首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: To formulate and evaluate solid-reversed-micellar-solution (SRMS)-based solid lipid microparticles (SLMs) for intramuscular administration of gentamicin.

Methods: SRMS formulated with Phospholipon® 90G and Softisan® 154 were used to prepare gentamicin-loaded SLMs. Characterizations based on size and morphology, stability and encapsulation efficiency (EE%) were carried out on the SLMs. In vitro release of gentamicin from the SLMs was performed in phosphate buffer while in vivo release studies were conducted in rats.

Results: Maximum EE% of 90.0, 91.6 and 83.0% were obtained for SLMs formed with SRMS 1:1, 1:2 and 2:1, respectively. Stable, spherical and smooth SLMs of size range 9.80?±?1.46?µm to 33.30?±?6.42?µm were produced. The release of gentamicin in phosphate buffer varied widely with the lipid contents. Moreover, significant (p?<?0.05) amount of gentamicin was released in vivo from the SLMs.

Conclusion: SRMS-based SLMs would likely offer a reliable means of delivering gentamicin intramuscularly.  相似文献   

2.
A novel nanocarrier based on solid lipid nanoparticles (SLNs) was developed for insulin delivery using a novel double emulsion method. Physical stability of particles was assessed by size analysis using dynamic light scattering (DLS), matrix crystallinity by differential scanning calorimetry (DSC) and toxicity analysis by Drosophila melanogaster testing. Insulin-SLNs were composed of Softisan®100 1.25% wt, Lutrol®F68 1% wt, soybean lecithin 0.125% wt, and loaded with 0.73–0.58?mg/mL peptide. Placebo-SLNs (insulin-free) also contained 0.025% wt Tween®80. Mean particle sizes of placebo-SLN and insulin-SLN were 958?±?9.5 and 978?±?8.3?nm, respectively. The polydispersity index (PI) was 0.28?±?0.018 and 0.29?±?0.013, respectively. Polarized light microscopy analysis depicted no aggregation of developed particles. DSC analysis allowed characterizing SLN with 43–51% matrix crystallinity. Using Drosophila melanogaster test, no toxicity was reported for SLN and for the bulk lipid. This study shows that SLNs are promising and helpful to overcome conventional insulin therapy, in particular for their lack of toxicity for oral delivery.  相似文献   

3.
《Drug delivery》2013,20(6):710-722
Abstract

The purpose of this study was to formulate and evaluate novel PEGylated solidified reverse micellar solutions (SRMS)-based solid lipid microparticles (SLMs) for improved delivery of gentamicin. Lipid matrix (SRMS) [consisting of 15% w/w Phospholipon® 90G (P90G) in 35% w/w dika wax (Irvingia gabonensis) was formulated and characterized by differential scanning calorimetry (DSC). SLMs were formulated by melt-emulsification using the SRMS, PEG 4000 and gentamicin (1.0, 2.0, 3.0% w/w), and their physicochemical as well as pharmacokinetic parameters determined. In vitro permeation of gentamicin from the SLMs through artificial membrane (0.22?μm pore size) was carried out using Franz’s cell and phosphate-buffered saline (PBS, pH 7.4) as acceptor medium, while bioevaluation was performed using clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus. Stable and irregularly-shaped gentamicin-loaded SLMs of size range 34.49?±?2.56 to 53.52?±?3.09?µm were obtained. The SLMs showed sustained drug permeation and exhibited time-dependent and capacity-limited bioactivity. Overall, SLMs containing 2% w/w SRMS, 3% w/w gentamicin and PEG 4000 entrapped the highest amount of drug, gave highest IZD against the test organisms and highest permeation flux (5.239?μg/cm2.min) and permeation coefficient (1.781?×?10?6?cm/min) within 420?min, while pure gentamicin gave the least. Preliminary in vivo pharmacokinetic studies also showed an AUC-24 of 1507?µg/h/ml for the optimized formulation, while that of oral drug solution was 678?µg/h/ml. This showed a 2.2-fold increase in the systemic bioavailability of gentamicin from the optimized formulation. PEGylated SRMS-based SLMs prepared with heterolipid from Irvingia gabonensis would likely offer a reliable delivery system for gentamicin.  相似文献   

4.
Abstract

Aim: The present work investigates the efficacy of Polysorbate 80(P80) coated Kokum butter (KB) solid lipid nanoparticles (P80NvKLNs) for the brain targeted delivery of Nevirapine (Nv).

