首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chromosome 22q13 locus strongly associates with increased risk for idiopathic focal segmental glomerulosclerosis (FSGS), HIV-1-associated nephropathy (HIVAN), and hypertensive ESRD among individuals of African descent. Although initial studies implicated MYH9, more recent analyses localized the strongest association within the neighboring APOL1 gene. In this replication study, we examined the six top-most associated variants in APOL1 and MYH9 in an independent cohort of African Americans with various nephropathies (44 with FSGS, 21 with HIVAN, 32 with IgA nephropathy, and 74 healthy controls). All six variants associated with FSGS and HIVAN (additive ORs, 1.8 to 3.0; P values 3 × 10(-2) to 5 × 10(-5)) but not with IgA nephropathy. In conditional and haplotype analyses, two APOL1 haplotypes accounted for virtually all of the association with FSGS and HIVAN on chromosome 22q13 (haplotype P value = 5.6 × 10(-8)). To assess the role of MYH9 deficiency in nephropathy, we crossbred Myh9-haploinsufficient mice (Myh9(+/-)) with HIV-1 transgenic mice. Myh9(+/-) mice were healthy and did not demonstrate overt proteinuria or nephropathy, irrespective of the presence of the HIV-1 transgene. These data further support the strong association of genetic variants in APOL1 with susceptibility to FSGS and HIVAN among African Americans.  相似文献   

2.
Trypanolytic variants in APOL1, which encodes apolipoprotein L1, associate with kidney disease in African Americans, but whether APOL1-associated glomerular disease has a distinct clinical phenotype is unknown. Here we determined APOL1 genotypes for 271 African American cases, 168 European American cases, and 939 control subjects. In a recessive model, APOL1 variants conferred seventeenfold higher odds (95% CI 11 to 26) for focal segmental glomerulosclerosis (FSGS) and twenty-nine-fold higher odds (95% CI 13 to 68) for HIV-associated nephropathy (HIVAN). FSGS associated with two APOL1 risk alleles associated with earlier age of onset (P = 0.01) and faster progression to ESRD (P < 0.01) but similar sensitivity to steroids compared with other subjects. Individuals with two APOL1 risk alleles have an estimated 4% lifetime risk for developing FSGS, and untreated HIV-infected individuals have a 50% risk for developing HIVAN. The effect of carrying two APOL1 risk alleles explains 18% of FSGS and 35% of HIVAN; alternatively, eliminating this effect would reduce FSGS and HIVAN by 67%. A survey of world populations indicated that the APOL1 kidney risk alleles are present only on African chromosomes. In summary, African Americans carrying two APOL1 risk alleles have a greatly increased risk for glomerular disease, and APOL1-associated FSGS occurs earlier and progresses to ESRD more rapidly. These data add to the evidence base required to determine whether genetic testing for APOL1 has a use in clinical practice.  相似文献   

3.
With earlier institution of antiretroviral therapy, kidney diseases other than HIV-associated nephropathy (HIVAN) predominate in HIV-infected persons. Outcomes for these diseases are typically worse among those infected with HIV, but the reasons for this are not clear. Here, we examined the role of APOL1 risk variants in predicting renal histopathology and progression to ESRD in 98 HIV-infected African Americans with non-HIVAN kidney disease on biopsy. We used survival analysis to determine time to ESRD associated with APOL1 genotype. Among the 29 patients with two APOL1 risk alleles, the majority (76%) had FSGS and 10% had hypertensive nephrosclerosis. In contrast, among the 54 patients with one APOL1 risk allele, 47% had immune-complex GN as the predominant lesion and only 23% had FSGS. Among the 25 patients with no APOL1 risk allele, 40% had immune-complex GN and 12% had FSGS. In 310 person-years of observation, 29 patients progressed to ESRD. In adjusted analyses, individuals with two APOL1 risk alleles had a nearly three-fold higher risk for ESRD compared with those with one or zero risk alleles (P=0.03). In summary, these data demonstrate an association between APOL1 variants and renal outcomes in non-HIVAN kidney disease, suggesting a possible use for APOL1 genotyping to help guide the care of HIV-infected patients.  相似文献   

