首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
载多柔比星二氧化钛纳米粒的制备及体外评价   总被引:3,自引:3,他引:0  
目的制备载多柔比星(doxorubicin,DOX)的二氧化钛(Ti02)纳米粒,并考察其体外释放百分率及细胞毒性。方法通过水热法合成DOX的Ti02纳米粒,采用透射电镜及X-射线衍射仪对其进行表征,紫外可见分光光度法测定载药量及体外释放,采用MTT法分析其对MCF-7细胞和Hela细胞的细胞毒性。结果所制备的纳米粒分散均匀。外观呈梭状,长度约为200nm,在水中的载药量达10.85%,体外释放具有pH敏感性,空白纳米粒细胞毒性较低,载药纳米粒的细胞毒性与游离多柔比星相当。结论所制备的TiO2纳米粒具有较高的载药量及pH敏感的体外释放性能,可作为DOX的载体。  相似文献   

2.
Abstract

Purpose: An octreotide-conjugated polyamidoamine (PAMAM) dendrimer was synthesized and employed as nanocarriers of methotrexate (MTX), for targeting to the somatostatin receptors over-expressed tumor cells.

Methods: PAMAM–PEG–octreotide (PPO) and PAMAM–PEG (PPG) were synthesized and characterized. The cellular uptake of fluorescein isothiocyanate (FITC)-labeled PPO (PPO-FITC) and PPG (PPG-FITC) were investigated. The cytotoxicity of MTX and MTX nanoparticles were conducted in the MCF-7 cells. Besides, the pharmacokinetics studies on MTX nanoparticles were carried out in rats.

Results: The structure of PPO was verified by NMR detection and the diameter was 11.05?±?1.80?nm, with the amount of MTX encapsulated by PPO was 30?(molecule/molecule). MTX nanoparticles possessed significantly higher cytotoxicity against MCF-7 cells compared with free MTX, especially the PPO/MTX nanoparticles. Correspondingly, the PPO-FITC carrier had higher cellular uptake efficiency compared to PPG-FITC. In addition, pharmacokinetics studies showed that PPO/MTX nanoparticles increased mean residence time and bioavailability of MTX distinctly.

Discussion and conclusion: With further cellular uptake test of FITC-labeled carriers, the enhanced cytotoxicity of PPO/MTX nanoparticles was reasonable to ascribe to the specific receptor-mediated endocytosis induced by octreotide. The present study suggests that this PAMAM–PEG–octreotide nanocarrier opens a new path for treating cancer with higher efficacy.  相似文献   

3.
The folate receptor (FR) is a highly selective tumor marker over expressed in many human cancers and it constitutes a useful target for tumor-specific drug delivery. Thus, the conjugation of folic acid to different drugs or drug carriers may enhance the delivery of the therapeutic agent to FR-positive tumor cells. The aim of this study was to investigate the interactions of folate-conjugated polyalkylcyanoacrylate nanoparticles with tumor cells overexpressing the FR. For this purpose, nanoparticles were prepared by nanoprecipitation of the poly[aminopoly(ethylene glycol) cyanoacrylate-co-hexadecyl cyanoacrylate] [poly(H2NPEGCA-co-HDCA)] copolymer and labeled with the hydrophobic fluorescent dye nile red. Nile red-loaded nanoparticles were then conjugated to folic acid via the PEG terminal amino groups. Four human cancer cell lines were then tested by western blot in order to evaluate the FR expression levels. KB3-1 cell line showed the higher expression level, while MCF-7 cells were taken as a control. After measuring the cytotoxicity of the nanoparticles on these two cell lines, fluorescent folate-nanoparticles were incubated with them and the cellular uptake was evaluated by confocal microscopy and flow cytometry. KB3-1 cells showed a greater nanoparticle internalization, when compared to MCF-7 cells.  相似文献   