Methods: Solid lipid nanoparticles (SLNs) were prepared by nanoprecipitation technique and evaluated for drug excipient compatibility studies, z- average particle size (nm), zeta potential (mv), percentage drug entrapment efficiency (%EE), surface morphology and in-vitro drug release properties. The in-vivo biodistribution and brain targeting efficiency of nanoparticles were studied in healthy male Wistar rat (150–200?g).

Results: P80NvKLNs were found to be smooth surfaced, spherical shaped having average particle size of 177.80?±?0.82?nm, zeta potential of ?8.91?±?4.36?mv and %EE of 31.32?±?0.42%. P80NvKLNs remained in blood circulation for 48?h maintaining a sustained release in brain for 24?h (p?<?0.05).

Conclusion: The study proves the efficacy of Polysorbate 80 coated Kokum butter nanoparticles for brain-targeted delivery of drugs providing ample opportunities for further study.  相似文献   

5.
Diflunisal (DIF) is non-steroidal anti-inflammatory drug used in the treatment of rheumatoid arthritis, osteoarthritis. The current engrossment was aimed at formulation and assessment of DIF-loaded solid lipid nanoparticles (SLNs) for topical/dermal application. SLNs formulated by hot homogenisation method based on microemulsification technique were spherical with a mean size of 124.0?±?2.07?nm; PDI 0.294?±?0.15. The cumulative amount permeated/area was 109.99?±?0.008?μg/cm2, along with permeation flux (6.30?±?0.09?μg/cm2/h) and skin retention (11.74?±?0.155?μg/cm2) across mice skin. The SLNs of DIF showed significant decrease in fluid volume, granuloma tissue weight, leukocyte count/mm3 after application of SLN formulation in mice air pouch model. Similarly, in mice ear oedema and rat paw oedema model, there was 2.30 and 1.29 time increase in percentage inhibition of oedema after SLN formulation application, respectively, as compared with conventional cream. Hence, the SLNs of DIF may prove to be a potential nanocarrier to effectively treat the local inflammatory conditions associated with arthritis.  相似文献   

6.
Abstract

Objective: The aim of this study was to develop nanostructured lipid carriers (NLCs) as well as solid lipid nanoparticles (SLNs) and evaluate their potential in the topical delivery of meloxicam (MLX).

Materials and methods: The effect of various compositional variations on their physicochemical properties was investigated. Furthermore, MLX-loaded lipid nanoparticles-based hydrogels were formulated and the gels were evaluated as vehicles for topical application.

Results and discussion: The results showed that NLC and SLN dispersions had spherical shapes with an average size between 215 and 430?nm. High entrapment efficiency was obtained ranging from 61.94 to 90.38% with negatively charged zeta potential in the range of ?19.1 to ?25.7?mV. The release profiles of all formulations exhibited sustained release characteristics over 48?h and the release rates increased as the amount of liquid lipid in lipid core increased. Finally, Precirol NLC with 50% Miglyol® 812 and its corresponding SLN were incorporated in hydrogels. The gels showed adequate pH, non-Newtonian flow with shear-thinning behavior and controlled release profiles. The biological evaluation revealed that MLX-loaded NLC gel showed more pronounced effect compared to MLX-loaded SLN gel.

Conclusion: It can be concluded that lipid nanoparticles represent promising particulate carriers for topical application.  相似文献   

7.
Context: The unique physiological limitations of the eye have been assigned as reason of low bioavailability by conventional drug delivery systems. There is need of such drug carriers, which ensure improved bioavailability as well as patient compliance upon instillation into the eye.

Objective: The present investigation deals with development of solid lipid nanoparticles (SLNs) containing celecoxib (CXB) for treatment of ophthalmic inflammations.

Materials and methods: The SLNs were formulated by melt-emulsion sonication and low temperature-solidification process and evaluated for particle size, surface morphology, physicochemical properties, percentage drug incorporation efficiency, in vitro drug release, in vitro trans-corneal permeation, in vivo efficacy in ocular inflammation, stability study and gamma scintigraphy study to assess the residence of solid lipid nanoparticles over ocular surfaces.