4.
Recently, an association was found between nondiabetic kidney disease in African Americans and two independent sequence variants in the APOL1 gene, encoding apolipoprotein L1. In this study we determined the frequency of APOL1 risk variants in patients with biopsy-proven HIV-associated nephropathy (HIVAN) and distinctive pathological characteristics potentially driven by those risk variants. Among 76 patients with HIVAN, 60 were successfully genotyped for APOL1 G1 and G2 polymorphisms. In this cohort, 37 had two risk alleles, 18 were heterozygous, and 5 had neither risk variant. There were no differences in the pathological findings of HIVAN and the number of APOL1 risk alleles. Further, the progression to end-stage kidney disease or death did not differ by the number of risk alleles. Median renal survival was 9.3 months in patients with zero or one risk allele compared to 11.7 months in patients with two APOL1 risk alleles. Thus, our study suggests that although the majority of African-American patients with HIVAN have two APOL1 risk alleles other as yet unknown factors in the host, including genetic risk variants and environmental or viral factors, may influence the development of this disorder in those with zero or one APOL1 risk allele.  相似文献   

5.
Coding variants in the apolipoprotein L1 gene (APOL1) are strongly associated with nephropathy in African Americans (AAs). The effect of transplanting kidneys from AA donors with two APOL1 nephropathy risk variants is unknown. APOL1 risk variants were genotyped in 106 AA deceased organ donors and graft survival assessed in 136 resultant kidney transplants. Cox‐proportional hazard models tested for association between time to graft failure and donor APOL1 genotypes. The mean follow‐up was 26.4 ± 21.8 months. Twenty‐two of 136 transplanted kidneys (16%) were from donors with two APOL1 nephropathy risk variants. Twenty‐five grafts failed; eight (32%) had two APOL1 risk variants. A multivariate model accounting for donor APOL1 genotype, overall African ancestry, expanded criteria donation, recipient age and gender, HLA mismatch, CIT and PRA revealed that graft survival was significantly shorter in donor kidneys with two APOL1 risk variants (hazard ratio [HR] 3.84; p = 0.008) and higher HLA mismatch (HR 1.52; p = 0.03), but not for overall African ancestry excluding APOL1. Kidneys from AA deceased donors harboring two APOL1 risk variants failed more rapidly after renal transplantation than those with zero or one risk variants. If replicated, APOL1 genotyping could improve the donor selection process and maximize long‐term renal allograft survival.  相似文献   

6.
Apolipoprotein L1 gene (APOL1) G1 and G2 variants are strongly associated with progressive nondiabetic nephropathy in populations with recent African ancestry. Selection for these variants occurred as a result of protection from human African trypanosomiasis (HAT). Resequencing of this region in 10 genetically and geographically distinct African populations residing in HAT endemic regions identified eight single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium and comprising a novel G3 haplotype. To determine whether the APOL1 G3 haplotype was associated with nephropathy, G1, G2, and G3 SNPs and 70 ancestry informative markers spanning the genome were genotyped in 937 African Americans with nondiabetic ESRD, 965 African Americans with type 2 diabetes–associated ESRD, and 1029 non-nephropathy controls. In analyses adjusting for age, sex, APOL1 G1/G2 risk (recessive), and global African ancestry, the G3 haplotype was not significantly associated with ESRD (P=0.05 for nondiabetic ESRD, P=0.57 for diabetes-associated ESRD, and P=0.27 for all-cause ESRD). We conclude that variation in APOL1 G3 makes a nominal, if any, contribution to ESRD in African Americans; G1 and G2 variants explain the vast majority of nondiabetic nephropathy susceptibility.  相似文献   

