首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the sister of P-glycoprotein (Spgp) or bile salt export pump (BSEP) are associated with Progressive Familial Intrahepatic Cholestasis (PFIC2). Spgp is predominantly expressed in the canalicular membranes of liver. Consistent with in vitro evidence demonstrating the involvement of Spgp in bile salt transport, PFIC2 patients secrete less than 1% of biliary bile salts compared with normal infants. The disease rapidly progresses to hepatic failure requiring liver transplantation before adolescence. In this study, we show that the knockout of spgp gene in mice results in intrahepatic cholestasis, but with significantly less severity than PFIC2 in humans. Some unexpected characteristics are observed. Notably, although the secretion of cholic acid in mutant mice is greatly reduced (6% of wild-type), total bile salt output in mutant mice is about 30% of wild-type. Also, secretion of an unexpectedly large amount of tetra-hydroxylated bile acids (not detected in wild-type) is observed. These results suggest that hydroxylation and an alternative canalicular transport mechanism for bile acids compensate for the absence of Spgp function and protect the mutant mice from severe cholestatic damage. In addition, the spgp(-/-) mice display a significant increase in the secretion of cholesterol and phospholipids into the bile. This latter observation in spgp(-/-) mice suggests that intrahepatic, rather than intracanalicular, bile salts are the major driving force for the biliary lipid secretion. The spgp(-/-) mice thus provide a unique model for gaining new insights into therapeutic intervention for intrahepatic cholestasis and understanding mechanisms associated with lipid homeostasis.  相似文献   

2.
3.
Defects in transport proteins that are expressed at the hepatocyte canalicular membrane can cause severe impairment of hepatobiliary transport processes. Progressive familial intrahepatic cholestasis (PFIC) typically manifests in early childhood. Genetic variants in the aminophospholipid transporter FIC1 (ATP8B1 gene) cause PFIC1, characterized by elevated serum bile acids but normal or only mildly elevated gamma-GT levels. Benign recurrent intrahepatic cholestasis type 1 (BRIC1) is also caused by ATP8B1 mutations. Defects in the function of the bile salt efflux pump (BSEP; ABCB11) cause PFIC2 or BRIC2, depending on the degree of BSEP impairment. A common BSEP variant, the V444A polymorphism, is commonly found in various types of cholestatic liver injury, including drug-induced liver injury. Finally, dysfunction of the multidrug resistance gene product MDR3 (ABCB4) leads to PFIC3, characterized by low biliary phospholipids and high gamma-GT levels in serum due to bile duct injury. All three transporter genes are also associated with intrahepatic cholestasis of pregnancy. Treatment options include ursodeoxycholic acid for milder forms and liver transplantation for severe pediatric cases.  相似文献   

4.
Progressive familial intrahepatic cholestasis (PFIC) is a group of severe genetic cholestatic liver diseases of early life. PFIC types 1 and 2 are characterized by cholestasis and a low to normal serum gamma-glutamyltransferase (GGT) activity, whereas in PFIC type 3, the serum GGT activity is elevated. PFIC types 1 and 2 occur due to mutations in loci at chromosome 18 and chromosome 2, respectively. The pathophysiology of PFIC type 1 is not well understood. PFIC types 2 and 3 are caused by transport defects in the liver affecting the hepatobiliary secretion of bile acids and phospholipids, respectively. Benign recurrent intrahepatic cholestasis (BRIC) is linked to a mutation in the same familial intrahepatic cholestasis 1 locus at chromosome 18. Defects of bile acid synthesis may be difficult to differentiate from these transport defects. Intrahepatic cholestasis of pregnancy (ICP) appears to be related to these cholestatic diseases. For example, heterozygosity in families with PFIC type 3 is associated with ICP, but ICP has also been reported in families with BRIC. In Dubin-Johnson syndrome there is no cholestasis; only the hepatobiliary transport of conjugated bilirubin is affected. This, therefore, is a mild disease, and patients have a normal lifespan.  相似文献   

