共查询到20条相似文献,搜索用时 12 毫秒
1.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family and has recently been shown to exert tumoricidal activity in vivo in the absence of any observable toxicity. The signaling pathways triggered by TRAIL stimulation and the mechanisms involved in resistance against TRAIL-mediated apoptosis are still poorly defined. We show here that TRAIL-induced apoptosis involves late dissipation of mitochondrial membrane potential (delta psi(m)) and cytochrome c release. These events follow activation of caspase-8 and caspase-3 and induction of DNA fragmentation. In addition, caspase-8-deficient cells are resistant against TRAIL-induced apoptosis, and inhibition of caspase-8 but not caspase-9 prevents mitochondrial permeability transition and apoptosis. In contrast, various Bcl-2- or Bcl-xL-overexpressing tumor cell lines are sensitive to TRAIL-induced apoptosis; however, they show a delay in TRAIL-induced mitochondrial permeability transition compared with control transfectants. This indicates that TRAIL-induced apoptosis depends on caspase-8 activation rather than on the disruption of mitochondrial integrity. Because most chemotherapeutic drugs used in the treatment of malignancies lead to apoptosis primarily by engagement of the mitochondrial proapoptotic machinery, we tested whether drug-resistant tumor cells retain sensitivity for TRAIL-induced apoptosis. Tumor cells overexpressing Bcl-2 or Bcl-xL become resistant to apoptosis induced by the chemotherapeutic drug etoposide. However, these cells are not protected or are only marginally protected against TRAIL-induced apoptosis. Thus, TRAIL may still kill tumors that have acquired resistance to chemotherapeutic drugs by overexpression of Bcl-2 or Bcl-xL. These data will influence future treatment strategies involving TRAIL. 相似文献
2.
Yong J Lee Christopher J Froelich Naoya Fujita Takashi Tsuruo Jin H Kim 《Clinical cancer research》2004,10(6):1894-1900
PURPOSE AND EXPERIMENTAL DESIGN: We have previously observed that glucose deprivation enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic death as well as caspase activation (caspase-3, -9, and -8) in human prostate adenocarcinoma DU-145 cells. In this study, we used caspase-3-deficient MCF-7 breast cancer cells to examine the possible role of caspase-3 in glucose deprivation-enhanced TRAIL cytotoxicity. RESULTS: Combined glucose deprivation and 200 ng/ml TRAIL treatment markedly induced cytotoxicity in caspase-3 cDNA transfected cells (MCF-7/casp-3) but not in control vector transfected cells (MCF-7/vector). We also observed that the level of Akt, an antiapoptotic protein, was reduced by treatment with TRAIL in MCF-7/casp-3 cells but not in MCF-7/vector cells. The reduction of Akt by TRAIL was promoted in the absence of glucose in MCF-7/casp-3 cells. However, pretreatment with 20 micro M Z-LEHD-FMK, a caspase-9 inhibitor, protected MCF-7/casp-3 cells from the combinatorial treatment of TRAIL and glucose deprivation-induced cytotoxicity. This compound also prevented the reduction of Akt level during the combinatorial treatment. Moreover, this Akt reduction was not inhibited by treatment with MG-132, a proteosome inhibitor. Data from site-directed mutagenesis show that Akt was cleaved at amino acid 108, but not 119, during treatment with TRAIL and glucose deprivation. CONCLUSIONS: Our results suggest that caspase-3 is involved in the reduction of Akt level, and its involvement is mediated through caspase-9 activation. The reduction of Akt level is also due to cleavage of Akt rather than degradation of Akt. 相似文献
3.