7.
Apolipoprotein L1 gene (APOL1) nephropathy variants in African American deceased kidney donors were associated with shorter renal allograft survival in a prior single‐center report. APOL1 G1 and G2 variants were genotyped in newly accrued DNA samples from African American deceased donors of kidneys recovered and/or transplanted in Alabama and North Carolina. APOL1 genotypes and allograft outcomes in subsequent transplants from 55 U.S. centers were linked, adjusting for age, sex and race/ethnicity of recipients, HLA match, cold ischemia time, panel reactive antibody levels, and donor type. For 221 transplantations from kidneys recovered in Alabama, there was a statistical trend toward shorter allograft survival in recipients of two‐APOL1‐nephropathy‐variant kidneys (hazard ratio [HR] 2.71; p = 0.06). For all 675 kidneys transplanted from donors at both centers, APOL1 genotype (HR 2.26; p = 0.001) and African American recipient race/ethnicity (HR 1.60; p = 0.03) were associated with allograft failure. Kidneys from African American deceased donors with two APOL1 nephropathy variants reproducibly associate with higher risk for allograft failure after transplantation. These findings warrant consideration of rapidly genotyping deceased African American kidney donors for APOL1 risk variants at organ recovery and incorporation of results into allocation and informed‐consent processes.  相似文献   

8.
To study the role of reactive oxygen species (ROS) in chronic renal disease, we studied the localization of Cu, Zn-Superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px) in glomeruli of patients with IgA nephropathy by immunohistochemical method. Thirty three kidney specimens were used consisting of 28 IgA nephropathy and, normal parts of the 5 resected kidneys with renal tumors as controls. To evaluate the change of renal function and renal histological grade, creatine clearance (Ccr) and histological grade were assessed at the time of biopsy. In normal kidney, Cu, Zn-SOD and GSH-Px was localized in tubular cells, and not in glomeruli. In the kidney with IgA nephropathy, Cu, Zn-SOD and GSH-Px were detected in epithelial side of the glomerular capillary wall in addition to the tubular cells. The positive correlation was observed between the glomerular localization of Cu, Zn-SOD and that of GSH-Px. As for the relation between the extent of localization of these enzymes and clinical findings at the time of biopsy, the following results was obtained. When Cu, Zn-SOD and GSH-Px was strongly stained in glomeruli, histological change of glomeruli was milder. These results suggest that Cu, Zn-SOD and GSH-Px have the beneficial actions for renal function as anti-oxidative factors.  相似文献   

9.
APOL1 variants are associated with HIV-associated nephropathy and FSGS in African Americans. The prevalence of these variants in African populations with CKD in HIV-1 infection has not been investigated. We determined the role of APOL1 variants in 120 patients with HIV-associated nephropathy and CKD and 108 controls from a South-African black population. Patients with CKD were selected on the basis of histology. Genotypes were successfully determined for APOL1 G1 and G2 variants and 42 single nucleotide polymorphisms, including 18 ancestry informative markers, for 116 patients with CKD (96.7%; 38 patients with HIV-associated nephropathy, 39 patients with HIV-positive CKD, and 39 patients with HIV-negative CKD), and 108 controls (100%). Overall, 79% of patients with HIV-associated nephropathy and 2% of population controls carried two risk alleles. In a recessive model, individuals carrying any combination of two APOL1 risk alleles had 89-fold higher odds (95% confidence interval, 18 to 912; P<0.001) of developing HIV-associated nephropathy compared with HIV-positive controls. Population allele frequencies were 7.3% for G1 and 11.1% for G2. APOL1 risk alleles were not significantly associated with other forms of CKD. These results indicate HIV-positive, antiretroviral therapy–naïve South-African blacks with two APOL1 risk alleles are at very high risk for developing HIV-associated nephropathy. Further studies are required to determine the effect of APOL1 risk variants on kidney diseases in other regions of sub-Saharan Africa.  相似文献   