Results: The SLNs were spherical and the optimized formulation had particle size of 198.77?±?7.5?nm, which is quite suitable for ocular applications. The maximum entrapment efficiency of 92.46?±?0.07% was achieved for formulation SLN 20. The permeation across the cornea was also significantly better than aqueous suspension (8.21?±?0.67 versus 4.61?±?0.71) at p?<?0.05.

Discussion and conclusion: The SLN formulations demonstrated improved performance of entrapped CXB while mitigating the key parameters of ocular inflammation in rabbits. The particulate formulations have exhibited prolonged retention over ocular surfaces as evident from results of gamma scintigraphy using 99mTc labeled SLNs.  相似文献   

8.
《Drug delivery》2013,20(6):837-848
Abstract

Effective oral insulin delivery has remained a challenge to the pharmaceutical industry. This study was designed to evaluate the effect of magnesium stearate on the properties of insulin-loaded Eudragit® RL 100 entrapped mucoadhesive microspheres. Microspheres containing Eudragit® RL 100, insulin, and varying concentrations of magnesium stearate (agglomeration-preventing agent) were prepared by emulsification-coacervation method and characterized with respect to differential scanning calorimetry (DSC), morphology, particle size, loading efficiency, mucoadhesive and micromeritics properties. The in vitro release of insulin from the microspheres was performed in simulated intestinal fluid (SIF, pH 7.2) while the in vivo hypoglycemic effect was investigated by monitoring the plasma glucose level of the alloxan-induced diabetic rats after oral administration. Stable, spherical, brownish, mucoadhesive, discrete and free flowing insulin-loaded microspheres were formed. While the average particle size and mucoadhesiveness of the microspheres increased with an increase in the proportion of magnesium stearate, loading efficiency generally decreased. After 12?h, microspheres prepared with Eudragit® RL 100: magnesium stearate ratios of 15:1, 15:2, 15:3 and 15:4 released 68.20?±?1.57, 79.40?±?1.52, 76.60?±?1.93 and 70.00?±?1.00 (%) of insulin, respectively. Reduction in the blood glucose level for the subcutaneously (sc) administered insulin was significantly (p?≤?0.05) higher than for most of the formulations. However, the blood glucose reduction effect produced by the orally administered insulin-loaded microspheres prepared with four parts of magnesium stearate and fifteen parts of Eudragit® RL 100 after 12?h was equal to that produced by subcutaneously administered insulin solution. The results of this study can suggest that this carrier system could be an alternative for the delivery of insulin.  相似文献   

9.
Abstract

The objective of this study was to evaluate the effect of sonication time and pulse frequency on average dispersion temperature (ART), particle size and zeta potential of solid lipid nanoparticles (SLNs). A two-factor, three-level response surface methodology (RSM) was used to optimize sonication time between 5 and 15?min and pulse frequency from 30 to 90%. SLNs made from stearyl alcohol (SA) and cetyl trimethylammonium bromide (CTAB) blend at 1:3 ratio were prepared by applying high-shear homogenization and sonication. Pulse frequency and time were found to have a significant effect on particle size and ART. The effect of sonication parameters on zeta potential, however, was insignificant. The optimal sonication parameters for preparing 100?nm SLNs made from a SA/CTAB blend was 60% pulse frequency at 40% power for 10?min. Optimized sonication parameters were then used to investigate the effect of lipid type on SLN size and zeta potential. The mean particle sizes of SLNs made with SA, cetyl palmitate, Precirol®, Dynasan118® and Compritol® were 98, 190, 350, 350 and 280?nm, respectively. In conclusion, pulse frequency and time were found to be critical for obtaining SLNs with desirable size, whereas the stability of the SLNs was dependent on their lipid content.  相似文献   