5.
BACKGROUND & AIMS: Progressive familial intrahepatic cholestasis (PFIC), an inherited liver disease of childhood, is characterized by cholestasis and either normal or increased serum gamma-glutamyltransferase activity. Patients with normal gamma-glutamyltransferase activity have mutations of the FIC1 locus on chromosome 18q21 or mutations of the BSEP gene on chromosome 2q24. Also, patients with bile acid synthesis defects have low gamma-glutamyltransferase activity. We investigated expression of the bile salt export pump (BSEP) in liver samples from patients with a PFIC phenotype and correlated this with BSEP gene mutations. METHODS: BSEP and multidrug resistance protein 2 (MRP2) expressions were studied by immunohistochemistry in liver specimens of 28 patients and BSEP gene mutation analysis in 19 patients. Bile salt kinetics were studied in 1 patient. RESULTS: Sixteen of 28 liver samples showed no canalicular BSEP staining. Staining for MRP2 showed a normal canalicular pattern in all but 1 of these samples. Ten of 19 patients showed BSEP gene mutations; BSEP protein expression was lacking in all 10 patients. No mutations were found in 9 of 19 patients, and in all except 1, BSEP protein expression was normal. Bile salt concentration in bile of BSEP-negative/MRP2-positive PFIC patients was 0.2 +/- 0.2 mmol/L (n = 9; <1% of normal) and in BSEP-positive PFIC patients 18.1 +/- 9.9 mmol/L (n = 3; 40% of normal). The kinetic study confirmed the dramatic decrease of bile salt secretion in BSEP-negative patients. CONCLUSIONS: The findings show a close correlation between BSEP gene mutations and canalicular BSEP expression. Biliary secretion of bile salts is greatly reduced in BSEP-negative patients.  相似文献   

6.
Progressive familial intrahepatic cholestasis (PFIC) is a heterogeneous group of disorders characterized by defects in bile secretion and presentation with intrahepatic cholestasis in infancy or childhood. The most common types include PFIC 1 (deficiency of FIC1 protein, ATP8B1 gene mutation), PFIC 2 (bile salt export pump deficiency, ABCB11 gene mutation), and PFIC 3 (multidrug resistance protein-3 deficiency, ABCB4 gene mutation). Mutational analysis of subjects with normal gamma-glutamyl transferase cholestasis of unknown etiology has led to the identification of newer variants of PFIC, known as PFIC 4, 5, and MYO5B related (sometimes known as PFIC 6). PFIC 4 is caused by the loss of function of tight junction protein 2 (TJP2) and PFIC 5 is due to NR1H4 mutation causing Farnesoid X receptor deficiency. MYO5B gene mutation causes microvillous inclusion disease (MVID) and is also associated with isolated cholestasis. Children with TJP2 related cholestasis (PFIC-4) have a variable spectrum of presentation. Some have a self-limiting disease, while others have progressive liver disease with an increased risk of hepatocellular carcinoma. Hence, frequent surveillance for hepatocellular carcinoma is recommended from infancy. PFIC-5 patients usually have rapidly progressive liver disease with early onset coagulopathy, high alpha-fetoprotein and ultimately require a liver transplant. Subjects with MYO5 B-related disease can present with isolated cholestasis or cholestasis with intractable diarrhea (MVID). These children are at risk of worsening cholestasis post intestinal transplant (IT) for MVID, hence combined intestinal and liver transplant or IT with biliary diversion is preferred. Immunohistochemistry can differentiate most of the variants of PFIC but confirmation requires genetic analysis.  相似文献   

7.
Progressive familial intrahepatic cholestasis (PFIC), types 1, 2 and 3, are due to defects in genes involved in bile secretion (FIC1, BSEP, MDR3). PFIC and inborn errors of bile acid synthesis (IEBAS) often present in infancy with cholestasis. The distinctive feature of PFIC 1 and 2 and IEBAS is a normal level of GGT, while IEBAS are suspected in patients with low plasma bile acids concentration. Molecular testing, urinary bile acid analysis (IEBAS), liver biopsy and immuno-staining are used for the diagnosis. Some patients with PFIC can be successfully treated with ursodeoxycholic acid or partial external biliary diversion. IEBAS is treated with cholic acid. Liver transplantation is required for cirrhosis with liver failure. Hepatocarcinoma has been reported in PFIC2.  相似文献   