Previous studies have shown that the lymphoblastic leukemia CEM cell line is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis because of a low expression of caspase-8. Bcl-2 inhibitors, BH3I-2' and HA14-1, are small cell-permeable nonpeptide compounds, are able to induce apoptosis by mediating cytochrome c release, and also lead to dissipation of the mitochondrial membrane potential (DeltaPsim). This study aimed to use the Bcl-2 inhibitors to sensitize CEM cells to TRAIL-induced apoptosis by switching on the mitochondrial apoptotic pathway. We found that a low dose of BH3I-2' or HA14-1, which did not induce cytochrome c release, greatly sensitized CEM cells to TRAIL-induced apoptosis. In a similar manner to the classical uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), both BH3I-2' and HA14-1 induced a reduction in DeltaPsim, a generation of reactive oxygen species (ROS), an increased mitochondrial respiration, and a decreased ATP synthesis. This uncoupling function of the Bcl-2 inhibitors was responsible for the synergy with TRAIL-induced apoptosis. CCCP per se did not induce apoptosis but again sensitized CEM cells to TRAIL-induced apoptosis by uncoupling mitochondrial respiration. The uncoupling effect facilitated TRAIL-induced Bax conformational change and cytochrome c release from mitochondria. Inhibition of caspases failed to block TRAIL-mediated cell death when mitochondrial respiration was uncoupled. We observed that BH3I-2', HA14-1, or CCCP can overcome resistance to TRAIL-induced apoptosis in TRAIL-resistant cell lines, such as CEM, HL-60, and U937. Our results suggest that the uncoupling of mitochondrial respiration can sensitize leukemic cells to TRAIL-induced apoptosis. However, caspase activation per se does not represent an irreversible point of commitment to TRAIL-induced cell death when mitochondrial respiration is uncoupled. 相似文献
4.
Cysteine 230 modulates tumor necrosis factor-related apoptosis-inducing ligand activity 总被引:1,自引:0,他引:1
Biologically active tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein is known to form a homotrimer in solution. Unexpectedly, the recombinant active human TRAIL protein purified from bacteria produced two bands (a Mr 21,000 monomer derived from the disruption of the trimer in SDS gels and a Mr 42,000 dimer) on nonreducing SDS gels. The treatment of this TRAIL protein with DTT, a reducing agent, abolished formation of the Mr 42,000 band, suggesting that the Mr 42,000 band was the result of intermolecular disulfide bridge formation. Inspection of the amino acid sequence of human TRAIL protein identified a unique cysteine residue at position 230, and subsequent site-directed mutagenesis revealed that this amino acid residue is responsible for the appearance of the Mr 42,000 dimer. The binding analysis using the TRAIL protein and a TRAIL receptor (death receptor 5) revealed that both the dimer and the trimer bind to death receptor 5 with similar affinity. Interestingly, mutation of cysteine 230 to glycine completely abolished the apoptotic activity of TRAIL protein. The disruption of the dimer in the mixture of TRAIL dimer and trimer increased the apoptotic activity slightly, suggesting that the dimer has less apoptotic activity than the trimer. Therefore, our data indicate that cysteine 230 is not only required for TRAIL function but also modulates the apoptotic activity of TRAIL by forming an intermolecular disulfide bridge. 相似文献
5.
Targeting the tumor necrosis factor-related apoptosis-inducing ligand path in neuroblastoma 总被引:14,自引:0,他引:14
The identification of the tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) a few years ago generated considerable enthusiasm for it as a potential cancer therapeutic agent. This is because TRAIL shows potent apoptosis inducing activity in a wide spectrum of transformed cell lines but not in cell lines derived from normal tissue origin. As the details in the signal transduction pathway of TRAIL-induced apoptosis are clarified, various defects of TRAIL pathway have been identified in TRAIL resistant cancer cells. Neuroblastoma is the most common extracranial solid tumor in children and those with a poor prognosis require more sensitive therapies. Unlike other cancer cells, most neuroblastoma cell lines are resistant to TRAIL induced apoptosis and the resistance correlates with caspase 8 deficiency, which is attributed to the methylation of the gene. Interferon (IFN)-gamma induces caspase 8 expression in most neuroblastoma cell lines regardless of the methylation status but fails to sensitize most NB to TRAIL. Further analysis indicates a TRAIL receptor deficiency contributes to TRAIL resistance in NB. Multiple lesions suggest that this path may play an important role in tumorigenesis and/ or evasion from therapies. Furthermore it indicates that the clinical application of TRAIL in NB will require a multi-modality approach. Important questions remain unanswered: How does IFN-gamma induce caspase 8 and why is the induction heterogeneous? How to stimulate the caspase 8 induction in cells that fail to respond to IFN-gamma? How to target other TRAIL pathway lesions with the clinically feasible approaches? 相似文献
6.
Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells 总被引:9,自引:0,他引:9
Taniai M Grambihler A Higuchi H Werneburg N Bronk SF Farrugia DJ Kaufmann SH Gores GJ 《Cancer research》2004,64(10):3517-3524
Cholangiocarcinomas are usually fatal neoplasms originating from bile duct epithelia. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for cancer therapy, including cholangiocarcinoma. However, many cholangiocarcinoma cells are resistant to TRAIL-mediated apoptosis. Thus, our aim was to examine the intracellular mechanisms responsible for TRAIL resistance in human cholangiocarcinoma cell lines. Three TRAIL-resistant human cholangiocarcinoma cell lines were identified. All of the cell lines expressed TRAIL receptor 1/death receptor 4 (TRAIL-R1/DR4) and TRAIL-R2/DR5. Expression of TRAIL decoy receptors and the antiapoptotic cellular FLICE-inhibitory protein (cFLIP) was inconsistent across the cell lines. Of the antiapoptotic Bcl-2 family of proteins profiled (Bcl-2, Bcl-x(L), and Mcl-1), Mcl-1 was uniquely overexpressed by the cell lines. When small-interfering-RNA (siRNA) technology was used to knock down expression of Bcl-2, Bcl-x(L), and Mcl-1, only the Mcl-1-siRNA sensitized the cells to TRAIL-mediated apoptosis. In a cell line stably transfected with Mcl-1-small-hairpin-RNA (Mcl-1-shRNA), Mcl-1 depletion sensitized cells to TRAIL-mediated apoptosis despite Bcl-2 expression. TRAIL-mediated apoptosis in the stably transfected cells was associated with mitochondrial depolarization, Bax activation, cytochrome c release from mitochondria, and caspase activation. Finally, flavopiridol, an anticancer drug that rapidly down-regulates Mcl-1, also sensitized cells to TRAIL cytotoxicity. In conclusion, these studies not only demonstrate that Mcl-1 mediates TRAIL resistance in cholangiocarcinoma cells by blocking the mitochondrial pathway of cell death but also identify two strategies for circumventing this resistance. 相似文献
7.
目的:探讨肿瘤坏死因子相关凋亡诱导配体(TRAIL)对肿瘤细胞中过氧化氧化还原蛋白(PRDXs)表达的影响及其机制。方法:选取肿瘤细胞,设立对照组和TRAIL处理组;用实时定量PCR法和蛋白质印迹法检测PRDXs在各种肿瘤细胞中的表达;用PCR法克隆PRDX4启动子,用萤光素酶含量测定其含量。结果:与对照组相比,TRAIL处理组中PRDX1、PRDX2、PRDX3、PRDX5和PRDX6mRNA及蛋白表达差异无统计学意义,P>0.05;PRDX4mRNA和蛋白的表达显著降低,P<0.01;放线菌素D处理8h时,TRAIL处理组与对照组中PRDX4mRNA降解近50%,差异无统计学意义,P>0.05;TRAIL显著降低pPRDX4/-979的活性呈剂量依赖方式。结论:TRAIL在转录水平上下调肿瘤细胞中PRDX4基因的表达,对PRDX4mRNA的稳定性没有影响。 相似文献
8.
