_(Ca-L)稳态激活无明显影响。在Dip3μmol/L存在下,半数激活电压(V_(0.5))和斜率参数(к)与对照组相比,差异均无显著性。V_(0.5)分别为(-12.8±1.7)mV和(-13.2±2.4)mV,к分别为(7.1±0.4)mV和(7.5±0.5)mV(P>0.05)。Dip3μmol/L可明显使钙电流稳态失活曲线左移,加速钙通道电压依赖性稳态失活。V_(0.5)分别为(-19.7±2.4)mV和(-31±6)mV,к分别为(3.6±0.3)mV和(1.8±0.2)mV(P<0.05).Dip 3μmol/L还使I_(Ca-L)从失活状态下的恢复明显减慢。结论:Dip主要作用于L-型钙通道的失活状态,加速钙通道失活,并使其从失活状态下恢复减慢,从而抑制I_(Ca-L)。  相似文献   

18.
Effect of paeonol on L-type calcium channel in rat ventricular myocytes   总被引:3,自引:0,他引:3  
In order to study the possible mechanisms of paeonol on the cardiovascular system, the effect of paeonol on L-type Ca(2+) channel current (I(Ca,L)) was studied in rat ventricular myocytes using the whole cell patch-clamp technique. Exposure to paeonol (approximately 10 to 1000 microm/l) resulted in a concentration-dependent inhibition of peak I(Ca,L), with a half maximum inhibition concentration, IC(50), of 561 microm/l. Paeonol 600 microm/l inhibited I(Ca,L) by 55.3%, shifted the steady state activation and inactivation curve of I(Ca,L) to more positive and negative potentials, respectively, tended to prolong the recovery of I(Ca,L) from inactivation and did not have a use-dependent effect. However, the current-voltage relationship and reversal potential of I(Ca,L) were not altered. These results suggest that the protection by paeonol against myocardial injury is due to its blocking effect on I(Ca,L).  相似文献   

19.
Azelastine is used for symptomatic relief of allergic rhinitis and asthma bronchiale. In vitro studies in smooth muscle cells from guinea pig trachea and ileum demonstrate that the drug blocks L-type Ca(2+) current (I(Ca, L)). However, for safety reasons, it is important to know whether azelastine also affects cardiac I(Ca, L) in therapeutically relevant concentrations. We have therefore studied the effects of azelastine on I(Ca, L) in guinea pig ventricular myocytes using standard whole-cell patch-clamp technique. Force of contraction and action potentials from isolated papillary muscles of the same species were also investigated at physiological temperature (36 degrees C). Azelastine (30 microM) significantly reduced force of contraction, shortened action potential duration, and depressed maximum upstroke velocity. I(Ca, L) was elicited by 200-ms-long clamp steps from -100 to 0 mV (one pulse every 3 s). Azelastine blocked I(Ca, L) reversibly and concentration-dependently with an IC(50) of 20.2+/-1.3 microM and a Hill coefficient of 1.1. At 10 microM, azelastine shifted steady-state inactivation by 5 mV (n=7) to more negative potentials. The time course of I(Ca, L) inactivation could be described by a double exponential function. Azelastine (10 microM) significantly shortened the slow inactivation time constant (tau(s)) from 54.2+/-2.8 ms under control conditions to 38.7+/-2.9 ms (n=16) in the presence of drug. Azelastine also reduced low-voltage-activated Ca(2+) currents with a similar IC(50) value (24 microM, at -35 mV). Since the therapeutic plasma concentrations are in the order of 10-100 nM, we conclude that azelastine does indeed affect also cardiac I(Ca, L), but the concentrations required are at least two orders of magnitude larger than those obtained during drug therapy.  相似文献   

20.
The effects of beauverficin, a cyclodepsipeptide compound, on ion currents in a mouse neuroblastoma and rat glioma hybrid cell line, NG108-15, were investigated with the aid of the whole-cell voltage-clamp technique. Beauvericin (0.3-100 microM) reversibly produced an inhibition of L-type voltage-dependent Ca2+ current (I(Ca,L)) in a concentration-dependent manner. Beauvericin caused no change in the overall shape of the current-voltage relationship of I(Ca,L). The IC(50) value of beauvericin-induced inhibition of I(Ca,L) was 4 microM. Neither gabapentin (30 microM) nor omega-conotoxin GVIA (3 microM) had effects on I(Ca,L). Beauvericin (30 microM) shifted the steady-state inactivation curve of I(Ca,L) to more negative membrane potentials by approximately -15 mV. The inhibitory effects of beauvericin on I(Ca,L) exhibited tonic and use-dependent characteristics. Beauvericin also suppressed I(Ca,L) evoked by repetitive action potential waveforms effectively. However, beauvericin (30 microM) had no effect on delayed rectifier K+ current in NG105-18 cells. Under current-clamp configuration, beauvericin reduced the firing frequency of action potentials. Therefore, this study indicates that beauvericin is a relatively specific inhibitor of L-type Ca2+ current in NG108-15 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号