4.
A novel folate-decorated maleilated pullulan–doxorubicin conjugate (abbreviated as FA–MP–DOX) for active tumor targeting was set up. The structure of this conjugate was confirmed by 1H NMR analysis. Furthermore, the conjugation efficiency, drug release property and stability of the conjugate were determined. The cellular uptake and cytotoxicity were assessed by using ovarian carcinoma A2780 cells as in vitro cell model. In vitro DOX release from FA–MP–DOX conjugate occurred at a faster rate at acidic pH compared to neutral pH (7.4). After 30 h of incubation at pH 2.5, 5.0 and 7.4 the released free DOX was about 68.71%, 50.08% and 26%, respectively. Based on the IC50 values, the conjugate was found more effective with ovarian carcinoma A2780 cells than the parent drug after 48 h culture. These results suggested that FA–MP–DOX conjugate could be a promising doxorubicin carrier for its targeted and intracellular delivery.  相似文献   

5.
Objective: Drug loading into nanocarriers is used to facilitate drug delivery to target cells and organs. We have previously reported a change in cellular localization of epirubicin after loading to poly(butyl cyanoacrylate) (PBCA) nanoparticles. We aimed to further investigate the altered cellular localization and cellular responses to the described drug formulation.

Materials and methods: HeLa cells were treated with epirubicin-loaded PBCA nanoparticles prepared by the pre-polymerization method. A systematic study was performed to evaluate the formulation cytotoxicity. Cellular localization and uptake of the formulation as well as cellular response to the treatment were evaluated.

Results: Our studies revealed decreased cytotoxicity of the nanoparticle-formulated epirubicin compared to the free drug as well as a noticeable change in the drug’s intracellular localization. Epirubicin-loaded nanoparticles were internalized via endocytosis, accumulated inside endosomal vesicles and induced a two-fold stronger pro-apoptotic signal when compared to the free drug. The level of the tumor suppressor protein p53 in HeLa cells increased significantly upon treatment with free epirubicin, but remained relatively unchanged when cells were treated with equivalent dose of nanoparticle-loaded drug, suggesting a possible shift from p53-dependent DNA/RNA intercalation-based induction of cytotoxicity by free epirubicin to a caspase 3-induced cell death by the epirubicin-loaded PBCA formulation.  相似文献   

6.
Three stable mononuclear hematoporphyrin IX ((7,12-bis(1-hydroxyethyl)-3,8,13,17-tetramethyl-21H-23H-porphyn-2,18-dipropionic acid), Hp) complexes of PtIII, namely cis-[ PtIII(NH3)2(Hp−3H)(H2O)2].H2O 1, [PtIII(Hp−3H)(H2O)2].H2O 2 and [PtIII((O,O)Hp−2H)Cl(H2O)3] 3 with distorted octahedral structure and (dz2)1 ground state have been tested in vitro for antineoplastic activity in a panel of tumor cell lines. The novel platinum(III) complexes showed cytotoxic activity in a concentration-dependent manner with IC50 values comparable to those of referent cytotoxic agent cisplatin together with lower cytotoxicity against renal cells. Further detailed evaluation of the active analogue 2 and the less active complex 3 showed that their potency greatly correlates with the ability to induce apoptosis and to bind DNA. Despite the structural dissimilarities between complex 2 and cisplatin, their DNA-adducts were equally effectively recognized and repaired by the nucleotide excision repair system. Complex 2 showed quite superior ability to accumulate in K-562 cells relative to cisplatin.  相似文献   

7.
Breast cancer leads to high mortality of women in the world. Docetaxel (DTX) has been widely applied as one of the first-line chemotherapeutic drugs for breast cancer therapy. However, the clinical outcome of DTX is far from satisfaction due to its poor drug delivery efficiency. Herein, a novel disulfide bond bridged oleate prodrug of DTX was designed and synthesized to construct self-delivering prodrug-based nanosystem for improved anticancer efficacy of DTX. The uniquely engineered prodrug-nanoassemblies showed redox-responsive drug release, increased cellular uptake and comparable cytotoxicity against 4T1 breast cancer cells when compared with free DTX. In vivo, oleate prodrug-based nanoparticles (NPs) demonstrated significantly prolonged systemic circulation and increased accumulation in tumor site. As a result, prodrug NPs produced a notable antitumor activity in 4T1 breast cancer xenograft in BALB/c mice. This prodrug-based self-assembly and self-delivery strategy could be utilized to improve the delivery efficiency of DTX for breast cancer treatment.  相似文献   