Role of antiapoptotic proteins in tumor necrosis factor-related apoptosis-inducing ligand and cisplatin-augmented apoptosis. 总被引:1,自引:0,他引:1
PURPOSE AND EXPERIMENTAL DESIGN: The purpose of this study was to examine the effect of combined treatment with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cisplatin in human head and neck squamous cell carcinoma. HNSCC-6 cells were treated with 0.1-1 micro g/ml TRAIL and/or 1-10 micro g/ml cisplatin for 24 h. RESULTS: TRAIL alone or cisplatin alone caused minimal cytotoxicity. The combination of TRAIL and cisplatin synergistically enhanced apoptotic death, caspase-8 and caspase-3 activation, as well as poly(ADP-ribose) polymerase cleavage. However, the total cellular levels and the surface expression of TRAIL receptor proteins, such as death receptors 4 and 5 and decoy receptors 2 and 1, were not significantly changed by treatment with TRAIL and cisplatin. Interestingly, the level of the short form of Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (FLIP(S)) but not the long form of Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein was reduced through cleavage. Benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone a caspase-3 inhibitor, blocked the cleavage of FLIP(S) and caspase-3 activation. Overexpression of FLIP(S) protected cells from apoptotic death and FLIP(S) cleavage during treatment with TRAIL in combination with cisplatin. CONCLUSIONS: These results suggest that caspase-3 is responsible for FLIP(S) cleavage, and the cleavage of FLIP(S) is one of facilitating factors for TRAIL-induced apoptotic death. 相似文献
9.
10.
11.
Role of tumor necrosis factor-related apoptosis-inducing ligand in interferon-induced apoptosis in human bladder cancer cells 总被引:7,自引:0,他引:7
Papageorgiou A Lashinger L Millikan R Grossman HB Benedict W Dinney CP McConkey DJ 《Cancer research》2004,64(24):8973-8979
Immunomodulators such as Bacillus Calmette-Guerin and interferon are clinically active in transitional cell carcinoma of the bladder, but their mechanisms of action remain unclear. Here we investigated the effects of IFNalpha on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and apoptosis in a panel of 20 human bladder cancer cell lines. Six (30%) displayed significant DNA fragmentation in response to increasing concentrations of IFNalpha (10-100,000 units/mL). In these lines IFNalpha induced early activation of caspase-8, and DNA fragmentation was blocked by a caspase-8-selective inhibitor (IETDfmk), consistent with the involvement of death receptor(s) in cell death. IFNalpha stimulated marked increases in TRAIL mRNA and protein in the majority of IFN-sensitive and IFN-resistant cell lines. A blocking anti-TRAIL antibody significantly inhibited IFN-induced DNA fragmentation in four of six IFN-sensitive cell lines, confirming that TRAIL played a direct role in cell death. Bortezomib (PS-341, Velcade), a potent TRAIL-sensitizing agent, increased sensitivity to IFNalpha in two of the IFN-resistant cell lines that produced large amounts of TRAIL in response to IFN treatment. Our data show that IFN-induced apoptosis in bladder cancer cells frequently involves autocrine TRAIL production. Combination therapy strategies aimed at overcoming TRAIL resistance may be very effective in restoring IFN sensitivity in a subset of human bladder tumors. 相似文献
12.
Sensitization of human glioblastomas to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by NF-kappaB inhibitors 总被引:1,自引:0,他引:1
Kasuga C Ebata T Kayagaki N Yagita H Hishii M Arai H Sato K Okumura K 《Cancer science》2004,95(10):840-844
Glioblastoma is the most malignant form of primary brain tumor in adults, with no effective therapy and a low survival rate. TRAIL is a member of the TNF family, which selectively induces apoptosis in certain neoplastic cells, but not normal cells. In this study, we investigated the sensitivity of 7 human glioblastoma cell lines to TRAIL and the expression in them of TRAIL receptors. TRAIL exhibited significant cytotoxicity in 5 of 7 glioma cell lines. These glioblastoma cell lines expressed TRAIL-R2, but not TRAIL-R1, R3, or R4. However, no correlation was observed between the TRAIL sensitivity and the TRAIL-R2 expression level, suggesting that there is an additional determinant of TRAIL sensitivity. Treatments with NF-kappaB inhibitors, such as LLnL, MG132, and SN50, significantly increased the sensitivity of glioma cells to TRAIL. These results suggested that activation of NF-kappaB is a protective mechanism against TRAIL-induced cell death in some glioma cells, and thus NF-kappaB inhibitors may be useful to improve the clinical treatment of glioblastoma with TRAIL. 相似文献
13.
