首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An 11-gene multiplex polymerase chain reaction (mPCR) was developed based on genes that code for serogroup-specific O-antigens and four major virulence factors (intimin, enterohemorrhagic hemolysin, and Shiga toxins [Stx] 1 and 2), to detect O157 and the "top six" non-O157 (O26, O45, O103, O111, O121, and O145) Shiga toxin-producing Escherichia coli (STEC). The assay specificity was validated with pure cultures of seven major STEC (185 strains), 26 other STEC (65 strains), non-STEC (five strains), and 33 strains of other genera and species. Sensitivity of the assay with cattle fecal sample spiked with pooled cultures of seven major STEC was 10(5) colony-forming units (CFU)/g before enrichment and 10(2) CFU/g after enrichment. The applicability of the assay to detect STEC in fecal samples (n=50), before and after enrichment, was evaluated by comparing with culture-based methods for O26, O111, and O157. The mPCR assay of 50 fecal samples showed seven (14%) positive before enrichment and 23 (46%) positive after enrichment for one or more of the seven O-groups. Overall, 17 isolates from 17 fecal samples and 27 isolates (four for O26, three for O45, and 20 for O103) from 19 fecal samples were obtained, by culture-based methods, for O157 and non-O157 serogroups, respectively. None of the 27 non-O157 isolates possessed the stx genes, suggesting that cattle harbor Shiga toxin-negative E. coli belonging to the "top six" non-O157 serogroups. Our data, although based on a limited number of samples, suggest that the sensitivities of the mPCR and culture-based methods in detecting the seven serogroups of STEC in feces differed between O-groups. An obvious limitation of our mPCR is that the concurrent detection of virulence genes and the serogroups in a sample does not necessarily associate the virulence genes with the prevalent serogroups in the same sample. The major application of our 11-gene mPCR assay may be in identifying putative colonies of STEC obtained by culture-based methods.  相似文献   

2.
O-antigens on the surface of Escherichia coli are important virulence factors that are targets of both the innate and adaptive immune system and play a major role in pathogenicity. O-antigens that are responsible for antigenic specificity of the strain determine the O-serogroup. E. coli O26, O45, O103, O111, O113, O121, O145, and O157 have been the most commonly identified O-serogroups associated with Shiga toxin-producing E. coli (STEC) implicated in outbreaks of human illness all over the world. A multiplex polymerase chain reaction assay was developed to simultaneously detect the eight STEC O-serogroups targeting the wzx (O-antigen-flippase) genes of all O-antigen gene clusters. The sensitivity of the multiplex polymerase chain reaction was found to be 10 colony forming units for each O-group when enriched in broth and 100 colony forming units when enriched in artificially inoculated apple juice diluted with tryptic soy broth for 16?h at 37°C. The method can be used for detecting STEC O-groups simultaneously and may be exploited for improving the safety of food products.  相似文献   

3.
A molecular-based detection method was developed to detect Escherichia coli O26, O111 and O157 in minced (ground) beef samples. This method consists of an initial overnight enrichment in modified tryptone soya broth (mTSB) and novobiocin prior to DNA extraction and subsequent serogrouping using a triplex PCR. This method has a low limit of detection and results are available within 24 hours of receipt of samples. Once optimized, this rapid method was utilized to determine the prevalence of these E. coli serogroups in six hundred minced beef samples all of which were previously examined by immunomagnetic separation (IMS) and selective plating for E. coli O26 and O111. Using IMS, two E. coli O26 isolates were detected. No E. coli O111 were recovered. The multiplex PCR technique described here did not detect E. coli O111 nor O157 in any of the samples, however six minced beef samples were positive for E. coli O26 using our method, only two of these were previously detected by IMS and culture. Application of molecular methods are useful to support culture-based approaches thereby further contributing to risk reduction along the food chain.  相似文献   