8.
Cholestasis is associated with accumulation of bile acids and lipids, and liver injury. The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic nuclear receptors that coordinate protective hepatic responses to potentially toxic stimuli, including bile acids. We investigated the role of these receptors in the regulation of bile acid and lipid metabolism in a bile duct ligation (BDL) model of cholestasis applied to receptor knockout mice. Hepatic damage from bile acid accumulation was increased in both CAR knockout (CARKO) and PXR knockout mice, but bile acid concentrations were lower in CARKO mice. High-density lipoprotein (HDL) cholesterol was elevated in CARKO mice, and serum total cholesterol increased less in CARKO or PXR knockout mice than WT mice after BDL. Gene expression analysis of the BDL knockout animals demonstrated that, in response to cholestasis, PXR and CAR both repressed and induced the specific hepatic membrane transporters Oatp-c (organic anion transporting polypeptide C) and Oatp2 (Na+-dependent organic anion transporter 2), respectively. Induction of the xenobiotic transporter multidrug resistance protein 1 in cholestasis was independent of either PXR or CAR, in contrast to the known pattern of induction of multidrug resistance protein 1 by xenobiotics. These results demonstrate that CAR and PXR influence cholesterol metabolism and bile acid synthesis, as well as multiple detoxification pathways, and suggest their potential role as therapeutic targets for the treatment of cholestasis and lipid disorders.  相似文献   

9.
10.
《Annals of hepatology》2016,15(2):222-229
Background. Diagnosis of progressive familial intrahepatic cholestasis (PFIC) is a challenging matter that involves the summation of clinical, laboratory, radiological, and liver histological parameters; in addition to specific investigations to exclude other causes of neonatal cholestasis. The aim of this study was to evaluate liver tissue immunohistochemistry of bile salt export pump (BSEP) and multidrug resistance 3 (MDR3) proteins in differentiating PFIC from other causes of neonatal cholestasis, particularly, when genotyping is unavailable.Material and methods. The study included 25 patients diagnosed phenotypically as PFIC including 2 with PFIC1, 17 with PFIC2 and 6 with PFIC3. A second group of 25 cholestatic newborns with confirmed etiologies other than PFIC, termed as non-PFIC, included as controls. Liver biopsies from all patients were obtained and immunostained for BSEP and MDR3.Results. Negative immunoreaction of BSEP and MDR3 was found in the majority of PFIC group (76 and 64% respectively). Nonetheless, the negative immunoreaction was demonstrated in a considerable number of the non-PFIC group. BSEP immunoreaction was negative in the majority (82.4%) of PFIC2 but in none of the two patients with PFIC1. In addition, negative MDR3 immunoreaction was more frequently associated with PFIC3 compared to non-PFIC group.Conclusion. MDR3 and BSEP immunostaining would be a helpful tool in supporting the phenotypic diagnosis of PFIC subtypes and in differentiating PFIC from other causes of neonatal cholestasis.  相似文献   

11.
Progressive familial intrahepatic cholestasis type 1 (PFIC1, Byler disease, OMIM 211600) is a severe inherited liver disease caused by mutations in ATP8B1. ATP8B1 is a member of the type 4 subfamily of P-type ATPases, which are phospholipid flippases. PFIC1 patients generally develop end-stage liver disease before the second decade of life. The disease is characterized by impaired biliary bile salt excretion, but the mechanism whereby impaired ATP8B1 function results in cholestasis is unclear. In a mouse model for PFIC1, we observed decreased resistance of the hepatocanalicular membrane to hydrophobic bile salts as evidenced by enhanced biliary recovery of phosphatidylserine, cholesterol, and ectoenzymes. In liver specimens from PFIC1 patients, but not in those from control subjects, ectoenzyme expression at the canalicular membrane was markedly deficient. In isolated mouse livers Atp8b1 deficiency impaired the transport of hydrophobic bile salts into bile. In conclusion, our study shows that Atp8b1 deficiency causes loss of canalicular phospholipid membrane asymmetry that in turn renders the canalicular membrane less resistant toward hydrophobic bile salts. The loss of phospholipid asymmetry may subsequently impair bile salt transport and cause cholestasis.  相似文献   