10.
APOL1 genetic variants contribute to kidney disease in African Americans. We assessed correlations between APOL1 profiles and renal histological features in subjects without renal disease. Glomerular number (Nglom) and mean glomerular volume (Vglom) were measured by the dissector/fractionator method in kidneys of African-American and non–African-American adults without renal disease, undergoing autopsies in Jackson, Mississippi. APOL1 risk alleles were genotyped and the kidney findings were evaluated in the context of those profiles. The proportions of African Americans with none, one, and two APOL1 risk alleles were 38%, 43%, and 19%, respectively; 38% of African Americans had G1 allele variants and 31% of African Americans had G2 allele variants. Only APOL1-positive African Americans had significant reductions in Nglom and increases in Vglom with increasing age. Regression analysis predicted an annual average loss of 8834 (P=0.03, sex adjusted) glomeruli per single kidney over the first 38 years of adult life in African Americans with two risk alleles. Body mass index above the group medians, but below the obesity definition of ≥30 kg/m2, enhanced the expression of age-related changes in Nglom in African Americans with either one or two APOL1 risk alleles. These findings indicate that APOL1 risk alleles are associated with exaggerated age-related nephron loss, probably decaying from a larger pool of smaller glomeruli in early adult life, along with enlargement of the remaining glomeruli. These phenomena might mark mechanisms of accentuated susceptibility to kidney disease in APOL1-positive African Americans.  相似文献   

11.
Genetic variants in apolipoprotein L1 (APOL1) confer risk for kidney disease. We sought to better define the phenotype of APOL1-associated nephropathy. The FSGS Clinical Trial involved 138 children and young adults who were randomized to cyclosporin or mycophenolate mofetil plus pulse oral dexamethasone with a primary outcome of proteinuria remission. DNA was available from 94 subjects who were genotyped for APOL1 renal risk variants, with two risk alleles comprising the risk genotype. Two APOL1 risk alleles were present in 27 subjects, of whom four subjects did not self-identify as African American, and 23 of 32 (72%) self-identified African Americans. Individuals with the APOL1 risk genotype tended to present at an older age and had significantly lower baseline eGFR, more segmental glomerulosclerosis and total glomerulosclerosis, and more tubular atrophy/interstitial fibrosis. There were differences in renal histology, particularly more collapsing variants in those with the risk genotype (P=0.02), although this association was confounded by age. APOL1 risk genotype did not affect response to either treatment regimen. Individuals with the risk genotype were more likely to progress to ESRD (P<0.01). In conclusion, APOL1 risk genotypes are common in African-American subjects with primary FSGS and may also be present in individuals who do not self-identify as African American. APOL1 risk status is associated with lower kidney function, more glomerulosclerosis and interstitial fibrosis, and greater propensity to progress to ESRD. The APOL1 risk genotype did not influence proteinuria responses to cyclosporin or mycophenolate mofetil/dexamethasone.  相似文献   

12.
Although APOL1 gene variants are associated with nephropathy in African Americans, little is known about APOL1 protein synthesis, uptake, and localization in kidney cells. To address these questions, we examined APOL1 protein and mRNA localization in human kidney and human kidney-derived cell lines. Indirect immunofluorescence microscopy performed on nondiseased nephrectomy cryosections from persons with normal kidney function revealed that APOL1 protein was markedly enriched in podocytes (colocalized with synaptopodin and Wilms’ tumor suppressor) and present in lower abundance in renal tubule cells. Fluorescence in situ hybridization detected APOL1 mRNA in glomeruli (podocytes and endothelial cells) and tubules, consistent with endogenous synthesis in these cell types. When these analyses were extended to renal-derived cell lines, quantitative RT-PCR did not detect APOL1 mRNA in human mesangial cells; however, abundant levels of APOL1 mRNA were observed in proximal tubule cells and glomerular endothelial cells, with lower expression in podocytes. Western blot analysis revealed corresponding levels of APOL1 protein in these cell lines. To explain the apparent discrepancy between the marked abundance of APOL1 protein in kidney podocytes observed in cryosections versus the lesser abundance in podocyte cell lines, we explored APOL1 cellular uptake. APOL1 protein was taken up readily by human podocytes in vitro but was not taken up efficiently by mesangial cells, glomerular endothelial cells, or proximal tubule cells. We hypothesize that the higher levels of APOL1 protein in human cryosectioned podocytes may reflect both endogenous protein synthesis and APOL1 uptake from the circulation or glomerular filtrate.  相似文献   

