首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer stem cells (CSCs) are a subpopulation of tumour cells that possess the stem cell properties of self-renewal and differentiation. Stem cells might be the target cells responsible for malignant transformation, and tumour formation may be a disorder of stem cell self-renewal pathway. Epigenetic alterations and mutations of genes involved in signal transmissions may promote the formation of CSCs. These cells have been identified in many solid tumours including breast, brain, lung, prostate, testis, ovary, colon, skin, liver, and also in acute myeloid leukaemia. The CSC theory clarifies not only the issue of tumour initiation, development, metastasis and relapse, but also the ineffectiveness of conventional cancer therapies. Treatments directed against the bulk of the cancer cells may produce striking responses but they are unlikely to result in long-term remissions if the rare CSCs are not targeted. In this review, we consider the properties of CSCs and possible strategies for controlling the viability and tumourigenecity of these cells, including therapeutic models for selective elimination of CSCs and induction of their proper differentiation.  相似文献   

2.
Cancer stem cells (CSCs) are a sub-population of cancer cells that possess characteristics associated with normal stem cells but with the peculiarity that they are tumourigenic. This property allows them to persist in the tumour population, causing relapse and metastasis by giving rise to new tumours. Accordingly, if the CSCs were eliminated, then the tumour would simply regress due to differentiation and cell death. By selectively targeting CSCs, it may be possible to treat patients with aggressive, non-resectable tumours and prevent the tumour from metastasising. MicroRNAs are involved in all biological processes, and several studies have demonstrated their function in human tumourigenesis. Importantly, microRNAs have been implicated in the regulation of stem cells and CSCs. The most important concept to emerge with regard to CSC therapy is still controversial because a number of signalling pathways unique to normal stem cells may also be operating in CSCs, and these offer new targets for therapy. This article reviews how the modulation of microRNAs may revert tumour proliferation in vivo and in vitro and how this approach could be transferred to the clinic. Although the delivery of therapeutic microRNAs to target cells is a challenge that still needs to be overcome, microRNAs offer the advantage that they are small molecules that can be easily transported by body fluids, which makes them good candidates for cancer therapy.  相似文献   

3.
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours.The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.  相似文献   

4.
During the past decade, a growing body of evidence has implied that cancer stem cells (CSCs) play an important role in the development of gastric cancer (GC). The notion that CSCs give rise to GC and may be responsible for invasion, metastasis, and resistance to treatment has profound implications for anti-cancer therapy. Recent major advances in the rapidly evolving field of CSCs have opened novel exciting opportunities for developing CSC-targeted therapies. Discovery of specific markers and signaling pathways in gastric CSCs (GCSCs), with the perfecting of technologies for identification, isolation, and validation of CSCs, may provide the basis for a revolutionary cancer treatment approach based on the eradication of GCSCs. Emerging therapeutic tools based on specific properties and functions of CSCs, including activation of self-renewal signaling pathways, differences in gene expression profiles, and increased activity of telomerase or chemoresistance mechanisms, are developing in parallel with advances in nanotechnology and bioengineering. The addition of GCSC-targeted therapies to current oncological protocols and their complementary application may be the key to successfully fighting GC.  相似文献   

5.
During the past decade, a stem-cell-like subset of cancer cells has been identified in many malignancies. These cells, referred to as cancer stem cells (CSCs), are of particular interest because they are believed to be the clonogenic core of the tumour and therefore represent the cell population that drives growth and progression. Many efforts have been made to design therapies that specifically target the CSC population, since this was predicted to be the crucial population to eliminate. However, recent insights have complicated the initial elegant model, by showing a dominant role for the tumour microenvironment in determining CSC characteristics within a malignancy. This is particularly important since dedifferentiation of non-tumorigenic tumour cells towards CSCs can occur, and therefore the CSC population in a neoplasm is expected to vary over time. Moreover, evidence suggests that not all tumours are driven by rare CSCs, but might instead contain a large population of tumorigenic cells. Even though these results suggest that specific targeting of the CSC population might not be a useful therapeutic strategy, research into the hierarchical cellular organisation of malignancies has provided many important new insights in the biology of tumours. In this Personal View, we highlight how the CSC concept is developing and influences our thinking on future treatment for solid tumours, and recommend ways to design clinical trials to assess drugs that target malignant disease in a rational fashion.  相似文献   