4.
An isolation method described by Possé et al. (FEMS Microbiol Lett 2008;282:124-131) was satisfactorily validated in an international ring-trial using artificially contaminated minced beef samples. Until now, no validated method existed for the simultaneous isolation of Shiga toxin-producing Escherichia coli serogroups O26, O103, O111, and O145 in food. Twelve laboratories from five European countries participated and received 16 inoculated beef samples contaminated with cold-stressed cells of the four serogroups O26, O103, O111, and O145 in two levels (approximately 30 and 300 CFU 25?g?1) in duplicate. In addition, they received four non-inoculated samples. The isolation protocol comprised a selective enrichment step, a selective isolation step on a non-O157 agar plate differentiating the serogroups by color, followed by confirmation by plating on confirmation agar media and agglutination. All laboratories were able to isolate the inoculated serogroups from the samples, both for the high and the low inoculation level. Results did not differ whether in-house-prepared or ready-to-use non-O157 agar plates were used, demonstrating that by following the instructions laboratories managed to perform the complete protocol with success.  相似文献   

5.
We determined the prevalence of Shiga toxin-producing Escherichia coli (STEC) in diarrheal stool samples from Nebraska by three methods: cefixime-tellurite sorbitol MacConkey (CT- SMAC) culture, enterohemorrhagic E. coli (EHEC) enzyme immunoassay, and stx1,2 polymerase chain reaction (PCR). Fourteen (4.2%) of 335 specimens were positive by at least one method (CT-SMAC culture [6 of 14], EHEC enzyme immunoassay [13 of 14], stx1,2 PCR [14 of 14]). Six contained serogroup O157, while non-O157 were as prevalent as O157 serogroups.  相似文献   

6.
Verocytotoxigenic Escherichia coli (VTEC) O157 are recognized as bacterial pathogens with significant public health impact. However, other serogroups, including O26, O111, O103, and O145, have the potential to cause the same spectrum of illness. In this study, 800 minced (ground) beef samples covering a large geographical region in Ireland were collected and tested for Escherichia coli (E. coli) O26 and E. coli O111 by conventional microbiological protocols. Two minced beef samples (0.25%) tested positive for E. coli O26, indicating fecal contamination. None of these isolates possessed verocytotoxin-encoding genes, (vt1/vt2 also known as stx1/stx2), the hemolysinencoding gene (hlyA), or the E. coli attachment-effacement (eae) gene, as determined by polymerase chain reaction (PCR). None of the beef samples analyzed contained E. coli O111. Although the E. coli O26 isolates were nonvirulent, the presence of these isolates in raw minced beef is an indication of fecal contamination and therefore potentially of public health significance.  相似文献   

7.
Rapid methods for the detection of Escherichia coli O157:H7 and Listeria monocytogenes in food products are important to the food industry and for public health. Conventional microbiological methods and newly developed molecular-based techniques such as polymerase chain reaction (PCR)-based methods are time consuming. In this study, a faster method based on utilization of a hybridization probe with real-time PCR, was developed and applied for detection of E. coli O157:H7 and L. monocytogenes from artificially contaminated raw ground beef and fully cooked beef hotdogs. Target genes for E. coli O157:H7 and L. monocytogenes were rfbE and hylA, respectively. An analysis of 169 bacterial strains showed that the chosen primers and probes were specific for detection of E. coli O157:H7 and L. monocytogenes by real-time PCR. The assay was positive for nine of 10. E. coli O157:H7 strains, and all L. monocytogenes (7/7) strains evaluated. Bacterial strains lacking these genes were not detected by these assays. Detection limits of real-time PCR assays ranged from 10(3) to 10(8) colony forming units (CFU)/ml for E. coli O157:H7 in modified tryptic soy broth and 10(4) to 10(8) CFU/mL for L. monocytogenes in Fraser Broth. Detection sensitivity ranged from 10(3) to 10(4) CFU/g of raw ground beef or hotdog without enrichment for E. coli and L. monocytogenes. Approximately 1.4-2.2 CFU/g of E. coli O157:H7 in raw ground beef were detected following an enrichment step of 4 h. Approximately 1.2-6.0 CFU/g of L. monocytogenes in beef hotdogs were detected following an enrichment step of 30 h. The real-time PCR assays for detection of E. coli O157:H7 and L. monocytogenes in raw ground beef and beef hotdogs were specific, sensitive and rapid.  相似文献   