13.
A 20-year history of childhood HIV-associated nephropathy   总被引:3,自引:0,他引:3  
In 1984, physicians in New York and Miami reported HIV-infected adult patients with heavy proteinuria and rapid progression to end-stage renal disease. These patients showed large edematous kidneys with a combination of focal segmental glomerulosclerosis (FSGS) and tubulointerstitial lesions. This renal syndrome, named HIV-associated nephropathy (HIVAN), was found predominantly in African Americans. Subsequent studies confirmed the presence of HIVAN in children, who frequently develop nephrotic syndrome in association with FSGS and/or mesangial hyperplasia with microcystic tubular dilatation. Since then, substantial progress has been made in our understanding of the etiology and pathogenesis of HIVAN. This article reviews 20 years of research into the pathogenesis of HIVAN and discusses how these concepts could be applied to the treatment of children with HIVAN. HIV-1 infection plays a direct role in the pathogenesis of childhood HIVAN, at least partially by affecting the growth and differentiation of glomerular and tubular epithelial cells and enhancing the renal recruitment of infiltrating mononuclear cells and cytokines. An up-regulation of renal heparan sulfate proteoglycans seems to play a relevant role in this process, by increasing the recruitment of heparin-binding growth factors (i.e., FGF-2), chemokines, HIV-infected cells, and viral proteins (i.e., gp120, Tat). These changes enhance the infectivity of HIV-1 in the kidney and induce injury and proliferation of intrinsic renal cells. Highly active anti-retroviral therapy (HAART) appears to be the most promising treatment to prevent the progression of childhood HIVAN. Hopefully, in the near future, better education, prevention, and treatment programs will lead to the eradication of this fatal childhood disease.  相似文献   

14.
The discovery of apolipoprotein L1 (APOL1) gene variants and its association with kidney disease in African‐Americans represent a significant breakthrough in understanding the genetic basis of ancestry‐based differences in a public health problem. The role these variants play in renal transplantation is still incompletely understood. This article reviews the epidemiologic data and current reports of APOL1 variant pathogenesis in transplantation. We examine existing data on outcomes in APOL1 high‐risk kidneys, high‐risk APOL1 recipients, live donors with high‐risk mutations and non–renal transplantation of high‐risk APOL1 organs. We discuss the rapidly evolving role and potential pros and cons of APOL1 genotyping of donors and recipients in transplantation. Finally, we highlight the ongoing nationwide National Institutes of Health‐sponsored “APOL1 Long‐term Kidney Transplantation Outcomes (APOLLO)” study, which will quantify outcomes and “second hits” in pertinent to APOL1 high‐risk variants in renal transplantation.  相似文献   

15.
Case-control studies suggest that African Americans with genetic variants in both copies of APOL1 have increased risk for hypertension-attributable ESRD and focal segmental glomerulosclerosis. Here, we tested these risk variants in the Dallas Heart Study to ascertain the prevalence of APOL1-associated renal disease in a large population-based study and to estimate the contribution of APOL1 risk variants to disparities in renal disease. We determined the genotype of 1825 African Americans and 1042 European Americans. Among participants without diabetes, we identified microalbuminuria in 2.3% of European Americans, 6.0% of African Americans with no or one APOL1 risk allele, and 16.5% of African Americans with two risk alleles. In addition, the proportions of participants with estimated GFR < 60 ml/min per 1.73 m(2) was 1.5% for nondiabetic European Americans, 1.7% for African Americans with no or one APOL1 risk allele, and 6.7% for African Americans with two risk alleles. The APOL1 genotype did not associate with any differences in rates of CKD for study participants with diabetes. Our data suggest that more than 3 million African Americans likely have the high-risk genotype and are at markedly increased risk for nondiabetic CKD. In contrast, African Americans without the risk genotype and European Americans appear to have similar risk for developing nondiabetic CKD.  相似文献   