10.
Solid lipid nanoparticles (SLNs) are very potential formulations for topical delivery of antifungal drugs. Hence, the purpose of this research was to formulate the well-known antifungal agent Fluconazole (FLZ)-loaded SLNs topical gel to improve its efficiency for treatment of Pityriasis Versicolor (PV). FLZ-SLNs were prepared by modified high shear homogenization and ultrasonication method using different concentration of solid lipid (Compritol 888 ATO, Precirol ATO5) and surfactant (Cremophor RH40, Poloxamer 407). The physicochemical properties and the in vitro release study for all FLZ-SLNs were investigated. Furthermore, the optimized FLZ-SLN formula was incorporated into gel using Carpobol 934. A randomized controlled clinical trial (RCT) of potential batches was carried out on 30 well diagnosed PV patients comparing to market product Candistan® 1% cream. Follow up was done for 4?weeks by clinical and KOH examinations. The results showed that FlZ-SLNs were almost spherical shape having colloidal sizes with no aggregation. The drug entrapment efficiency ranged from 55.49% to 83.04%. The zeta potential values lie between ?21 and ?33?mV presenting good stability. FLZ showed prolonged in vitro release from SLNs dispersion and its Carbapol gel following Higuchi order equation. Clinical studies registered significant improvement (p?® cream.  相似文献   

11.
Abstract

The conventional formulation of prednisolone is considered to be low in efficacy, primarily on account of their failure in providing and maintaining effective therapeutic drug levels. This study aims to focus on development of a mucoadhesive buccal delivery system with a twofold objective of offering a rapid as well as a prolonged delivery of prednisolone coupled with enhanced therapeutic efficacy. Buccoadhesive films of prednisolone were prepared by solvent-casting method using hydroxyl propyl methyl cellulose (K100), Carbopol 940 and/or Eudragit® NE 40?D. Placebo films possessing the most desirable physicomechanical properties were selected for drug loading. The effect of polymer and its content on film properties, i.e. mucoadhesive strength, swelling and hydration, in vitro drug release was studied. Based on these studies, film F7D was selected for ex vivo permeation across porcine cheek mucosa. The steady state flux of prednisolone across the buccal mucosa was found to be 105.33?±?32.07?µg/cm2/h. A comparative pharmacokinetic study of prepared film (F7D) and oral suspension of prednisolone was conducted. In vivo data of buccal film show greater bioavailability (AUC0–α: 24.26?±?4.06?µg.h/ml versus 10.65?±?2.15?µg.h/ml) and higher Cmax (2.70?±?0.38?µg/ml versus 2.29?±?0.32?µg/ml) value when compared to oral suspension. The data observed from this study highlight the feasibility of the buccal route as a viable option for delivery of prednisolone.  相似文献   

12.
Abstract

Purpose: The present study was to formulate curcumin solid lipid nanoparticles (Cur-SLNs) with P-gp modulator excipients, TPGS and Brij78, to enhance the solubility and bioavailability of curcumin.

Methods: The formulation was optimized by Plackett–Burman screening design and Box–Behnken experiment design. Then physiochemical properties, entrapment efficiency and in vitro release of Cur-SLNs were characterized. In vivo pharmacokinetics study and in situ single-pass intestinal perfusion were performed to investigate the effects of Cur-SLNs on the bioavailability and intestinal absorption of curcumin.

Results: The optimized formulations showed an average size of 135.3?±?1.5?nm with a zeta potential value of ?24.7?±?2.1?mV and 91.09%?±?1.23% drug entrapment efficiency, meanwhile displayed a sustained release profile. In vivo pharmacokinetic study showed AUC0→t for Cur-SLNs was 12.27-folds greater than curcumin suspension and the relative bioavailability of Cur-SLNs was 942.53%. Meanwhile, Tmax and t1/2 of curcumin for Cur-SLNs were both delayed comparing to the suspensions (p?<?0.01). The in situ intestinal absorption study revealed that the effective permeability (Peff) value of curcumin for SLNs was significantly improved (p?<?0.01) comparing to curcumin solution.

Conclusion: Cur-SLNs with TPGS and Brij78 could improve the oral bioavailability and intestinal absorption of curcumin effectively.  相似文献   

13.
Context: Caffeic acid methyl (CAME) and ethyl (CAEE) esters stimulate glucose uptake and AMP-activated protein kinase (AMPK) in C2C12 myocytes (ATCC® CRL-1772TM).

Objective: Effects of CAME and CAEE were now assessed on myocyte glucose transporter GLUT4 activity and expression, on hepatic gluconeogenesis and on adipogenesis as well as major underlying signaling pathways.

Materials and methods: GLUT4 protein translocation was studied in L6 GLUT4myc cells, glucose-6-phospatase (G6Pase) in H4IIE hepatocytes and adipogenesis in 3T3-L1 adipocytes. Key modulators were measured using western immunoblot. Cells were treated for 18?h with either CAME or CAEE at various concentrations (12.5–100?μM).