8.
The objective of this study was to characterize Escherichia coli isolates from dairy cows/feedlots, calves, mastitis, pigs, dogs, parrot, iguana, human disease, and food products for prevalence of Shiga toxin-producing E. coli (STEC) virulence markers. The rationale of the study was that, isolates of the same serotypes that were obtained from different sources and possessed the same marker profiles, could be cross-species transmissible. Multiplex polymerase chain reaction (PCR) was used to detect presence of genes encoding Shiga toxin 1 and 2 (stx1 and stx2), H7 flagella (flicC), enterohemolysin (hly) and intimin (eaeA) in E. coli isolates (n = 400). Shiga toxin-producing isolates were tested for production of Shiga toxins (Stx1 and Stx2 and enterohemolysin. Of the E. coli O157:H7/H- strains, 150 of 164 (mostly human, cattle, and food) isolates were stx+. Sixty-five percent of O157 STEC produced both Stx1 and Stx2; 32% and 0.7% produced Stx2 or Stx1, respectively. Ninety-eight percent of O157 STEC had sequences for genes encoding intimin and enterohemolysin. Five of 20 E. coli O111, 4 of 14 O128 and 4 of 10 O26 were stx+ . Five of 6 stx+ O26 and O111 produced Stx1, however, stx+ O128 were Stx-negative. Acid resistance (93.3%) and tellurite resistance (87.3%) were common attributes of O157 STEC, whereas, non-O157 stx+ strains exhibited 38.5% and 30.8% of the respective resistances. stx-positive isolates were mostly associated with humans and cattle, whereas, all isolates from mastitis (n = 105), and pigs, dogs, parrot and iguanas (n = 48) were stx-negative. Multiplex PCR was an effective tool for characterizing STEC pathogenic profiles and distinguished STEC O157:H7 from other STEC. Isolates from cattle and human disease shared similar toxigenic profiles, whereas isolates from other disease sources had few characteristics in common with the former isolates. These data suggest interspecies transmissibility of certain serotypes, in particular, STEC O157:H7, between humans and cattle.  相似文献   

9.
Abstract A total of 52 Shiga toxin-producing Escherichia coli (STEC) strains, isolated from fecal samples of six ibex, 12 chamois, 15 roe deer, and 19 red deer were further characterized by subtyping the stx genes, examining strains for the top nine serogroups and testing for the presence of eae and ehxA. Eleven of the 52 strains belonged to one of the top nine STEC O groups (O26, O45, O91, O103, O111, O113, O121, O145, and O157). Eight STEC strains were of serogroup O145, two strains of serogroup O113, and one strain of serogroup O157. None of the strains harbored stx2a, stx2e, or stx2f. Stx2b (24 strains) and stx1c (21 strains) were the most frequently detected stx subtypes, occurring alone or in combination with another stx subtype. Eight strains harbored stx2g, five strains stx2d, three strains stx1a, two strains stx2c, and one strain stx1d. Stx2g and stx1d were detected in strains not harboring any other stx subtype. The eae and ehxA genes were detected in two and 24 STEC strains, respectively. Considering both, the serogroups and the virulence factors, the majority of the STEC strains isolated from red deer, roe deer, chamois, and ibex do not show the typical patterns of highly pathogenic STEC strains. To assess the potential pathogenicity of STEC for humans, strain isolation and characterization is therefore of central importance.  相似文献   

10.
目的:对12株疑似O157:H7大肠菌采用PCR法进行鉴定。方法:利用单一PCR和多重聚合酶链反应(mPCR)检测不同来源菌株志贺样毒素(stx1和stx2)、溶血素(hly)、粘附抹平因子(eaeA)、β-葡糖醛酸糖苷酶(u idA)、O157抗原编码(rfbE)、H7鞭毛抗原编码(fliC)基因。结果:4株大肠菌rfbE和fliC基因检测为阳性,确认为EHEC O157:H7,其中1株菌株扩增出全部毒力基因,另3株菌株扩增出除stx1外其它全部毒力基因;2株大肠菌rfbE基因检测阳性,确认为O157:H7-大肠菌;其它均为非O157:H7其它大肠菌。结论:PCR技术的应用能对可疑O157:H7大肠菌进行有效鉴定与分析,应成为今后病原学鉴定的主要技术手段。  相似文献   