16.
Thirteen percent of individuals of African ancestry express two variant copies of the gene encoding apolipoprotein 1 (APOL1) that has been associated with an increased risk of end‐stage renal disease (ESRD) in the general population. Limited studies suggest that the survival of transplanted kidneys from donors expressing two APOL1 risk alleles is inferior to that of kidneys from donors with zero or one risk allele. In living kidney donation, two case reports describe donors expressing two APOL1 risk alleles who developed ESRD. Given the potential impact of APOL1 variants on the utility and safety of kidney transplantation and living kidney donation, the American Society of Transplantation convened a meeting with the goals of summarizing the current state of knowledge with respect to transplantation and APOL1, identifying knowledge gaps and studies to address these gaps, and considering approaches to integrating APOL1 into clinical practice. The authors recognize that current data are not sufficient to support traditional evidence‐based guidelines but also recognize that it may require several years to generate the necessary data. Thus, approaches as to how APOL1 might currently be integrated into the clinical decision‐making process were considered. This report summarizes the group's deliberations.  相似文献   

17.
Renal allografts from deceased African American donors with two apolipoprotein L1 gene (APOL1) renal‐risk variants fail sooner than kidneys from donors with fewer variants. The Kidney Donor Risk Index (KDRI) was developed to evaluate organ offers by predicting allograft longevity and includes African American race as a risk factor. Substituting APOL1 genotype for race may refine the KDRI. For 622 deceased African American kidney donors, we applied a 10‐fold cross‐validation approach to estimate contribution of APOL1 variants to a revised KDRI. Cross‐validation was repeated 10 000 times to generate distribution of effect size associated with APOL1 genotype. Average effect size was used to derive the revised KDRI weighting. Mean current‐KDRI score for all donors was 1.4930 versus mean revised‐KDRI score 1.2518 for 529 donors with no or one variant and 1.8527 for 93 donors with two variants. Original and revised KDRIs had comparable survival prediction errors after transplantation, but the spread in Kidney Donor Profile Index based on presence or absence of two APOL1 variants was 37 percentage points. Replacing donor race with APOL1 genotype in KDRI better defines risk associated with kidneys transplanted from deceased African American donors, substantially improves KDRI score for 85–90% of kidneys offered, and enhances the link between donor quality and recipient need.  相似文献   

18.
Background: APOL1 risk variants (G1 and G2) are associated with increased susceptibility to focal segmental glomerulosclerosis (FSGS) in African population. However, the two risk mutations were not found in Chinese FSGS patients. In this study, we explored the association between the copy number variation (CNV) of APOL1 gene and FSGS.

Methods: APOL1 copy number variations were detected by quantitative real-time PCR with TaqMan probes and compared between 133 FSGS patients and 123 controls. The association between CNV of APOL1 gene and clinical parameters was also investigated.

Results: The distribution of APOL1 CNV did not show significant difference between FSGS patients and controls. The creatinine and proteinuria in the high copy number group (CN?≥?3) were higher than the other two groups, but the difference was not significant (p?>?.05). The FSGS pathological types were different among the three groups.

Conclusion: There was no significant difference in the distribution of APOL1 gene copy variants between FSGS patients and normal controls, and there was no significant correlation between the APOL1 gene CNV and the FSGS patients’ clinical manifestations. APOL1 CNVs may be not associated with susceptibility to FSGS.  相似文献   

