首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Antiviral proteins encoded by the interferon (IFN)-stimulated genes provide a front-line defense against viral infections. In particular, PKR, RNase L, and Mx are considered to be the principal proteins through which IFNs mount an antiviral state. To determine whether alternative antiviral pathways exist, RNase L-/- mice and PKR-/- mice were crossed onto an Mx1(-/-) background to generate a strain of triply deficient (TD) mice. After infections with encephalomyocarditis virus, the TD mice died 3-4 days earlier than infected, wild-type mice. However, there was an IFN dose-dependent increase in survival times after encephalomyocarditis virus infections for both the TD and wild-type mice. Mice that were deficient for PKR or RNase L showed intermediate survival times between those of the TD and wild-type mice. Surprisingly, cultured embryonic fibroblasts lacking RNase L, PKR, or both proteins were still able to mount a substantial residual antiviral response against encephalomyocarditis virus or vesicular stomatitis virus after IFN-alpha treatments. These results confirm the antiviral functions of RNase L and PKR in vivo but also provide unequivocal evidence for the existence of novel, innate immune pathways against viruses.  相似文献   

3.
Antiviral actions of interferons   总被引:53,自引:0,他引:53       下载免费PDF全文
  相似文献   

4.
Molecular regulation of interferon antiviral response in fish   总被引:1,自引:0,他引:1  
Interferon (IFN) response is the first line of host defense against virus infection. The recent years have witnessed tremendous progress in understanding of fish IFN antiviral response. Varied number of IFN genes has been identified in different fish species but obviously, they do not show a one-to-one orthologous relationship with mammalian IFN homologs. These genes are divided into two groups with different abilities to induce downstream gene expression through binding to different receptor complexes. Consistently, some fish IFN-stimulated genes such as Mx and PKR have been confirmed for their antiviral effects. In this review, we focus on how fish cells respond to IFNs and how fish IFNs are triggered through TLR pathway and RLR pathway. We highlight the roles of IRF3 and IRF7 in activation of fish IFN response. In addition, the unique mechanisms underlying IRF3/7-dependent fish IFN response and auto-regulation of fish IFN gene expression are discussed.  相似文献   

5.
Interferons (IFN) play a major role as a first-line host defense mechanism against viral infections. As treatment of animal cells with IFN induces a large number of genes, it has been difficult to assign the role of these genes in the antiviral action of IFN. Vaccinia virus (VV) is an ideally suited system to study IFN action because all steps in viral morphogenesis can be followed easily by electron microscopy (EM) of ultrathin sections from infected cells. To define the role of IFN-induced genes in viral morphogenesis, we have independently expressed from VV recombinants in primary chicken embryo fibroblast (CEF) cells each of the three IFN-induced genes encoding protein kinase (PKR), 2-5A synthetase, and inducible nitric oxide synthase (iNOS). By EM analysis, we have identified the steps in VV morphogenesis that are affected by each of the IFN-induced enzymes in comparison with untreated and IFN-treated cells. We found that in cells pretreated with IFN and infected with VV, immature virus (IV) is formed, but further stages of maturation are blocked. In cells infected with a VV recombinant expressing PKR (VV-PKR), there is severe inhibition on virus factories, and only few IV are formed. In cells infected with a VV recombinant expressing 2-5A synthetase (VV-2-5A), VV assembly is inhibited at or after IV formation. In cells infected with a VV recombinant expressing iNOS (VV-iNOS), all stages in VV morphogenesis are observed but with aberrant forms. In addition to the effects on viral assembly, in cells infected with either VV-PKR, VV-2-5AS, or VV-iNOS, there is nucleus condensation characteristic of apoptosis. Our findings have identified the steps in VV morphogenesis inhibited by PKR, 2-5A, and iNOS, provided a distinction between these effects, and highlighted a functional redundancy of the IFN system to block viral infection and to induce apoptosis.  相似文献   