11.
The prevalence of Shiga toxin-producing Escherichia coli (STEC) was investigated in 350 edible beef intestinal samples, including omasum (n=110), abomasum (n=120), and large intestines (n=120), collected from traditional beef markets in Seoul, Korea. A total of 23 STEC strains were isolated from 15 samples (four strains from three omasa, 10 from five abomasa, and nine from seven large intestines). The O serotypes and toxin gene types of all STEC isolates were identified, and antimicrobial resistance was assessed using the disk diffusion method. The isolation rates of STEC from edible beef intestines were 2.8% in omasum, 4.2% in abomasums, and 5.9% in large intestines. All STEC isolates harbored either stx1, or both stx1 and stx2 genes simultaneously. Among the 23 isolates, 13 strains were identified as 11 different O serogroups, and 10 strains were untypable. However, enterohemorrhagic Esherichia coli O157, O26, and O111 strains were not isolated. The highest resistance rate observed was against tetracycline (39%), followed by streptomycin (35%) and ampicillin (22%). Of the 23 isolates, 12 isolates (52%) were resistant to at least one antibiotic, nine (39%) isolates were resistant to two or more antibiotics, and one isolate from an abmasum carried resistance against nine antibiotics, including beta-lactam/beta-lactamase inhibitor in combination and cephalosporins. This study shows that edible beef by-products, which are often consumed as raw food in many countries, including Korea, can be potential vehicles for transmission of antimicrobial-resistant pathogenic E. coli to humans.  相似文献   

12.
目的 分析河南省2000~2002年分离的351株与产志贺毒素大肠菌(STEC)感染有关的菌株,了解不同来源标本各种毒素基因携带模式。方法 应用多重PCR技术,检测所有菌株志贺毒素(stx1和stx2、hlyA、eaeA、rfbO111和rfbO157基因。结果 351株待检菌株分为枸橼酸杆菌、O157:H7大肠杆菌、rfbO157基因阳性不携带志贺毒素基因的大肠杆菌和rfbO157基因阴性携带志贺毒素基因的大肠杆菌4种不同类型。4种类型菌株具有6种rebO157、stx2、stx1基因模式。携带志贺毒素基因的菌株主要源自波尔山羊、普通本地羊和病人,其它家畜家禽中有不同程度感染STEC。结论 河南省存在STEC的感染.主要以O157:H7大肠杆菌为主,但也存在其它非O157的STEC。  相似文献   

13.
Recent water related outbreaks of shiga toxin producing E. coli O157 have resulted in increased attention of the water industry to this potentially deadly pathogen. Current methods to detect E. coli O157 and its virulence genes are laborious and time-consuming. Specificity, sensitivity and simple use of a real-time PCR method makes it an attractive alternative for the detection of STEC E. coli O157. This study describes the development and application of real-time PCR methods for the detection of E. coli O157, shiga toxin genes (Stx1 and Stx2) and E. coli. The specificity of the methods was confirmed by performing colony-PCR assays on characterized bacterial isolates, demonstrating the applicability of these assays as rapid tests to confirm the presence of E. coli or E. coli O157 colonies on culture plates. Sensitive culture-PCR methods were developed by combining culture enrichment with real-time PCR detection. This rapid method allowed detection of low concentrations of E. coli O157 in the presence of high concentrations of non-O157-E. coli (1:104). Culture-PCR methods were applied to 27 surface water and 4 wastewater samples. E. coli O157 and both Stx genes were detected in two wastewater samples, whereas only E. coli O157 was detected in two surface water samples. Culture-PCR methods were not influenced by matrix effects and also enabled quantitative (MPN) detection of E. coli in these samples.  相似文献   

14.
Shiga toxin-producing Escherichia coli (STEC) O157 was investigated with respect to its halotolerance and whether it can survive in marine water. STEC O157 could multiply in a medium containing 5% NaCl and in sterilized marine water, and could survive in unsterilized marine water for at least 15 days. On the basis of these results, we postulated that STEC O157 may survive in natural marine water, and attempted to isolate the bacterium and Shiga toxin gene (stx) from marine water in Japan. The stx, comprising stx1 and stx2, was detected from marine water samples by PCR. STEC and other stx-positive bacteria, however, could not be isolated from these samples in this study. These results indicate that stx-positive bacteria may survive in marine water and suggest the necessity of a survey.  相似文献   