alpha-Fetoprotein shields hepatocellular carcinoma cells from apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand 总被引:1,自引:0,他引:1
The interference of alpha-fetoprotein (AFP) with the apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in Bel 7402 cells was investigated in the current study. The results showed a moderate degree of drug-resistance of Bel 7402 cells to TRAIL. The caspase-3 cascade was the main pathway involved in TRAIL-induced apoptosis, which was virtually abolished in the presence of AFP. TRAIL together with antibody against AFP was able to accelerate the death of tumor cells. This study suggests the possibility a therapeutic strategy for improving clinical treatment of liver tumor with TRAIL could be effected through antagonizing the shelter effect of AFP. 相似文献
14.
Alberto Ballestrero Alessio Nencioni Davide Boy Ilaria Rocco Anna Garuti Giuseppe Sandro Mela Luk Van Parijs Peter Brossart Sebastian Wesselborg Franco Patrone 《Clinical cancer research》2004,10(4):1463-1470
PURPOSE: Overexpression of antiapoptotic Bcl-2 family members has recently been related to resistance to chemo/radiotherapy in several human malignancies, particularly lymphomas. Hence, innovative approaches bypassing this resistance mechanism are required in the therapeutic approach. This study evaluated whether chemoresistance associated with Bcl-2 and Bcl-x(L) overexpression would be overcome by activating the death receptor pathway by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in the Jurkat cell model EXPERIMENTAL DESIGN: We made use of genetically modified Jurkat cells to evaluate the effect of Bcl-2 or Bcl-x(L) overexpression on the cytotoxic effect produced by the anticancer drugs doxorubicin, etoposide, and oxaliplatin and TRAIL. Caspase activation was detected by cleavage of caspase-8 and -3. The mitochondrial transmambrane potential was assessed by staining with DiOC(6) and flow cytometry. Caspase activity was blocked by the broad-spectrum caspase inhibitor zVAD-fmk. RESULTS: Bcl-2 and Bcl-x(L) overexpression but not lack of caspase-8 protects the Jurkat cells from the anticancer drug-induced cytolysis. However, Bcl-2/Bcl-x(L) Jurkat cells retained some susceptibility to TRAIL-induced cytolysis. A highly synergistic cytotoxic effect of the combination of TRAIL with any of the antiblastic used in this study was detected in the chemoresistant cells. This effect was associated with mitochondrial disassemblage and dependent on caspase activation CONCLUSIONS: The combination of TRAIL with conventional anticancer drugs may prove to be useful in the treatment of antiapoptotic Bcl-2 family proteins-expressing malignancies. 相似文献
15.
Sonnemann J Gekeler V Sagrauske A Müller C Hofmann HP Beck JF 《International journal of oncology》2004,25(4):1171-1181
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is cytotoxic to the majority of cancer cells while sparing most normal cells. However, different prostate carcinoma cell lines respond with different sensitivities to TRAIL, urging us to disclose the mechanisms that determine TRAIL sensitivity in prostate cancer cells, i.e. to identify and validate target molecules. In this report, we show that down-regulation ('knockdown') of Bcl-xL, but not Bcl-2, markedly amplifies TRAIL-induced apoptosis in PC-3 prostate carcinoma cells. The knockdown was accomplished by second-generation chimeric antisense oligonucleotides: Bcl-2 and Bcl-xL levels were strongly and reproducibly reduced, as revealed by real-time RT-PCR and Western blot analyses. Knockdown of Bcl-xL and administration of TRAIL significantly synergized in dissipation of mitochondrial membrane potential, release of cytochrome c, activation of caspase-9 and -3 and, consequently, apoptotic cell death. Knockdown of Bcl-2 did not affect any of these activities. We conclude that that Bcl-xL represents a promising target to improve cancer therapy by potentiating TRAIL's cytotoxic effects. 相似文献
16.