Results: Myocyte glucose uptake rose from 10.1?±?0.5 to 18.7?±?0.8 and 21.9?±?1.0?pmol/min/mg protein in DMSO-, CAME- and CAEE-stimulated cells, respectively, similar to insulin (17.7?±?1.2?pmol/min/mg protein), while GLUT4myc translocation increased significantly by 1.70?±?0.18, by 1.73?±?0.18- and by 1.95?±?0.30-fold (relative to DMSO), following insulin, CAME and CAEE stimulation, respectively. CAME and CAEE suppressed hepatocyte G6Pase by 62.0?±?6.9% and 62.7?±?6.0% with IC50 of 45.93 and 22.64?μM, respectively, comparable to insulin (70.7?±?2.3% inhibition). Finally, CAME and CAEE almost abrogated adipogenesis (83.3?±?7.2% and 97.3?±?3.0% at 100?μM; IC50 of 13.8 and 12.9?μM, respectively). The compounds inhibited adipogenic factors C/EBP-β and PPAR-γ and stimulated AMPK activity in the three cell-lines.

Discussion and conclusions: CAME and CAEE exerted antidiabetic activities in insulin-responsive cells through insulin-independent mechanisms involving AMPK and adipogenic factors.  相似文献   

14.
Context: Camel milk (CM) is recommended for liver disease patients in Egypt for a strong belief that it has a curative effect.

Objective: The effect of consumption of CM with or without chemotherapeutic drug cisplatin was evaluated on induced hepatocarcinogenesis in rats.

Materials and methods: Wistar male rats (56) were divided into eight groups (7 rats each). Group I was control. Hepatocarcinogenesis was initiated by a single dose of intraperitoneal injection of diethylnitrosamine (DENA) (200?mg/kg BW) and promoted by phenobarbitone (500?ppm) in drinking water in groups V, VI, VII and VIII. Treatment started from 28th till 38th week using CM (5?mL/day) and/or cisplatin (5?mg/kg/3?weeks) in groups II, III IV, VI, VII and VIII. Biochemical analysis, lipid peroxidation and superoxide dismutase (SOD) activity in liver tissue were performed. Histopathology of liver and kidney and immunohistochemistry of placental glutathione-S-transferase (P-GST) in liver were performed and analyzed using image analysis.

Results: Albumin concentration and SOD activity were 3.13?±?0.23 and 311.45?±?41.71 in group VII (DENA &; cisplatin), whereas they were 4.3?±?0.15 and 540.5?±?29.94 in group VII (DENA, CM and cisplatin). The mean area of altered hepatocellular foci and P-GST altered foci decreased in group VI (DENA and CM) (1049.6?±?174.78 and 829.1?±?261) and group VIII (cisplatin and CM) (1615.12?±?436 and 543.9?±?127) compared to group V (DENA only) (4173.74?±?510.7 and 3169.49?±?538.61). Cisplatin caused chronic interstitial nephritis, which was slightly alleviated in group VIII (CM and cisplatin).

Conclusions: CM had an antioxidant effect and together with cisplatin managed to decrease hepatocarcinogenesis.  相似文献   

15.
《Pharmaceutical biology》2013,51(5):662-671
Abstract

Context: Carica papaya L. (Caricaceae) fruit was shown to exhibit wound healing properties.

Objectives: We investigated anti-inflammatory and antioxidant potential of papaya fruit phosphate-buffered saline extract (PE) during wound healing and enhancement of the potentials due to trace ions addition.

Materials and methods: Rat excision wounds were topically treated twice/day with 20?µL of PE (5?mg extract/mL), 0.5?µg Se2+ added PE (PES), or 100?µM Zn2+ added PE (PEZ). Control groups were treated with deionized water (negative) and deproteinized calf blood extract ointment (Solcoseryl®, positive). Lipid peroxidation (LPX), antioxidant, proinflammatory, and arginine metabolic enzymes were estimated in the wound excised on days 4 and 10 post wounding.