15.
Routine laboratory testing may not detect non-O157 Shiga toxin-producing Escherichia coli (STEC) reliably. Active clinical, epidemiological, environmental health, and laboratory collaboration probably influence successful detection and study of non-O157 STEC infection. We summarized two outbreak investigations in which such coordinated efforts identified non-O157 STEC disease and led to effective control measures. Outbreak 1 involved illness associated with consuming unpasteurized apple cider from a local orchard. Public health personnel were notified by a local hospital; stool specimens from ill persons contained O111 STEC. Outbreak 2 involved bloody diarrhoea at a correctional facility. Public health personnel were notified by the facility infection control officer; O45 STEC was the implicated agent. These reports highlight the ability of non-O157 STEC to cause outbreaks and demonstrate that a coordinated effort by clinicians, infection-control practitioners, clinical diagnostic laboratorians, and public health personnel can lead to effective identification, investigation, and prevention of non-O157 STEC disease.  相似文献   

16.
Recent epidemiological data suggest a link between the consumption of bovine offal products and Shiga toxin-producing Escherichia coli (STEC) infection in Japan. This study thus examined the prevalence of STEC in various types of these foods. PCR screened 229 bovine offal products for the presence of Shiga toxin (stx) gene. Thirty-eight (16·6%) samples were stx positive, of which eight were positive for rfbE(O157) and three were positive for wzy(O26). Four O157 and one O26 STEC isolates were finally obtained from small-intestine and omasum products. Notably, homogenates of bovine intestinal products significantly reduced the extent of growth of O157 in the enrichment process compared to homogenates of beef carcass. As co-incubation of O157 with background microbiota complex from bovine intestinal products in buffered peptone water, in the absence of meat samples, tended to reduce the extent of growth of O157, we reasoned that certain microbiota present in offal products played a role. In support of this, inoculation of generic E. coli from bovine intestinal products into the homogenates significantly reduced the extent of growth of O157 in the homogenates of bovine intestinal and loin-beef products, and this effect was markedly increased when these homogenates were heat-treated prior to inoculation. Together, this report provides first evidence of the prevalence of STEC in a variety of bovine offal products in Japan. The prevalence data herein may be useful for risk assessment of those products as a potential source of human STEC infection beyond the epidemiological background. The growth characteristic of STEC O157 in offal products also indicates the importance of being aware when to test these food products.  相似文献   

17.
Phenotypic and genetic markers of Shiga toxin-producing Escherichia coli (STEC) O26 from North America were used to develop serotype-specific protocols for detection of this pathogen. Carbohydrate fermentation profiles and prevalence of gene sequences associated with STEC O26 (n = 20) were examined. Non-STEC O26 (n = 17), E. coli O157 (n = 20), E. coli O111 (n = 22), and generic E. coli (n = 21) were used as comparison strains. Effects of supplements: cefixime-tellurite, 4-methylumbelliferyl-beta-D-glucuronide (MUG) and chromogenic additives (5-bromo4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal), 5-bromo-4-chloro-3-indolyl-beta-D-glucuronide (X-GlcA) and o-nitrophenyl-beta-D-galactopyranoside (ONPG), added to isolation agar media were examined. Tests for presence of gene sequences encoding beta intimin (eae beta), Shiga toxin 1 and 2 (stx1 and stx2), H7 flagella (flicCh7), enterohemolysin (ehlyA), O26 somatic antigen (wzx), and high pathogenicity island genes (irp2 and fyuA) were conducted using multiplex polymerase chain reaction. Pulsed-field gel electrophoresis (PFGE) of XbaI restriction endonuclease genomic DNA digests was used to establish clonality among E. coli O26 strains. Of the 26 carbohydrates tested, only rhamnose had diagnostic value. Rhamnose non-fermenters included STEC O26 (100%), non-STEC O26 (40%), generic E. coli (29%), E. coli O111 (23%), and E. coli O157 (0%). Rhamnose non-fermenting colonies growing on Rhamnose-McConkey agar supplemented with X-GlcA, X-Gal, or ONPG, respectively, were blue, white, or faint yellow, whereas rhamnose-fermenters were red. Blue colonies from X-GlcA-containing media were the most well-defined and easiest to pick for further tests. All STEC O26 were MUG-fluorescent, while STEC O157 (n = 18) were non-fluorescent. E. coli O111 and generic E. coli strains were either MUG-positive or-negative. Serotype-specific detection of STEC O26 was achieved by selecting cefixime-tellurite-resistant, MUG-fluorescent, rhamnose-nonfermenting colonies, which carried stx1, eae beta, irp2, and wzx gene sequences. STEC O26 prevalence in dairy farm environmental samples determined using the developed isolation and genetic detection protocols was 4%. PFGE indicated the presence of one major cluster of E. coli O26 with 72-100% DNA fragment-length digest similarity among test strains. The serotype-specific detection methods described herein have potential for routine application in STEC O26 diagnosis.  相似文献   