12.
Obstructive cholestasis induces liver injury, postoperative complications, and mortality after surgery. Adaptive control of cholestasis, including bile salt homeostasis, is necessary for recovery and survival. Peripheral serotonin is a cytoprotective neurotransmitter also associated with liver regeneration. The effect of serotonin on cholestatic liver injury is not known. Therefore, we tested whether serotonin affects the severity of cholestatic liver injury. We induced cholestasis by ligation of the bile duct (BDL) in either wild-type (WT) mice or mice lacking peripheral serotonin (Tph1(-/-) and immune thrombocytopenic [ITP] mice). Liver injury was assessed by the levels of plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) and tissue necrosis. Bile salt-regulating genes were measured by quantitative polymerase chain reaction and confirmed by western blotting and immunohistochemistry. Tph1(-/-) mice displayed higher levels of plasma AST, ALT, bile salts, and hepatic necrosis after 3 days of BDL than WT mice. Likewise, liver injury was disproportional in ITP mice. Moreover, severe cholestatic complications and mortality after prolonged BDL were increased in Tph1(-/-) mice. Despite the elevation in toxic bile salts, expression of genes involved in bile salt homeostasis and detoxification were not affected in Tph1(-/-) livers. In contrast, the bile salt reabsorption transporters Ostα and Ostβ were up-regulated in the kidneys of Tph1(-/-) mice, along with a decrease in urinary bile salt excretion. Serotonin reloading of Tph1(-/-) mice reversed this phenotype, resulting in a reduction of circulating bile salts and liver injury. CONCLUSION: We propose a physiological function of serotonin is to ameliorate liver injury and stabilize the bile salt pool through adaptation of renal transporters in cholestasis.  相似文献   

13.
The orphan nuclear hormone receptor small heterodimer partner (SHP) regulates the expression of several genes involved in bile acid homeostasis in the liver. Because bile acid toxicity is a major source of liver injury in cholestatic disease, we explored the role of SHP in liver damage induced by common bile duct ligation (BDL). Shp(-/-) mice show increased sensitivity in this model of acute obstructive cholestasis, with greater numbers of bile infarcts and higher mortality than wild-type C57BL/6 mice. This increased sensitivity could not be accounted for by differences in expression of bile acid homeostatic genes 2 or 5 days after BDL. Instead, higher basal expression of such genes, including the key biosynthetic enzyme cholesterol 7alpha hydroxylase (Cyp7A1) and the bile salt export pump, is associated with both an increase in bile flow prior to BDL and an increase in acute liver damage at only 1.5 hours after BDL in Shp(-/-) mice, as shown by bile infarcts. At 3 hours, Cyp7A1 expression still remained elevated in Shp(-/-) with respect to wild-type mice, and the hepatic and serum bile acid levels and total hepatobiliary bile acid pool were significantly increased. The increased sensitivity of mice lacking SHP contrasts with the decreased sensitivity of mice lacking the farnesoid X receptor (FXR; nuclear receptor subfamily 1, group H, member 4) to BDL, which has been associated with decreased intraductal pressure and fewer bile infarcts. Conclusion: We propose that differences in acute responses to BDL, particularly the early formation of bile infarcts, are a primary determinant of the differences in longer term sensitivity of the Fxr(-/-) and Shp(-/-) mice to acute obstructive cholestasis.  相似文献   

14.
Recent evidence points towards the role of genotype to understand the phenotype, predict the natural course and long term outcome of patients with progressive familial intrahepatic cholestasis (PFIC). Expanded role of the heterozygous transporter defects presenting late needs to be suspected and identified. Treatment of pruritus, nutritional rehabilitation, prevention of fibrosis progression and liver transplantation (LT) in those with end stage liver disease form the crux of the treatment. LT in PFIC has its own unique issues like high rates of intractable diarrhoea, growth failure; steatohepatitis and graft failure in PFIC1 and antibody-mediated bile salt export pump deficiency in PFIC2. Drugs inhibiting apical sodium-dependent bile transporter and adenovirus-associated vector mediated gene therapy hold promise for future.  相似文献   