Results: PE (5?mg/mL; 9.80?±?0.33?d) and PES (PE?+?0.5?µg Se2+; 8.90?±?0.23?d) significantly (p?<?0.05) reduced the average time for complete wound closure compared with the negative (13.00?±?0.37?d) and positive (9.80?±?0.33?d) controls, respectively. Biochemical evaluations of LPX product (malondialdehyde), antioxidant (catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx)), and pro-inflammatory (cyclooxygenase-2 and myeloperoxidase (MPO)) enzyme activities and metabolites (nitrite and urea), on days 4 and 10 post wounding, confirmed the anti-inflammatory and antioxidant properties of PE and PES in this study.

Discussion and conclusion: Treatment of excision wounds with papaya extract, especially with the addition of selenium for 10?d, reduced inflammation associated oxidative damage apparently via cyclooxygenase specific inhibition, arginine metabolism, and up-regulation of antioxidant enzymes.  相似文献   

16.
《Drug delivery》2013,20(3-4):102-111
Abstract

The low encapsulation efficiency of conventional solid lipid microparticles (SLMs) especially for hydrophilic drugs has remained a challenge to drug formulation experts. This work seeks to address the issue of inefficient delivery of metformin hydrochloride (MTH), a potent hydrophilic oral antihyperglycemic agent, using novel SLMs based on solidified reverse micellar solutions (SRMS) prepared by melt-emulsification using a lipid derived from Capra hircus and Phospholipon® 90H. Characterization based on size, morphology, zeta potential, polydispersity index, encapsulation efficiency (EE%), loading capacity (LC) and time-resolved stability were carried out on the SLMs. The in vitro release of MTH from the SLMs was performed in phosphate buffer (pH 7.4) while the in vivo antidiabetic properties were investigated in alloxan-induced diabetic rats. Stable, spherical and smooth SLMs were obtained. Loading of MTH into the SLMs had no effect on the surface charge of the particles. The SLMs with 1.0%w/w PEG 4000 resulted in significantly (p?<?0.05) higher EE% while those with 2.0%w/w gave the least. The LC values ranged from 20.3 to 29.1 and 14.6 to 24.1 for SLMs containing 500?mg and 250?mg of MTH, respectively. The in vitro release studies revealed significant release of MTH from the SLMs whereas the in vivo antidiabetic studies indicated that novel SLMs containing 500?mg of MTH gave significantly (p?<?0.05) higher glucose reduction than glucophage®. This research has shown that SLMs based on SRMS offer a new and better approach of delivering MTH, thus encouraging further development of this formulation.  相似文献   

17.
Context: The effects of icariin, a chief constituent of ?avonoids from Epimedium brevicornum Maxim (Berberidaceae), on the levels of HIF-1α, HSP-60 and HSP-70 remain unknown.

Objective: To explore the effects of icariin on the levels of HSP-60, HIF-1α and HSP-70 neuron-specific enolase (NSE) and cell viability.

Materials and methods: PC12 cells were treated with icariin (10?7, 10?6 or 10?5?mol/L) for 3?h (1?h before oxygen–glucose deprivation (OGD) plus 2?h OGD). HSP-60, HIF-1α, HSP-70 and NSE were measured using enzyme-linked immunosorbent assay (ELISA). Cell viability was determined by metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

Results: After 2?h OGD, levels of HIF-1α, HSP-60, HSP-70 and NSE were increased significantly (HIF-1α: 33.3?±?1.9?ng/L, HSP-60: 199?±?16?ng/L, HSP-70: 195?±?17?ng/L, NSE: 1487?±?125?ng/L), and cell viability was significantly decreased (0.26?±?0.03), while icariin (10?7, 10?6, or 10?5?mol/L) significantly reduced the contents of HIF-1α, HSP-60, HSP-70 and NSE (HIF-1α: 14.1?±?1.4, 22.6?±?1.8, 15.7?±?2.1, HSP-60: 100?±?12, 89?±?6, 113?±?11, HSP-70: 139?±?9, 118?±?7, 95?±?9 and NSE: 1121?±?80, 1019?±?52, 731?±?88), and improved cell viability (0.36?±?0.03, 0.38?±?0.04, 0.37?±?0.03) in OGD-treated PC12 cells.

Discussion and conclusion: These results indicate that the protective mechanisms of icariin against OGD-induced injury may be related to down-regulating the expression of HIF-1α, HSP-60 and HSP-70.  相似文献   

18.
Context: Drug-induced liver injury is a significant worldwide clinical problem. Rosmarinic acid (RA), a natural phenol, has antioxidant effects.