8.
Drug targeting and stimuli-responsive drug release are 2 active areas of cancer research and hold tremendous potential in the management of cancer drug resistance. In this study, I addressed this issue and focused on the synthesis and characterization of pH-responsive Fe3O4@SiO2(FITC)-BTN/folic acid/DOX multifunctional nanoparticles aiming to increase drug accumulation in malignancies with both dual active targeting and endosomal drug release properties. Dye-doped silica magnetic-fluorescent composite was constructed by a simple coprecipitation of Fe+2/Fe+3 salts followed by sol-gel formation and dual-targeting function was obtained by conjugating folate and biotin moieties on the silica surface of nanoparticles via an esterification reaction. Doxorubicin was then successfully attached on the amine-functionalized nanoparticles using a pH-sensitive Schiff-base formation. The physicochemical characterization of the structure was performed by dynamic light scattering, zeta potential measurement, X-ray diffraction, Fourier transform infrared spectroscopy, electron microscopy techniques, and an in vitro pH-dependent release study. Cellular uptake and cytotoxicity experiments demonstrated an enhanced intracellular delivery and reduction of cancer cell viability in the cervical carcinoma HeLa cell line. Furthermore, proapoptotic studies showed that the nanoparticles increased the apoptotic rates within the same cancer cells. The preliminary cell tests confirm the potential of these multifunctional nanoparticles against the development of drug resistance in cancer cells.  相似文献   

9.
cis-Dichlorodiamminoplatinum (II) (cisplatin) has demonstrated extraordinary activities against a variety of solid tumors. However, the clinical efficacy is contrasted by its toxicity profile. To reduce the toxicity and enhance the circulation time of cisplatin, core–shell structure nanoparticles were prepared from block copolymer of methoxy poly(ethylene glycol)–polycaprolactone (mPEG–PCL). Cisplatin was incorporated into the nanoparticles with high encapsulation efficiency more than 75%. Controlled release of cisplatin was observed in a sustained manner. In vitro cytotoxicity studies proved the efficacy of cisplatin-loaded nanoparticles against BGC823 and H22 cells in a dose and time-dependent manner. Furthermore, intratumoral administration was applied to improve the tumor-targeted delivery in the in vivo evaluation. Compared with free cisplatin, cisplatin-loaded nanoparticles exhibited superior antitumor effect by delaying tumor growth when delivered intratumorally, while no significant improvement was observed when they were administrated intraperitoneally. Positron emission tomography/computed tomography (PET/CT) imaging was utilized for the first time to detect the declined 18F-labeled 2-fluoro-2-deoxy-d-glucose (18F-FDG) uptake of the tumor in mice receiving cisplatin-loaded nanoparticles intratumorally. These results suggest that polymeric nanoparticles with core–shell structures are promising for further studies as drug delivery carriers, and intratumoral delivery of drug-loaded nanoparticles could be a probable clinically useful therapeutic regimen.  相似文献   

10.
Abstract

Taxane-based chemotherapy-loaded drug delivery systems have great potential for cancer treatment. The docetaxel (DTX)-loaded PAMAM-based poly (γ-benzyl-l-glutamate)-b-d-α-tocopheryl polyethylene glycol 1000 succinate (PAM-PBLG-b-TPGS) nanoparticles and the docetaxel (DTX)-loaded PAMAM-based poly (γ-benzyl-l-glutamate) (PAM-PBLG) nanoparticles were designed using a modified nanoprecipitation method. The particle size, encapsulation efficiency (EE), and in vitro release characteristics of the nanoparticles were tested. The effects of the two nanoparticles on the cellular uptake and cell viability on human cervical cancer cell line Hela and the human breast cancer cell line MCF-7 were compared. Furthermore, their antitumor efficiency was evaluated through in vivo tumour growth experiment in comparison with free DTX. PAM-PBLG-b-TPGS nanoparticles displayed high EE, smaller diameter, and a nice releasing profile. Besides, based on the high EE and ‘self-controlled’ drug release of the DTX-loaded PAM-PBLG-b-TPGS nanoparticles, they exhibited stronger cytotoxicity (lower survival rate) and higher uptake rate than DTX-loaded PAM-PBLG nanoparticles in Hela cells and MCF-7 cells. Furthermore, compared with DTX-loaded PAM-PBLG nanoparticles and free DTX, DTX-loaded PAM-PBLG-b-TPGS nanoparticles produced a potent anti-tumour effect. Thus, the DTX-loaded PAM-PBLG-b-TPGS nanoparticles provide a novel attractive nanocarrier for the DTX delivery of chemotherapy to human breast cancer cells and human cervical cancer cells.  相似文献   