6.
Cancer cells adapt cellular metabolism to cope with their high proliferation rate. Instead of primarily using oxidative phosphorylation (OXPHOS), cancer cells use less efficient glycolysis for the production of ATP and building blocks (Warburg effect). However, tumours are not uniform, but rather functionally heterogeneous and harbour a subset of cancer cells with stemness features. Such cancer cells have the ability to repopulate the entire tumour and thus have been termed cancer stem cells (CSCs) or tumour-initiating cells (TICs). As opposed to differentiated bulk tumour cells relying on glycolysis, CSCs show a distinct metabolic phenotype that, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. In either case, mitochondrial function is critical and takes centre stage in CSC functionality. Remaining controversies in this young and emerging research field may be related to CSC isolation techniques and/or the use of less suitable model systems. Still, the apparent dependence of CSCs on mitochondrial function, regardless of their primary metabolic phenotype, represents a previously unrecognised Achilles heel amendable for therapeutic intervention. Elimination of highly chemoresistant CSCs as the root of many cancers via inhibition of mitochondrial function bears the potential to prevent relapse from disease and thus improve patients'' long-term outcome.  相似文献   

7.
Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer in the world. Effective therapeutic modalities such as surgery, radiation, chemotherapy and combinations of each are used in the management of this disease. Efforts are ongoing throughout the world to improve early detection and prevention of HNSCCs. Often, treatment fails to obtain total cancer cure and this is more likely with advanced stage disease. In recent years it appears that one of the key determinants of treatment failure may be the presence of cancer stem cells (CSC) that 'escape' currently available therapies. CSCs form a minute portion of the total tumour burden but may play a disproportionately important role in determining outcomes. Molecular mechanisms which underlie the genesis of CSCs are yet not fully understood and their detection within the total tumour bulk remains a challenge. Specific markers like Aldehyde dehydrogenase 1 (ALDH1), CD44 and Bmi-1 have shown early promising results both in CSC detection and in guiding treatment protocols. CSCs have been shown to be relatively resistant to standard treatment modalities. It is hoped that developing robust in vitro and in vivo experimental models of CSCs might provide a means of devising more effective therapeutic strategies.  相似文献   

8.
Abstract

Cancer stem-like cells (CSCs)/tumour-initiating cells (TICs) are defined as the small population of cancer cells that have stem cell-like phenotypes and high capacity for tumour initiation. These cells may have a huge impact in the field of cancer therapy since they are extremely resistant to standard chemoradiotherapy and thus are likely to be responsible for disease recurrence after therapy. Therefore, extensive efforts are being made to elucidate the pathological and molecular properties of CSCs/TICs and, with this information, to establish efficient anti-CSC/TIC targeting therapies. This review considers recent findings on stress response genes that are preferentially expressed in CSCs/TICs and their roles in tumour-promoting properties. Implications for a novel therapeutic strategy targeting CSCs/TICs are also discussed.  相似文献   

9.
Stem cell-like cancer cells in cancer cell lines   总被引:5,自引:0,他引:5  
Both stem cells and cancer cells are thought to be capable of unlimited proliferation. Moreover, a small number of cancer cells express stem cell markers, including CD133 and ATP-binding cassette transporters, by which the cells can pump out specific fluorescence dyes, such as Hoechst33342, as well as anti-cancer drugs, suggesting that either cancer cells resemble stem cells or cancers contain stem cell-like cancer cells, called "cancer stem cells (CSCs)". Using the common characteristics of tissue-specific stem cells, it was demonstrated that many types of tumors and cancer cell lines contain CSCs, which self-renew, express stem cell markers, and are tumorigenic. It was also shown that CSCs are resistant to anti-cancer drugs and irradiation. Thus CSCs might be a crucial target for the therapy. Because tumors contain CSCs and recruited normal stem cells, both of which contribute to tumorigenesis, it is difficult to separate CSCs from tumors. By contrast, cancer cell lines do not have any contaminating normal stem cells that quickly loose mulitpotentiality and differentiate in normal culture condition, suggesting that cancer cell lines could be an attractive alternative source of cells for CSC research. In this review I summarize the recent progress in CSC research using cancer cell lines.  相似文献   

10.
In the past decade, the identification of cancer stem cells (CSCs) has raised new hope for the development of anticancer therapies. Nevertheless, CSC characterization highlights the relative resistance of CSCs to conventional therapies such as ionizing radiation. Moreover, it has been recently shown that some anti-cancer treatments could induce non- CSCs reprogramming into CSCs through anti-cancer treatment effect, enriching tumors with resistant cells. In this review, we will discuss CSC properties; we will especially describe the radio-resistance of CSC, reprogramming and explore the therapeutic approaches to by-pass these resistances.  相似文献   