Regulation of tumor necrosis factor-related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes 总被引:23,自引:0,他引:23
Leverkus M Neumann M Mengling T Rauch CT Bröcker EB Krammer PH Walczak H 《Cancer research》2000,60(3):553-559
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to exert potent cytotoxic activity against many tumor cell lines but not against normal cells. It has been hypothesized that this difference in TRAIL sensitivity between normal and transformed cells might be due to the expression of the non-death-inducing TRAIL receptors (TRAIL-R) TRAIL-R3 and TRAIL-R4, presumably by competition for limited amounts of TRAIL. To assess the regulation of resistance versus sensitivity to TRAIL in primary as well as transformed keratinocytes, we examined TRAIL sensitivity, TRAIL receptor expression, and intracellular signaling events induced by TRAIL. Although TRAIL induced apoptosis in primary as well as transformed keratinocytes, a marked difference in sensitivity could be observed with primary keratinocytes (PK) being 5-fold less sensitive to TRAIL than transformed keratinocytes (TK). Yet both cell types exhibited similar TRAIL receptor surface expression, suggesting that expression of TRAIL-R3 and TRAIL-R4 may not be the main regulator of sensitivity to TRAIL. Biochemical analysis of the signaling events induced by TRAIL revealed that PK could be sensitized for TRAIL and, similarly, for TRAIL-R1- and TRAIL-R2-specific apoptosis by pretreatment of the cells with cycloheximide (CHX). This sensitization concomitantly resulted in processing of caspase-8, which did not occur in TRAIL-resistant PK. These data indicate that an early block of TRAIL-induced apoptosis was present in PK compared with TK or PK treated with CHX. Interestingly, cellular FLICE inhibitory protein (cFLIP) levels, high in PK and low in TK and several other squamous cell carcinoma cell lines, decreased rapidly after treatment of PK with CHX, correlating with the increase in TRAIL sensitivity and caspase-8 processing. Furthermore, ectopic expression of cFLIP long (cFLIP(L)) in TK by transfection with a cFLIP(L) expression vector resulted in resistance to TRAIL-mediated apoptosis of these cells. Thus, our results demonstrate that TRAIL sensitivity in PK is primarily regulated at the intracellular level rather than at the receptor level. 相似文献
17.
18.
Hyer ML Croxton R Krajewska M Krajewski S Kress CL Lu M Suh N Sporn MB Cryns VL Zapata JM Reed JC 《Cancer research》2005,65(11):4799-4808
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) has been shown to induce apoptosis specifically in cancer cells while sparing normal tissues. Unfortunately not all cancer cells respond to TRAIL; therefore, TRAIL sensitizing agents are currently being explored. We have identified synthetic triterpenoids, including 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and its derivative 1-(2-cyano-3,12-dioxooleana-1,9-dien-28-oyl) imidazole (CDDO-Im), which sensitize TRAIL-resistant cancer cells to TRAIL-mediated apoptosis. Here we show that TRAIL-treated T47D and MDA-MB-468 breast cancer cells fail to initiate detectable caspase-8 processing and, consequently, do not initiate TRAIL-mediated apoptosis. Concomitant treatment with CDDO or CDDO-Im reverses the TRAIL-resistant phenotype, promoting robust caspase-8 processing and induction of TRAIL-mediated apoptosis in vitro. The combination of triterpenoids and monoclonal anti-TRAIL receptor-1 (DR4) antibody also induces apoptosis of breast cancer cells in vitro. From a mechanistic standpoint, we show that CDDO and CDDO-Im down-regulate the antiapoptotic protein c-FLIP(L), and up-regulate cell surface TRAIL receptors DR4 and DR5. CDDO and CDDO-Im, when used in combination with TRAIL, have no adverse affect on cultured normal human mammary epithelial cells. Moreover, CDDO-Im and TRAIL are well tolerated in mice and the combination of CDDO-Im and TRAIL reduces tumor burden in vivo in an MDA-MB-468 tumor xenograft model. These data suggest that CDDO and CDDO-Im may be useful for selectively reversing the TRAIL-resistant phenotype in cancer but not normal cells. 相似文献
19.