11.
Surface‐functionalized silver nanoparticles (AgNPs) are the most deployed engineered nanomaterials in consumer products because of their optical, antibacterial and electrical properties. Almost all engineered nanoparticles are coated with application‐specific capping agents (i.e. organic/inorganic ligands on particle surface) to enhance their stability in suspension or increase their biocompatibility for biomedicine. The aim of this study was to investigate the contribution of the selected capping agents to their observed health impacts using realistic dose ranges. AgNPs capped with citrate, polyvinylpyrrolidone (PVP) and tannic acid were studied with human bronchoalveolar carcinoma (A549) and human colon adenocarcinoma (Caco‐2) cell lines and compared against exposures to Ag ions. Cellular uptake and cytotoxicity were evaluated up to 24 h. Tannic acid capped AgNPs induced higher cellular uptake and rate in both cell lines. Citrate‐capped and PVP‐capped AgNPs behaved similarly over 24 h. All three of the capped AgNPs penetrated more into the A549 cells than Caco‐2 cells. In contrast, the uptake rate of Ag ions in Caco‐2 cells (0.11 ± 0.0001 µg h–1) was higher than A549 cells (0.025 ± 0.00004 µg h–1). The exposure concentration of 3 mg l–1 is below the EC50 value for all of the AgNPs; therefore, little cytotoxicity was observed in any experiment conducted herein. Exposure of Ag ions, however, interrupted cell membrane integrity and cell proliferation (up to 70% lysed after 24 h). These findings indicate cellular uptake is dependent on capping agent, and when controlled to realistic exposure concentrations, cellular function is not significantly affected by AgNP exposure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Purpose Nanoparticles, drug carriers in the sub-micron size range, can enhance the therapeutic efficacy of encapsulated drug by increasing and sustaining the delivery of the drug inside the cell. However, the use of nanoparticles for small molecular weight, water-soluble drugs has been limited by poor drug encapsulation efficiency and rapid release of the encapsulated drug. Here we report enhanced cellular delivery of water-soluble molecules using novel Aerosol OT™ (AOT)-alginate nanoparticles recently developed in our laboratory. Materials and Methods AOT-alginate nanoparticles were formulated using emulsion-crosslinking technology. Rhodamine and doxorubicin were used as model water-soluble molecules. Kinetics and mechanism of nanoparticle-mediated cellular drug delivery and therapeutic efficacy of nanoparticle-encapsulated doxorubicin were evaluated in two model breast cancer cell lines. Results AOT-alginate nanoparticles demonstrated sustained release of doxorubicin over a 15-day period in vitro. Cell culture studies indicated that nanoparticles enhanced the cellular delivery of rhodamine by about two–tenfold compared to drug in solution. Nanoparticle uptake into cells was dose-, time- and energy-dependent. Treatment with nanoparticles resulted in significantly higher cellular retention of drug than treatment with drug in solution. Cytotoxicity studies demonstrated that doxorubicin in nanoparticles resulted in significantly higher and more sustained cytotoxicity than drug in solution. Conclusions AOT-alginate nanoparticles significantly enhance the cellular delivery of basic, water-soluble drugs. This translates into enhanced therapeutic efficacy for drugs like doxorubicin that have intracellular site of action. Based on these results, AOT-alginate nanoparticles appear to be suitable carriers for enhanced and sustained cellular delivery of basic, water-soluble drugs.  相似文献   