11.
12.
Cancer stem cells (CSCs) have provided new insights into the tumorigenesis and metastatic potential of cancer. The discovery of CSCs has provided many new insights into the complexities of cancer therapy: tumor initiation, treatment resistance, metastasis, recurrence, assessment of prognosis and prediction of clinical course. Recent rapid advances in molecular analysis have contributed to the better understanding of the molecular attributes and pathways that give CSCs their unique attributes. Use of these molecular techniques has facilitated elucidation of specific surface markers and pathways that favor propagation of CSCs – allowing for targeted therapy. Furthermore, it has been discovered that a specific microenvironment, or niche, is essential for the genesis of tumors from CSCs. Therapeutic strategies that alter these microenvironments compromise CSC proliferation and constitute another method of targeted cancer therapy. We review the clinical and therapeutic implications of CSCs, with a focus on treatment resistance and metastasis, and the emerging approaches to target CSCs and their microenvironments in order to attain improved outcomes in cancer. It is noteworthy that CSCs are the only cells capable of sustaining tumorigenesis; however, the cell of origin of cancer, in which tumorigenesis is initiated, may be distinct from CSCs that propagate the tumor.  相似文献   

13.
Cancer stem cells (CSCs) have attracted much attention of the research community in the recent years. Due to their highly tumorigenic and drug-resistant properties, CSCs represent important targets for developing novel anticancer agents and therapeutic strategies. CSCs were first described in hematopoietic malignancies and subsequently identified in various types of solid tumors including brain, breast, lung, colon, melanoma, and ovarian cancer. CSCs possess special biological properties including long-term self-renewal capacity, multi-lineage differentiation, and resistance to conventional chemotherapy and radiotherapy. As such, CSCs are considered as a major source of residual disease after therapy leading to disease occurrence. Thus, it is very important to understand the cellular survival mechanisms specific to CSCs and accordingly develop effective therapeutic approaches to eliminate this subpopulation of cancer cells in order to improve the treatment outcome of cancer patients. Possible therapeutic strategies against CSCs include targeting the self-renewal pathways of CSCs, interrupting the interaction between CSCs and their microenvironment, and exploiting the unique metabolic properties of CSCs. In this review article, we will provide an overview of the biological characteristics of CSCs, with a particular focus on their metabolic properties and potential therapeutic strategies to eliminate CSCs.  相似文献   

14.
A small population of cancer cells referred to as cancer stem cells (CSCs) have received particular attention, as they have been revealed to acquire stem cell-like properties and become the main cause of tumor propagation, metastasis and drug resistance. The CSC theory of tumor formation was believed to follow the hierarchical model initially, and therefore many CSC-targeted therapy methods were expected to cure cancer by eradicating CSCs. However, subsequent CSC research has revealed that rather than a distinct entity, the CSC is a dynamic status that can be continually dedifferentiated from progenitor or differentiated cancer cells. Elucidation of this bidirectional transition mechanism would help perfect the CSC theory and be of great value in the development of more effective anti-cancer drugs. Here, we reviewed the mechanisms of reciprocal conversion between non-CSCs and CSCs. Moreover, several approaches of target CSCs and non-CSCs together with unbiased eradication of all cancer cells are also discussed.  相似文献   

15.
Glioblastoma multiforme (GBM), a grade IV glioma, appears to harbor therapy-resistant cancer stem cells (CSCs) that are the major cause of recurrence. All-trans retinoic acid (ATRA), a derivative of retinoid, is capable of differentiating a variety of stem cells, as well as normal neural progenitor cells, and down-regulates expression of the stem cell marker nestin. This study investigated the effects of ATRA on differentiation, proliferation, self-renewal, and signaling pathways of CSCs in GBM. CSCs differentiated into glial and neuronal lineages at low concentrations of ATRA (10 μM). Proliferation and self renewal of neurospheres were reduced following ATRA, although ATRA induced apopotsis at higher (40 μM) concentrations. Analysis of mitogen-activated protein kinase signaling pathways, specifically extracellular signal-regulated kinases (ERK1/2), showed that ATRA-induced alterations in ERK1/2 were associated with regulation of differentiation, proliferation and apoptosis. These results emphasize that low doses of ATRA may have therapeutic potential by differentiating GBM CSCs and rendering them sensitive to targeted therapy.  相似文献   

16.
Traditionally, the clonal evolution model has been used to explain gastric cancer (GC) growth dynamics. According to this model, GC cells result from multiple mutations over time resulting in a population of continually diversifying cells. This heterogeneity enables the survival of different clones under particular conditions allowing growth at metastatic locations or resistance to chemotherapeutics. Cancer stem cell (CSC) theory completely overturns this traditional understanding of cancer suggesting that only CSCs can self-renew and promote tumor growth. CSCs are relatively refractory to conventional therapies, thus explaining why anti-cancer therapies are far from curative and why relapses of cancer are frequent. The identification of the CSC component of a tumor might, thus, open new therapeutic perspective based on the selective targeting of this small population of cells. In this review we examine the current scientific evidence supporting the existence of CSC in gastric tumors and analyze the main unsolved questions of this difficult field of cancer research.  相似文献   