Adenovirus-mediated gene transfer of caspase-8 sensitizes human adenocarcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand 总被引:2,自引:0,他引:2
Resistance to apoptosis has been implicated in the poor response of cancer cells to various anti-tumor agents. Caspase-8 is a family member of executioner caspases associated with tumor necrosis factor (TNF) family death receptors-mediated apoptotic signaling cascade. In this study, to specify caspase-8-mediated apoptotic activity, we examined the anti-tumor effect of adenoviral vector expressing caspase-8 (Adv-caspase-8) in combination with TNF-related apoptosis-inducing ligand (TRAIL) which induces specifically caspase-8 activation. First, we demonstrated that expression procaspase-8 is related to apoptosis sensitivity to TRAIL in pancreatic and colonic cancer cells. In human pancreatic cancer cell line Panc1 which demonstrates low expression of procaspase-8, Adv-caspase-8 transfection strongly augmented TRAIL-induced apoptosis. Adv-caspase-8 similarly enhanced the susceptibility of human colonic cancer cell line Colo320DM to TRAIL. These results suggest that Adv-caspase-8 may be a good combination partner of TRAIL and enables TRAIL to be a more potent anticancer agent in a wide range of adenocarcinoma cells which demonstrate low expression of caspase-8. 相似文献
20.
Thyroid carcinoma cells are resistant to FAS-mediated apoptosis but sensitive to tumor necrosis factor-related apoptosis-inducing ligand 总被引:10,自引:0,他引:10
Mitsiades N Poulaki V Tseleni-Balafouta S Koutras DA Stamenkovic I 《Cancer research》2000,60(15):4122-4129
Fas (APO-1/CD95) is a transmembrane protein of the tumor necrosis factor (TNF)/nerve growth factor receptor superfamily that induces apoptosis in susceptible normal and neoplastic cells upon cross-linking by its ligand (FasL). TNF-related apoptosis-inducing ligand (TRAIL) is a more recently identified member of the TNF superfamily that has been shown to selectively kill neoplastic cells by engaging two cell-surface receptors, DR4 and DR5. Two additional TRAIL receptors (DcR1 and DcR2) do not transmit an apoptotic signal and have been proposed to confer protection from TRAIL-induced apoptosis. We addressed the expression of Fas, DR4, and DR5 in thyroid carcinoma cell lines and in 31 thyroid carcinoma specimens by Western blot analysis and immunohistochemistry, respectively, and tested the sensitivity of thyroid carcinoma cell lines to Fas- and TRAIL-induced apoptosis. Fas was found to be expressed in most thyroid carcinoma cell lines and tissue specimens. Although cross-linking of Fas did not induce apoptosis in thyroid carcinoma cell lines, Fas-mediated apoptosis did occur in the presence of the protein synthesis inhibitor cycloheximide, suggesting the presence of a short-lived inhibitor of the Fas pathway in these cells. Cross-linking of Fas failed to induce recruitment and activation of caspase 8, whereas transfection of a constitutively active caspase 8 construct effectively killed the SW579 papillary carcinoma cell line, arguing that the action of the putative inhibitor occurs upstream of caspase 8. By contrast, recombinant TRAIL induced apoptosis in 10 of 12 thyroid carcinoma cell lines tested, by activating caspase-10 at the receptor level and triggering a caspase-mediated apoptotic cascade. Resistance to TRAIL did not correlate with DcR1 or DcR2 protein expression and was overcome by protein synthesis inhibition in 50% of the resistant cell lines. One medullary carcinoma cell line was resistant to Fas-and TRAIL-induced apoptosis, even in the presence of cycloheximide, and to transfection of constitutively active caspase-8, suggesting a different regulation of the apoptotic pathway. Our observations indicate that TRAIL effectively kills carcinomas that originate from the follicular epithelium of the thyroid gland, by inducing caspase-mediated apoptosis, and may provide a potentially potent therapeutic reagent against thyroid cancer. 相似文献