6.
Control of viral replication by interferon (IFN) is thought to be principally mediated by the 2',5'-oligoadenylate synthetase (OAS)/RNAse L, double-stranded dependent protein kinase (PKR), and myxovirus resistance protein (Mx) pathways. In this study, we monitored the constitutive and IFN-induced antiviral activity in mouse embryo fibroblasts lines derived from mice with targeted disruption of either PKR or PKR/RNAse L genes. At high multiplicity of infection (moi = 10), the absence of PKR had no effect on replication of vesicular stomatitis virus (VSV) but moderately enhanced encephalomyocarditis virus (EMCV) growth and greatly increased replication of herpes simplex virus-1 (HSV-1). Replication of EMCV, HSV-1, and VSV was modestly higher in PKR-/- RNAse L-/- fibroblasts when compared with control cells. Although the antiviral action of IFN-alpha was unaffected by the absence of PKR, IFN action was significantly impaired in the double knockout cells but was dependent on the stage of the virus cycle. At early stages, it appeared that anti-EMCV and anti-HSV-1 action of IFN-alpha was significantly compromised, although weak residual antiviral activity was seen. The action of IFN-alpha against VSV was specifically compromised at a late stage of virus replication. The results showed that PKR is an important mediator in constitutive resistance against HSV-1 and that RNAse L is also necessary for the full antiviral activity of IFN against a variety of viruses. These results supported the existence of novel pathways aimed toward specific stages of the virus life cycle.  相似文献   

7.
8.
The interferon (IFN)-induced, double-stranded RNA (dsRNA)-activated human protein kinase (PKR) has been shown to exert antiviral and antiproliferative effects. Activation of the enzyme in mammalian cells results in protein synthesis inhibition and cell death by apoptosis. Previous studies on the structure-function relationship of PKR have been based on vectors expressing the enzyme in mammalian cells containing endogenous PKR. As exogenously expressed PKR can form heterodimers with endogenous PKR, the results obtained on the functional characterization of mutant forms of PKR have been taken with caution. To address the natural consequences of heterodimer formation between endogenous and exogenous PKR, we have analyzed the structure-function relationship of PKR ectopically expressed from vaccinia virus (VV) recombinants in cells lacking the endogenous enzyme. We demonstrate that PKR-mediated inhibition of protein synthesis and induction of apoptosis is not dependent on the presence of endogenous PKR. Further, PKR activity is independent of the presence of dsRNA binding motifs (dsRBM). Moreover, single-point mutations of the third basic domain decreased PKR activation. Our findings demonstrate that PKR can be activated in the absence of its N-terminal domain (amino acids 1-232) and that the third basic domain is important for its biologic function.  相似文献   

9.
Type I interferons (IFNs) induce a detrimental response during Listeria monocytogenes (L. monocytogenes) infection. We were interested in identifying mechanisms linking IFN signaling to negative host responses against L. monocytogenes infection. Herein, we found that infection of myeloid cells with L. monocytogenes led to a coordinated induction of type I IFNs and activation of the integrated stress response (ISR). Infected cells did not induce Xbp1 splicing or BiP upregulation, indicating that the unfolded protein response was not triggered. CHOP (Ddit3) gene expression was upregulated during the ISR activation induced by L. monocytogenes. Myeloid cells deficient in either type I IFN signaling or PKR activation had less upregulation of CHOP following infection. CHOP‐deficient mice showed lower expression of innate immune cytokines and were more resistant than wild‐type counterparts following L. monocytogenes infection. These findings indicate that L. monocytogenes infection induces type I IFNs, which activate the ISR through PKR, which contributes to a detrimental outcome in the infected host.  相似文献   