19.
Objective To observe the expressions and distribution of transient receptor potential cation channel 6 (TRPC6) and integrin-linked kinase (ILK) in the glomeruli of renal biopsy tissue of patients with proteinuric kidney diseases, and to investigate the effect of TRPC6 over-expression on ILK in vitro. Methods The archival histological specimens of patients admitted to Tangdu hospital from 2012 to 2013, with 24-hour urinary protein over 1 g, were collected. The expressions and distribution of TRPC6 and ILK in the glomeruli of renal biopsy tissue were observed by immunohistochemistry. MPC5 podocytes were cultured in vitro and they were stimulated with 10-7 mol/L ADR for 12, 24 and 36 h. The pcDNA3.1(+)-TRPC6 plasmid and pcDNA3.1(+) were transfected into MPC5 podocytes by liposome 2000 reagent to establish the TRPC6 overexpression group and the negative control group respectively. Western blotting was used to detect the expressions of TRPC6 and ILK protein. Results There were 14 cases of membranous nephropathy, 13 cases of focal segmental glomerulosclerosis (FSGS), 15 cases of membranoproliferative glomerulonephritis, 12 cases of mesangial proliferative glomerulonephritis, 10 cases of hyperplastic sclerosis nephritis, 15 cases of IgA nephropathy, 13 cases of purpura nephritis, 15 cases of lupus nephritis, 13 cases of hypertensive renal injury, 14 cases of diabetic nephropathy and 9 cases of normal renal tissue included. In glomerulus, TRPC6 was expressed mainly in podocytes, and the expressions of TRPC6 in these renal tissues were higher than that in normal renal tissues (all P<0.05), except for hypertensive nephropathy. ILK was expressed in podocytes and the mesangial areas. The expressions of ILK in FSGS, lupus nephritis and diabetic nephropathy were higher than that in normal kidney tissue (all P<0.05), while the other renal tissues was high but showed no statistical difference with normal kidney tissue (all P>0.05). The expressions of TRPC6 and ILK were positively correlated in renal tissues of FSGS and diabetic nephropathy (r=0.906, P<0.001; r=0.783, P=0.001 respectively). The expressions of TRPC6 and ILK protein in 24 and 36 h stimulating with ADR were significantly higher than that in the control group (all P<0.05). The expression of ILK in the TRPC6 overexpression group was significantly higher than that in the normal control group (P<0.05). Conclusions The expressions of TRPC6 and ILK increase in the glomeruli of patients with kidney diseases with proteinuria being the main manifestation, especially in FSGS and diabetic nephropathy. The up-regulation of TRPC6 can increase the expression of ILK protein, which may be involved in podocyte injury.  相似文献   

20.
Chronic kidney disease (CKD) is common, affecting about 10% of the general population, and causing significant morbidity and mortality. Apart from the risk conferred by traditional cardiovascular risk factors, there is a strong genetic component. The method of a genome-wide association study (GWAS) is a powerful hypothesis-free approach to unravel this component by association analyses of CKD with several million genetic variants distributed across the genome. Since the publication of the first GWAS in 2005, this method has led to the discovery of novel loci for numerous human common diseases and phenotypes. Here, we review the recent successes of meta-analyses of GWAS on renal phenotypes. UMOD, SHROOM3, STC1, LASS2, GCKR, ALMS1, TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2/SH2B3, DACH1, UBE2Q2, and SLC7A9 were uncovered as loci associated with estimated glomerular filtration rate (eGFR) and CKD, and CUBN as a locus for albuminuria in cross-sectional data of general population studies. However, less than 1.5% of the total variance of eGFR and albuminuria is explained by the identified variants, and the relative risk for CKD is modified by at most 20% per locus. In African Americans, much of the risk for end-stage nondiabetic kidney disease is explained by common variants in the MYH9/APOL1 locus, and in individuals of European descent, variants in HLA-DQA1 and PLA(2)R1 implicate most of the risk for idiopathic membranous nephropathy. In contrast, genetic findings in the analysis of diabetic nephropathy are inconsistent. Uncovering variants explaining more of the genetically determined variability of kidney function is hampered by the multifactorial nature of CKD and different mechanisms involved in progressive CKD stages, and by the challenges in elucidating the role of low-frequency variants. Meta-analyses with larger sample sizes and analyses of longitudinal renal phenotypes using higher-resolution genotyping data are required to uncover novel loci associated with severe renal phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号