18.
To investigate if there is a reservoir of Escherichia coli O157 in Norwegian cattle, faecal samples from 197 cattle herds were screened for E. coli O157 by the use of immunomagnetic separation (IMS) and PCR during the 1995 grazing season. Six E. coli O157:H-isolates were detected in two herds, one isolate in one and five in the other. The isolates carried the stx1, stx2, and eae genes, and a 90 MDa virulence plasmid. They were toxinogenic in a Vero cell assay. From 57 other herds, 137 faecal samples were positive for stx1 and/or stx2 genes detected by PCR run directly on IMS-isolated material. Among these samples, stx2 were the most widely distributed toxin encoding genes. No difference was found among milking cows and heifers in the rate of stx1 and/or stx2 in positive samples.  相似文献   

19.
We conducted a study to determine the incidence of haemolytic uraemic syndrome (HUS) in children in France and to assess the role of Shiga-toxin-producing Escherichia coli (STEC) infection in the aetiology of HUS. In collaboration with the Société de Néphrologie Pédiatrique we undertook a retrospective review of all cases of HUS hospitalized from January 1993 to March 1995 and a 1-year prospective study (April 1995-March 1996) of epidemiological and microbiological features of cases of HUS. The polymerase chain reaction (PCR) procedure was used to detect stx, eae, e-hlyA genes directly from case stool samples. Serum samples from cases were examined for antibodies to lipopolysaccharide (LPS) of 26 major STEC serogroups. Two hundred and eighty-six cases were reported. The average incidence per year was 0.7/10(5) children < 15 years and 1.8/10(5) children < 5 years. During the prospective study, 122/130 cases were examined for evidence of STEC infection using PCR and/or serological assays and 105 (86%) had evidence of STEC infection. Serum antibodies to E. coli O157 LPS were detected in 79 (67%) cases tested. In conclusion, this study showed that STEC infection is an important cause of HUS in children in France, with a high proportion related to the O157 serogroup.  相似文献   

20.
The purpose of this study was to evaluate the value of real-time molecular typing of Shiga toxin (Verocytotoxin)-producing Escherichia coli (STEC) infections in order to detect possible outbreaks of infections. All laboratory confirmed STEC infections in Denmark from 2003 to mid 2005 were routinely characterized by serotyping, virulence genes characterization, and subtyping by pulsed-field gel electrophoresis (PFGE) using the PulseNet protocol for STEC O157. The study included 312 STEC isolates representing 50 different O groups and 75 O:H-serotypes, and 68% of the isolates belonged to the eight most common O-groups: O157 (26%), O103 (13%), O146 (8%), O26 (8%), O117 (4%), O145 (3%), O128 (3%), and O111 (2%). The remaining O-groups constituted less than 2% each, and 8.1% of the isolates were O-rough. The eae gene was found in 60% of all isolates, and detection of the two main Shiga toxin genes showed that 40% had stx1 only, 31% had stx2 only, and 29% had both stx1 and stx2. A high diversity was seen within all O groups, and for most of the rare O groups, the number of PFGE profiles equaled the number of isolates. However, one outbreak of E. coli O157 was detected by the routine PFGE typing. The value of "real-time' PFGE typing of the infrequent serotypes is limited if the full scheme for O-grouping or O:H-serotyping is used routinely for all STEC isolates. Possible outbreaks can then be detected by the increased number of isolates within a particular serotype. PFGE typing would then be valuable in subsequent steps of the outbreak investigation. However, routine PFGE typing of the three to five most common O groups will enable early recognition of possible outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号