13.
Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice. In this work, chitosan nanoparticles were produced by crosslinking chitosan with 3-methoxy-4-hydroxybenzaldehyde (vanillin) through a Schiff reaction. Chitosan nanoparticles were 200–250?nm in diameter with smooth surface and were negatively charged with a zeta potential of???17.4?mV in neutral solution. Efficient drug loading and drug encapsulation were achieved using 5-fluorouracil as a model of hydrophilic drug. Drug release from the nanoparticles was constant and controllable. The in vitro cytotoxicity against HT-29 cells and cellular uptake of the chitosan nanoparticles were evaluated by methyl thiazolyl tetrazolium method, confocal laser scanning microscope and flow cytometer, respectively. The results indicate that the chitosan nanoparticles crosslinked with vanillin are a promising vehicle for the delivery of anticancer drugs.  相似文献   

14.
Abstract

In the field of cancer therapy, magnetic nanoparticles modified with biocompatible copolymers are promising vehicles for the delivery of hydrophobic drugs such as Cisplatin. The major aim of this effort was to evaluate whether Cisplatin-Encapsulated magnetic nanoparticles improved the anti-tumour effect of free Cisplatin in lung cancer cells. The PLGA-PEG triblock copolymer was synthesised by ring-opening polymerisation of d,l-lactide and glycolide with polyethylene glycol (PEG6000) as an initiator. The bulk properties of these copolymers were characterised using Fourier transform infrared spectroscopy. Cisplatin-loaded nanoparticles (NPs) were prepared by double emulsion solvent evaporation technique and were characterised for size, drug entrapment efficiency (%), drug content (% w/w), and surface morphology. In vitro release profile of cisplatin-loaded NP formulations was determined. Cytotoxic assays were evaluated in lung carcinoma (A549)-treated cells by the MTT assay technique. In addition, the particles were characterised by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The anti-proliferative effect of Cisplatin appeared much earlier when the drug was encapsulated in magnetic nanoparticles than when it was free. Cisplatin-Encapsulated magnetic nanoparticles significantly enhanced the decrease in IC50 rate. The in vitro cytotoxicity test showed that the Fe3O4-PLGA-PEG6000 magnetic nanoparticles had no cytotoxicity and were biocompatible. The chemotherapeutic effect of free Cisplatin on lung cancer cells is improved by its encapsulation in modified magnetic nanoparticles. This approach has the prospective to overcome some major limitations of conventional chemotherapy and may be a promising strategy for future applications in lung cancer therapy.  相似文献   

15.
The key for better antitumor efficacy is to improve the specificity of antitumor drugs for tumor cells and diminish their cytotoxicity to normal tissues. Targeted nanoparticles as antitumor drug delivery system can resolve this problem. In this study, we prepared folate and TAT (arginine-rich cell-penetrating peptide) modified N-PEG-N′-octyl-chitosan to form the folate/TAT-PEG-OC micelles. Then, the molecular structure, morphology, size distribution and bio-safety of the micelles were characterized. In order to investigate the drug-loading capacity of folate/TAT-PEG-OC micelles, doxorubicin (DOX) was used as model drug to prepare DOX-loaded chitosan micelles. Here, the confocal microscopy was used to evaluate the cellular uptake of DOX/folate/TAT-PEG-OC micelles, while the self-built NIR imaging system was used to evaluate the dynamic behavior of ICG-Der-01/folate/TAT-PEG-OC micelles in vivo. Our results demonstrate that the dual-modified PEG-OC micelles not only have good morphology, uniform size distribution and excellent drug loading capacity, but also show a strong capability for the efficient intracellular uptake and enhanced targeting behaviors in a folate receptor positive tumor model (Bel-7402 human hepatocellular cells). All these results suggest the potential application of folate/TAT-PEG-OC micelles in the targeted diagnosis and therapy to different kinds of folate receptor positive tumors.  相似文献   