15.
BACKGROUND AND AIMS: Progressive familial intrahepatic cholestasis (PFIC) is characterized by pruritus, intrahepatic cholestasis, low serum gamma-glutamyltransferase levels, and characteristic "Byler bile" on electron microscopy. Many patients require liver transplantation, but partial external biliary diversion (PEBD) has shown therapeutic promise. However, the effect of PEBD on liver morphology and bile composition has not been evaluated. METHODS: We reviewed liver biopsy specimens from 3 children with low gamma-glutamyltransferase PFIC before and after PEBD. Follow-up liver biopsies were performed 9-60 months after PEBD. Light and electron microscopic features were scored blindly. Biliary bile acid composition was analyzed by gas chromatography-mass spectrometry before and after PEBD in 1 patient and after PEBD in 2 patients. RESULTS: Following PEBD, all patients improved clinically. Preoperative biopsy specimens showed characteristic features of PFIC, including portal fibrosis, chronic inflammation, cholestasis, giant cell transformation, and central venous mural sclerosis. Ultrastructural findings included coarse, granular canalicular Byler bile, effaced canalicular microvilli, and proliferative pericanalicular microfilaments. Following diversion, histology showed almost complete resolution of cholestasis, portal fibrosis, and inflammation with resolution of ultrastructural abnormalities. Biliary bile acids before PEBD consisted predominantly of cholic acid. After PEBD, the proportion of chenodeoxycholic acid increased significantly in 1 patient and was above the PFIC range in a second patient. CONCLUSIONS: The resolution of hepatic morphologic abnormalities following PEBD supports PEBD as an effective therapy for PFIC. The improved biliary bile acid composition suggests enhanced bile acid secretion after PEBD, perhaps by induction of alternative canalicular transport proteins.  相似文献   

16.
BACKGROUND: Cholestatic liver diseases are characterized by failure of normal amounts of physiological bile to reach the gastrointestinal tract. Any interference with normal bile flow from the canalicular membrane of the hepatocyte to the distal common bile duct may result in cholestasis. METHODS: Literature review. RESULTS: In primary biliary cirrhosis (PBC), the small intrahepatic bile ducts are destructed, resulting in obstruction of intrahepatic bile flow, whereas extrahepatic and/or intrahepatic biliary strictures block the passage of bile towards the intestine in primary sclerosing cholangitis (PSC). In contrast, the biliary tree is morphologically unaffected in less common cholestatic liver diseases as benign recurrent intrahepatic cholestasis (BRIC) and progressive familiar intrahepatic cholestasis (PFIC1-4). Genetic defects in hepatic canalicular transport mechanisms and bile salt synthesis deficiencies seem to underlie these types of cholestatic disorders. CONCLUSION: Recent advances in understanding and treatment of cholestatic liver diseases may help in better diagnosing and treating the various conditions characterized by cholestasis.  相似文献   

17.
Hepatocellular carcinoma (HCC) is rare in young children. We attempted to see if immunohistochemical and mutational-analysis studies could demonstrate that deficiency of the canalicular bile acid transporter bile salt export pump (BSEP) and mutation in ABCB11, encoding BSEP, underlay progressive familial intrahepatic cholestasis (PFIC)--or "neonatal hepatitis" suggesting PFIC--that was associated with HCC in young children. We studied 11 cases of pediatric HCC in the setting of PFIC or "neonatal hepatitis" suggesting PFIC. Archival liver were retrieved and immunostained for BSEP. Mutational analysis of ABCB11 was performed in leukocyte DNA from available patients and parents. Among the 11 nonrelated children studied aged 13-52 months at diagnosis of HCC, 9 (and a full sibling, with neonatal hepatitis suggesting PFIC, of a tenth from whom liver was not available) had immunohistochemical evidence of BSEP deficiency; the eleventh child did not. Mutations in ABCB11 were demonstrated in all patients with BSEP deficiency in whom leukocyte DNA could be studied (n = 7). These mutations were confirmed in the parents (n = 14). With respect to the other 3 children with BSEP deficiency, mutations in ABCB11 were demonstrated in all 5 parents in whom leukocyte DNA could be studied. Thirteen different mutations were found. In conclusion, PFIC associated with BSEP deficiency represents a previously unrecognized risk for HCC in young children. Immunohistochemical evidence of BSEP deficiency correlates well with demonstrable mutation in ABCB11.  相似文献   