Objective: The effects of RA against acetaminophen (N-acetyl-p-amino-phenol (APAP))-induced oxidative damage and hepatotoxicity in rats were investigated.

Materials and methods: Male Wistar rats were pretreated with RA (10, 50 and 100?mg/kg, i.g.) for one week. On day 7, rats received APAP (500?mg/kg, i.p.). Then aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total protein, malondialdehyde (MDA), glutathione (GSH), total antioxidant capacity (TAC), glutathione S-transferase (GST), cytochrome CYP450 and histopathological changes were determined.

Results: APAP-induced oxidative stress in liver by a significant increase in the level of MDA (7.6?±?0.21?nmol/mg) as well as a decrease in the contents of TAC (1.75?±?0.14?μmol/g), GSH (1.9?±?0.22?μmol/g) and GST) 3.2?±?0.28?U/mg). RA treatment decreased MDA (4.32?±?0.35?nmol/mg) but increased the contents of TAC (3.51?±?0.34?μmol/g), GSH (3.42?±?0.16?μmol/g) and GST (5.71?±?0.71?μmol/g) in APAP group. RA 100?mg/kg decreased ALT (91.5?±?1.5?U/L), AST (169?±?8.8?U/L) and CYP450 (3?±?0.2?nmol/min/mg) in APAP group. Histologically RA attenuated hepatic damage by decreasing necrosis, inflammation, and haemorrhage in liver sections of APAP group.

Discussion and conclusions: This is the first report that oral administration of RA dose-dependently elicited significant hepatoprotective effects in rats through inhibition of hepatic CYP2E1 activity and lipid peroxidation. RA-protected hepatic GSH and GST reserves and total tissue antioxidant capacity.  相似文献   

19.
Atorvastatin (AT) is a widely used lipid-regulating drug to reduce cholesterol and triglycerides. Its poor aqueous solubility and hepatic metabolism require development of drug delivery systems able to improve its solubility and bypass hepatic effect. For this purpose, atorvastatin nanostructured lipid carriers (AT-NLCs) were prepared and characterized. AT-NLCs were prepared by emulsification using high-speed homogenization followed by ultrasonication. The prepared NLCs showed particle size between 162.5?±?12 and 865.55?±?28?nm while zeta potential values varied between ?34?±?0.29 and ?23?±?0.36?mV. They also showed high encapsulation efficiency (>87%) and amorphous state of the drug in lipid matrix. Pharmacokinetic parameters of optimized formulation (NLC-1; composed of 2% Gelucire® 43/01, 8% Capryol® PGMC, 2% Pluronic®F68 and 0.5% lecithin) revealed 3.6- and 2.1-fold increase in bioavailability as compared to atorvastatin suspension and commercial product (Lipitor®), respectively. Administration of NLC-1 led to significant reduction (p?in vivo performance of AT.  相似文献   

20.
Fungal keratitis may cause vision loss if it is not treated. Methods other than ocular delivery exhibited several limitations. No previous studies investigated and compared ocular bioavailability of fluconazole (FLZ) from niosomal gels and microemulsions. Niosomal gels of FLZ (0.3% w/w) based on Span® 60 and cholesterol (CH) using 1% w/w carbopol® 934 (CP) were evaluated. FLZ microemulsions (0.3% w/v) containing isopropyl myristate (IPM, as oil phase) and a 3:1 mixture of Tween® 80 (as surfactant) and polyethylene glycol 400 (PEG 400, as cosurfactant) were characterized. Optimized formulations were compared for their ocular bioavailability in rabbit’s. Nanoscopic niosomes (63.67–117.13?nm) and microemulsions (57.05–59.93?nm) showed respective negative zeta potential ranges of ?45.37 to ?61.40 and ?20.50 to ?31.90?mV and sustained release up to 12?h. Entrapment efficiency (EE%) of niosomes ranged from 56.48% to 70.67%. Niosomal gels were more sustainable than niosomes and microemulsions. The most stable niosomal gel based on Span® 60 and CH at a molar ratio of 5:5 and microemulsion containing 45% w/w IPM and 40% w/w of 3:1 Tween® 80-PEG 400 mixture significantly (p?<?0.0001) enhanced FLZ ocular bioavailability compared with its solution. Niosomal gel showed higher bioavailability than microemulsion by ≈2-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号