16.
Tumor environmental sensitive polypeptide integrated photosensitizer is a platform for imaging-guided photodynamic therapy (PDT). However, the photosensitizer leakage during blood circulation, poor accumulation in tumor tissue and inferior quantum yield of singlet oxygen are still challenges. Herein, NHS-active boron-dipyrromethene derivative with bromine substituted NHS-BODIPY-Br2 was first synthesized, which possessed high singlet oxygen generation efficiency and near infrared (NIR) fluorescence, and then it was conjugated to a sharp pH (6.36) sensitive polypeptide to achieve a macrophotosensitizer for NIR imaging-guided PDT. In vitro study showed that the macrophotosensitizer nanoparticles exhibited good cellular uptake and ability to kill cancer cells. Once accumulating in the tumor tissues, the nanoparticles can be demicellized by tumor acidity to promote cellular uptake, which could enlarge fluorescence signal intensity and enhance in vivo PDT therapeutic effect upon NIR laser irradiation. It provides a strategy to design photosensitizer conjugated tumor acidity sensitive polypeptide for NIR imaging-guided photodynamic therapy.  相似文献   

17.
SN-38 (7-ethyl-10-hydroxycamptothecin) is the active metabolite of irinotecan, which is 100-to 1000-fold more cytotoxic than irinotecan. Nevertheless, extreme hydrophobicity of SN-38 has prevented its clinical use. One way of improving the solubility and stability of SN-38 is to formulate the drug into nanoparticles. Folic acid has been widely used as a targeting moiety for various anticancer drugs. For folate-receptor–targeted anticancer therapy, SN-38 nanoparticles were produced using poly-lactide-co-glycolide–polyethylene glycol–folate (PLGA-PEG-FOL) conjugate by emulsification/solvent evaporation method. The FOL-conjugated di-block copolymer was synthesized by coupling the PLGA-PEG-NH2 di-block copolymer with an activated folic acid. The conjugates were used for the formation of SN-38 nanoparticles with an average size of 200 nm in diameter. The SN-38 targeted nanoparticles showed a greater cytotoxicity against HT-29 cancer cells than SN-38 nontargeted nanoparticles. These results suggested that folate-targeted nanoparticles could be a potentially useful delivery system for SN-38 as an anticancer agent.From the Clinical EditorSN-38 is the active metabolite of the chemotherapy agent irinotecan, which is 100-1000 fold more cytotoxic than irinotecan, but its extreme hydrophobicity has prevented its clinical use. In this paper, the authors present a nanotechnology-based approach targeting the folate-receptor with SN-38 loaded nanoparticles, demonstrating stronger cytotoxicity against HT-29 cancer cells than with control nanoparticles.  相似文献   

18.
l-Carnitine, obligatory for oxidation of fatty acids, is transported into cells by the Na+-coupled transporter OCTN2 and the Na+/Cl-coupled transporter ATB0,+. Here we investigated the potential of L-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) to deliver chemotherapeutic drugs into cancer cells by targeting the nanoparticles to both OCTN2 and ATB0,+. The cellular uptake of LC-PLGA NPs in the breast cancer cell line MCF7 and the colon cancer cell line Caco-2 was increased compared to unmodified nanoparticles, but decreased in the absence of co-transporting ions (Na+ and/or Cl) or in the presence of competitive substrates for the two transporters. Studies with fluorescently labeled nanoparticles showed their colocalization with both OCTN2 and ATB0,+, confirming the involvement of both transporters in the cellular uptake of LC-PLGA NPs. As the expression levels of OCTN2 and ATB0,+ are higher in colon cancer cells than in normal colon cells, LC-PLGA NPs can be used to deliver chemotherapeutic drugs selectively into cancer cells for colon cancer therapy. With 5-fluorouracil-loaded LC-PLGA NPs, we were able to demonstrate significant increases in the uptake efficiency and cytotoxicity in colon cancer cells that were positive for OCTN2 and ATB0,+. In a 3D spheroid model of tumor growth, LC-PLGA NPs showed increased uptake and enhanced antitumor efficacy. These findings indicate that dual-targeting LC-PLGA NPs to OCTN2 and ATB0,+ has great potential to deliver chemotherapeutic drugs for colon cancer therapy.