18.
Background and Aim:  Progressive familial intrahepatic cholestasis type 2 (PFIC2) results from genetic defects of the hepatobiliary bile salt export pump (BSEP, ABCB11 ) at chromosome 2q24. Patients with progressive cholestasis and liver cirrhosis usually need liver transplantation in the first decade. Mutations in ABCB11 are also associated with benign recurrent intrahepatic cholestasis type 2 and intrahepatic cholestasis of pregnancy in adult patients. We aimed to make the prenatal diagnosis of PFIC2.
Methods:  Genetic diagnosis was performed by genomic DNA analysis. Prenatal genetic diagnosis was made by fetal amniotic DNA and chorionic DNA analysis.
Results:  We report on two families of PFIC2 with inherited compound heterozygous mutations of ABCB11 (M183V and R303K in Family 1, V284L and 1145delC in Family 2) from the parents. An infant with heterozygous M183V mutation was later born healthy in Family 1. A fetus with compound heterozygous missense mutation V284L and 1145delC was terminated in Family 2.
Conclusion:  Prenatal diagnosis of PFIC2 was helpful to prevent further affected children in families with this fatal disease.  相似文献   

19.
We report the case of a 40-years-old female patient with recurrent cholestatic liver disease who presented twice with severe intrahepatic cholestasis of pregnancy and pronounced choledocholithiasis between pregnancies. Bile duct stones were removed endoscopically and a laparoscopic cholecystectomy was performed after the second pregnancy. Liver histology revealed intrahepatic cholestasis with portal inflammation and fibrosis, resembling progressive familial intrahepatic cholestasis (PFIC). Molecular genetic studies identified the heterozygous mutation c.957C > T in the ABCB4 gene encoding the hepatobiliary phospholipid transporter. This is the first report of this mutation that introduces a stop codon in an index patient with intrahepatic cholestasis of pregnancy and multiple bile duct stones. In addition, we detected the ABCB11 polymorphism V 444A, which is associated with a decreased expression of the bile salt export pump. Whereas homozygous carriers of the ABCB4 mutation develop PFIC type 3, the heterozygous ABC transporter mutations represent genetic risk factors for cholelithiasis and recurrent cholestatic hepatitis upon challenge with oral contraceptives or during pregnancy. Of note, the patient presented with normal serum gamma-glutamyltranspeptidase activities during pregnancy-associated cholestatic episodes but normal liver enzymes after delivery, whereas choledocholithiasis was associated with high gamma-glutamyl transpeptidase levels. It is unknown whether ursodeoxycholic acid prevents cholestasis or gallstones in patients with ABCB4 deficiency.  相似文献   

20.
BACKGROUND & AIMS: Progressive familial intrahepatic cholestasis (PFIC) and benign recurrent intrahepatic cholestasis (BRIC) are hereditary liver disorders; PFIC is characterized by severe progressive liver disease whereas BRIC patients have intermittent attacks of cholestasis without permanent liver damage. Mutations in ATP8B1 are present in PFIC type 1 and in a subset of BRIC patients. We hypothesized that a genetically distinct form of BRIC is associated with mutations in ABCB11. This gene encodes the bile salt export pump (BSEP) and is mutated in PFIC type 2. METHODS: Patients from 20 families were included; all had a normal ATP8B1 sequence. Sequencing of all 27 coding exons including the splice junctions of ABCB11 revealed 8 distinct mutations in 11 patients from 8 different families: one homozygous missense mutation (E297G) previously described in PFIC2 patients, 6 novel missense mutations, and one putative splice site mutation. RESULTS: In 12 families, no mutations in ATB8B1 or ABCB11 were detected. Pancreatitis is a known extrahepatic symptom in BRIC caused by ATP8B1 mutations, but was not present in BRIC patients with mutations in ABCB11. In contrast, cholelithiasis was observed in 7 of 11 BRIC patients with mutations in ABCB11, but has not been described in ATP8B1-affected BRIC patients. CONCLUSIONS: Mutations in ABCB11 are associated with BRIC, and consistent with the genetic classification of PFIC into 2 subtypes, we propose that this disorder be named BRIC type 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号