10.
The interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) is a serine/threonine kinase that plays an important role in the biology of IFN, exerting antiviral and anticellular actions. These effects have been correlated with phosphorylation of the eukaryotic initiation factor eIF-2alpha and the NF-kappaB inhibitor IkappaB, although it has not been demonstrated that IkappaB is a direct target of PKR in vivo. In view of the various biological effects of PKR, it is likely that other cellular substrates are involved in PKR action. To identify novel substrates of PKR, we have carried out a systematic study of the phosphorylated proteins from cultured cells following PKR activation using high-resolution two-dimensional gel electrophoresis (2D-PAGE). We have used metabolic labeling with [32P]orthophosphate of HeLa cells infected with vaccinia virus (VV) recombinants expressing wild type (wt) or the catalytically inactive mutant form (K296R) of PKR under regulation of the Escherichia coli lacI operator/repressor system. Upon induction of PKR in the presence of isopropyl-beta-D-thiogalactoside (IPTG), the 68-kDA wt enzyme and eIF-2alpha are phosphorylated. These events lead to changes in the phosphorylation state of viral and cellular proteins. A distinct set of VV-induced phosphoproteins remained phophorylated, while the labeling of other viral proteins decreased markedly, probably as a result of a PKR-dependent translational block. Five proteins of unknown origin (68, 26, 20, 19, 15-16 kDA) appeared to be newly phosphorylated after PKR activation. Expression of the catalytically inactive K296R mutant form of PKR did not induce changes in the phosphorylation of VV proteins. Thus, by 2D-PAGE, we identified cellular and VV-induced phosphoproteins modified after PKR activation. Some or all of the phosphoproteins appearing or increasing in amount after PKR activation might not be direct targets of PKR, but rather indirect consequences of PKR activation.  相似文献   

11.
Interferon enhances the activity of the anticancer ribonuclease, onconase.   总被引:3,自引:0,他引:3  
Interferons (IFN) are biologic agents involved in the antiviral response and the inhibition of tumor growth. Biochemical pathways of IFN action include the double-stranded RNA-activated oligoadenylate synthetase, RNase L, and double-stranded RNA-dependent protein kinase (PKR). Extracellular ribonucleases, especially onconase, also display antiviral and antitumor properties and involve degradation of RNA. We find that IFN increases the anticancer activity of onconase. These two agents work synergistically, and the effect is seen at the level of translation probably because of the degradation of tRNA.  相似文献   

12.
IFN-λs     
For decades, type I IFNs have been considered indispensable and unique antiviral mediators for the activation of rapid innate antiviral protection. However, the recent discovery of type III IFNs is challenging this paradigm. Since their identification in 2002/2003 by two independent groups, type III IFNs or IFN-λs, also known as IL-28/29, have been the subject of increased study with consequent recognition of their importance in virology and immunology. Initial reports suggested that IFN-λs functionally resemble type I IFNs. Although IFN-λs and classical type I IFNs (IFN-α/β) utilize distinct receptor complexes for signaling, both types of IFNs activate similar intracellular signaling pathways and biological activities, including the ability to induce antiviral state in cells, and both type I and type III IFNs are induced by viral infection. However, different antiviral potency, pattern of their induction and differential tissue expression of their corresponding receptor subunits suggest that the type I and type III IFN antiviral systems do not merely duplicate each other. Recent studies have started to reveal unique biological activities of IFN-λs in and beyond innate antiviral immunity.  相似文献   

13.
Double-stranded RNA (dsRNA) plays a centrally important role in antiviral innate immunity, both for the production of interferon (IFN) and also in the actions of IFN. Among the IFN-inducible gene products are the protein kinase regulated by RNA (PKR) and the adenosine deaminase acting on RNA 1 (ADAR1). PKR is an established key player in the antiviral actions of IFN, through dsRNA-dependent activation and subsequent phosphorylation of protein synthesis initiation factor eIF2α thereby altering the translational pattern in cells. In addition, PKR plays an important role as a positive effector that amplifies the production of IFN. ADAR1 catalyzes the deamination of adenosine (A) in RNA with double-stranded (ds) character, leading to the destabilization of RNA duplex structures and genetic recoding. By contrast to the antiviral and proapoptotic functions associated with PKR, the actions of ADAR1 in some instances are proviral and cell protective as ADAR1 functions as a suppressor of dsRNA-mediated antiviral responses including activation of PKR and interferon regulatory factor 3.  相似文献   