Dual targeting LC-PLGA NPs to OCTN2 and ATB0,+ can selectively deliver chemotherapeutics to colon cancer cells where both transporters are overexpressed, preventing targeting to normal cells and thus avoiding off-target side effects.  相似文献   


19.
BackgroundPlatinum-based chemotherapy in non-small cell lung cancer (NSCLC) has been demonstrated as a promising approach by many researchers. However, due to low bioavailability and several side effects, drug targeting to lungs by intravenous administration is not a common route of administration.ObjectiveIn this study, oxaliplatin loaded polycaprolactone (PCL) nanoparticles were prepared to overcome the limitations of the drug. 33 factorial design was used to evaluate the combined effect of the selected variables on the nanoparticle characteristics and to optimize oxaliplatin loaded PCL nanoparticles.MethodsThe factorial design was used to study the influence of three different independent variables on the response of nanoparticle particle size, polydispersity index (PDI), zeta potential, and encapsulation efficiency. The cellular uptakes of oxaliplatin loaded nanoparticles with different molecular weights of PCL were evaluated. Moreover, optimized nanoparticles were evaluated for their efficacy in non-small lung cancer using the SK-MES-1 cell line.ResultsIn factorial design, it is found that the homogenization speed and surfactant ratio represented the main factors influencing particle size and PDI and did not seem to depend on the PCL ratio. While the cytotoxicity of free oxaliplatin and oxaliplatin loaded nanoparticles were similar in low drug doses (2.5 and 25 μg/mL), the cytotoxicity of oxaliplatin loaded nanoparticles on SK-MES-1 cell was found higher in higher doses (p < 0.05). Moreover, oxaliplatin nanoparticles formulated with different molecular weights of PCL did not show significant differences in cellular uptake in 1 h and 2 h. However, the uptake of PCL80000 NPs was found significantly greater than free oxaliplatin at 4 h (p < 0.05).ConclusionHence, the development of oxaliplatin loaded PCL nanoparticles can be a useful approach for effective NSCLC therapy.Graphical abstract Open in a separate windowDevelopment, optimization and in vitro evaluation of oxaliplatin loaded nanoparticles in non-small cell lung cancer  相似文献   

20.
Xie J  Wang CH 《Pharmaceutical research》2005,22(12):2079-2090
Purpose The main objective of this study was to obtain self-assembled biodegradable nanoparticles by a direct dialysis method for the delivery of anticancer drug. The in vitro cellular particle uptake and cytotoxicity to C6 glioma cell line were investigated. Methods Self-assembled anticancer drugs—paclitaxel-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) and poly(l-lactic acid) (PLA) nanoparticles—were achieved by direct dialysis. The physical and chemical properties of nanoparticles were characterized by various state-of-the-art techniques. The encapsulation efficiency and in vitro release profile were measured by high-performance liquid chromatography. Particle cellular uptake was studied using confocal microscopy, microplate reader, and flow cytometry. In addition, the cytotoxicity of this drug delivery system was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on C6 glioma cell line to predict the possible dose response of paclitaxel-loaded PLGA and PLA nanoparticles. Results PLGA and PLA nanoparticles with or without vitamin E tocopherol polyethylene glycol succinate (TPGS) as an additive were obtained, in which the sustained release of paclitaxel of more than 20 days was achieved. The coumarin6-loaded PLGA and PLA nanoparticles could penetrate the C6 glioma cell membrane and be internalized. The cytotoxicity of paclitaxel-loaded nanoparticles seemed to be higher than that of commercial Taxol? after 3 days incubation when paclitaxel concentrations were 10 and 20 μg/ml. Conclusions Direct dialysis could be employed to achieve paclitaxel-loaded PLGA and PLA nanoparticles, which could be internalized by C6 glioma cells and enhance the cytotoxicity of paclitaxel because of its penetration to the cytoplasm and sustained release property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号