17.
Cancer stem cells (CSCs) represent a minor subpopulation of tumour cells that share some features with the normal stem cells of the tissue from which tumour derives and have the properties of self-renewal, multiple differentiation and tumour initiation (tumour-initiating cells, TICs). Thus CSCs/TICs need to survive cancer therapies in order to provide new, more differentiated, metastatic-prone tumour cells. This occurs through different signals delivered within the tumour microenvironment. The immune system of cancer patients may recognise CSCs/TICs and kill them though it is unclear whether this may occur in vivo during spontaneous tumour growth. This review summarises findings on the immunological profile of CSCs/TICs as compared with neoplastic non-stem cells and discusses the possible antigens recognised by the patients’ immune system, the in vitro and the potential in vivo immunogenicity of such antigens and the ability of human CSCs/TICs to down-regulate the immune response by the release of a variety of suppressive factors. We conclude that available data on immunological characterisation of CSCs/TICs may be useful in the perspective of designing new translational immunotherapy protocols targeting CSCs/TICs.  相似文献   

18.
Cancer stem cells (CSCs) generate transient‐amplifying cells and thereby contribute to cancer propagation. A fuller understanding of the biological features of CSCs is expected to lead to the development of new anticancer therapies capable of eradicating this life‐threatening disease. Cancer stem cells are known to maintain a non‐proliferative state and to enter the cell cycle only infrequently. Given that conventional anticancer therapies preferentially target dividing cells, CSCs are resistant to such treatments, with those remaining after elimination of bulk cancer cells potentially giving rise to disease relapse and metastasis as they re‐enter the cell cycle after a period of latency. Targeting of the switch between quiescence and proliferation in CSCs is therefore a potential strategy for preventing the reinitiation of malignancy, underscoring the importance of elucidation of the mechanisms by which these cells are maintained in the quiescent state. The fundamental properties of CSCs are thought to be governed cooperatively by internal molecules and cues from the external microenvironment (stem cell niche). Several such intrinsic and extrinsic regulators are responsible for the control of cell cycle progression in CSCs. In this review, we address two opposite approaches to the therapeutic targeting of CSCs – wake‐up and hibernation therapies – that either promote or prevent the entry of CSCs into the cell cycle, respectively, and we discuss the potential advantages and risks of each strategy.  相似文献   

19.
Cancer stem cells (CSCs) have been identified as the main center of tumor therapeutic resistance. They are highly resistant against current cancer therapy approaches particularly radiation therapy (RT). Recently, a wide spectrum of physical methods has been proposed to treat CSCs, including high energetic particles, hyperthermia (HT), nanoparticles (NPs) and combination of these approaches. In this review article, the importance and benefits of the physical CSCs therapy methods such as nanomaterial-based heat treatments and particle therapy will be highlighted.  相似文献   

20.
Despite continuous improvements in cancer management, locoregional recurrence or metastatic spread still occurs in a high proportion of patients after radiotherapy or combined treatments. One underlying reason might be a low efficacy of current treatments on eradication of cancer stem cells (CSCs). It has been recognised for a long time, that only the small subpopulation of CSCs can cause recurrences and that all CSCs need to be killed for permanent tumour cure. However, only recently novel technologies have allowed to enrich CSCs and to investigate their biology. An emerging experimental and clinical database provides first hints that cell populations accumulated by putative stem cell markers or tumours that highly express such markers may be more radioresistant than their marker-negative counterparts. Other data support a higher tolerance of CSCs to hypoxia and preferential location in specific microenvironmental niches. However, conflicting data, methodological problems of the assays and a generally small database on only few tumour types necessitate further large and well-designed prospective experimental and clinical investigations that specifically address this question to corroborate this hypothesis. If such investigations confirm biological differences between CSCs and non-CSCs, this would imply that novel treatment strategies need to be tested specifically for their effect on CSCs. Another implication is that also biomarkers for prediction of local tumour control after radiotherapy or combined treatments need to reflect the behaviour of CSCs and not of the bulk of all cancer cells. This review discusses the importance of CSCs for treatment failure and challenges occurring from the CSC concept for cancer diagnosis, treatment and prediction of outcome. It is concluded that CSC-based endpoints and biomarkers are eventually expected to considerably improve tumour cure rates in the clinics through individualised tailoring of treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号