14.
Hepatitis C virus (HCV) is the major cause of non-A non-B hepatitis and a leading cause of liver dysfunction worldwide. While the current therapy for chronic HCV infection is parenteral administration of type 1 interferon (IFN), only a fraction of HCV-infected individuals completely respond to treatment. Previous studies have correlated the IFN sensitivity of strain HCV-1b with mutations within a discrete region of the viral nonstructural 5A protein (NS5A), termed the interferon sensitivity determining region (ISDR), suggesting that NS5A may contribute to the IFN-resistant phenotype of HCV. To determine the importance of HCV NS5A and the NS5A ISDR in mediating HCV IFN resistance, we tested whether the NS5A protein could regulate the IFN-induced protein kinase, PKR, a mediator of IFN-induced antiviral resistance and a target of viral and cellular inhibitors. Using multiple approaches, including biochemical, transfection, and yeast genetics analyses, we can now report that NS5A represses PKR through a direct interaction with the protein kinase catalytic domain and that both PKR repression and interaction requires the ISDR. Thus, inactivation of PKR may be one mechanism by which HCV avoids the antiviral effects of IFN. Finally, the inhibition of the PKR protein kinase by NS5A is the first described function for this HCV protein.  相似文献   

15.
16.
The double-stranded (ds) RNA-dependent protein kinase PKR is considered to play an important role in interferon's (IFN's) response to viral infection. Here, we demonstrate that mice lacking PKR are predisposed to lethal intranasal infection by the usually innocuous vesicular stomatitis virus, and also display increased susceptibility to influenza virus infection. Our data indicate that in normal cells, PKR primarily prevents virus replication by inhibiting the translation of viral mRNAs through phosphorylation of eIF2alpha, while concomitantly assisting in the production of autocrine IFN and the establishment of an antiviral state. These results show that PKR is an essential component of innate immunity that acts early in host defense prior to the onset of IFN counteraction and the acquired immune response.  相似文献   

17.
Tan SL  Katze MG 《Virology》2001,284(1):1-12
Interferons (IFNs) induce an antiviral state in the cell through complex and indirect mechanisms, which culminate in a direct inhibition of viral replication and stimulation of the host adaptive responses. Viruses often counteract with elaborate strategies to interfere with the induction as well as action of IFN effector molecules. This evolutionary battle between viruses and IFN components is a subject of intense research aimed at understanding the immunopathogenesis of viruses and the molecular basis of IFN signaling and action. In the case with hepatitis C virus (HCV), this may have profound implications for the therapeutic use of recombinant IFN in treating chronic hepatitis C. Depending on the subtype of HCV, current IFN-based treatment regimens are effective for only a small subset of chronic hepatitis C patients. Thus, one of the Holy Grails in HCV research is to understand the mechanisms by which the virus may evade IFN antiviral surveillance and establish persistent infection, which may eventually provide insights into new avenues for better antiviral therapy. Despite the lack of an efficient tissue culture system and an appropriate animal model for HCV infection, several mechanisms have been proposed based on clinical studies and in vitro experiments. This minireview focuses on the HCV NS5A nonstructural protein, which is implicated in playing a role in HCV tolerance to IFN treatment, possibly in part through its ability to inhibit the cellular IFN-induced PKR protein kinase.  相似文献   

18.
19.
Interferon (IFN)-inducible double-stranded RNA-activated protein kinase (PKR) is thought to play a key antiviral role against hepatitis C virus (HCV). However, demonstrating the importance of PKR expression on HCV protein synthesis in the presence or absence of IFN has proven difficult in vivo. In the present experiment, full-length HCV constructs were transiently transfected into two cell lines stably expressing T7 RNA polymerase. HCV expression was monitored under conditions of upregulated or downregulated PKR expression. In addition, IFN was monitored during downregulation of PKR. HCV expression effectively increased PKR expression, as well as that of its regulated proteins. PKR was obviously knocked down by PKR-specific siRNA, which resulted in significantly increased HCV core protein levels. Conversely, over-expression of PKR significantly suppressed HCV core levels in both cell lines. Furthermore, IFN induced high levels of PKR, whereas downregulation of PKR reversed IFN's antiviral effects and increased HCV core levels. Based on these results, it appears that HCV protein expression is directly dependent on PKR expression. PKR is antiviral toward HCV and responsible for IFN's effect against HCV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号