首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We established primary cultures of human pheochromocytoma chromaffin cells. We then tried to find what mechanism of their secretory apparatus could be altered to produce the massive release of catecholamines into the circulation and the subsequent hypertensive crisis observed in patients suffering this type of tumor. Their whole-cell Ca2+ channel currents could be pharmacologically separated into components similar to those found in normal human adrenal chromaffin cells: 20% L-type, 30% N-type, and 50% P/Q-type Ca2+ channels. However, modulation of the channels by exogenous or endogenous ATP and opioids, via a G-protein membrane-delimited pathway, was deeply altered; some cells having no modulation or very little modulation alternated with others having normal modulation. This may be the cause of the uncontrolled secretory response, measured amperometrically at the single-cell level. Some cells secreted for long time periods and were insensitive to nifedipine (L-type channel blocker) or to omega-conotoxin MVIIC (N/P/Q-type channel blocker), while others were highly sensitive to nifedipine and partially sensitive to omega-conotoxin MVIIC. Alteration of the autocrine/paracrine modulation of Ca2+ channels may lead to indiscriminate Ca2+ entry and exacerbate catecholamine release responses in human pheochromocytoma cells.  相似文献   

2.
Membrane depolarization evoked by 25-40 mM K+ elicited an immediate increase of somatic and neuritic [Ca2+]i in cultured dopaminergic neurons as measured by digital fluorescence microscope imaging. The rise of neuritic [Ca2+]i was inhibited by N-type but not L-type Ca2+ channel blockers, while the rise of somatic [Ca2+]i was prevented by both L- and N-type Ca2+ channel blockers. Similarly, depolarization-induced [3H]dopamine release was selectively attenuated by N-type Ca2+ channel blockers. The present results suggest that [3H]dopamine release from mesencephalic neuronal cell cultures relates to a Ca(2+)-dependent mechanism regulated by N-type channels located in the vicinity of the exocytotic sites within neuritic processes.  相似文献   

3.
4.
Presynaptic GABA(B) receptor activation inhibits glutamate release from retinohypothalamic tract (RHT) terminals in the suprachiasmatic nucleus (SCN). Voltage-clamp whole cell recordings from rat SCN neurons and optical recordings of Ca2+-sensitive fluorescent probes within RHT terminals were used to examine GABA(B)-receptor modulation of RHT transmission. Baclofen inhibited evoked excitatory postsynaptic currents (EPSCs) in a concentration-dependent manner equally during the day and night. Blockers of N-, P/Q-, T-, and R-type voltage-dependent Ca2+ channels, but not L-type, reduced the EPSC amplitude by 66, 36, 32, and 18% of control, respectively. Joint application of multiple Ca2+ channel blockers inhibited the EPSCs less than that predicted, consistent with a model in which multiple Ca2+ channels overlap in the regulation of transmitter release. Presynaptic inhibition of EPSCs by baclofen was occluded by omega-conotoxin GVIA (< or = 72%), mibefradil (< or = 52%), and omega-agatoxin TK (< or = 15%), but not by SNX-482 or nimodipine. Baclofen reduced both evoked presynaptic Ca2+ influx and resting Ca2+ concentration in RHT terminals. Tertiapin did not alter the evoked EPSC and baclofen-induced inhibition, indicating that baclofen does not inhibit glutamate release by activation of Kir3 channels. Neither Ba2+ nor high extracellular K+ modified the baclofen-induced inhibition. 4-Aminopyridine (4-AP) significantly increased the EPSC amplitude and the charge transfer, and dramatically reduced the baclofen effect. These data indicate that baclofen inhibits glutamate release from RHT terminals by blocking N-, T-, and P/Q-type Ca2+ channels, and possibly by activation of 4-AP-sensitive K+ channels, but not by inhibition of R- and L-type Ca2+ channels or by Kir3 channel activation.  相似文献   

5.
We have characterized a recently established mouse pheochromocytoma cell line (MPC 9/3L) as a useful model for studying neurotransmitter release and neuroendocrine secretion. MPC 9/3L cells express many of the proteins involved in Ca2+-dependent neurotransmitter release but do not express functional endogenous Ca2+-influx pathways. When transfected with recombinant N-type Ca2+ channel subunits alpha1B,beta2a,alpha2delta (Cav2.2), the cells expressed robust Ca2+ currents that were blocked by omega-conotoxin GVIA. Activation of N-type Ca2+ currents caused rapid increases in membrane capacitance of the MPC 9/3L cells, indicating that the Ca2+ influx was linked to exocytosis of vesicles similar to that reported in chromaffin or PC12 cells. Synaptic protein interaction (synprint) sites, like those found on N-type Ca2+ channels, are thought to link voltage-dependent Ca2+ channels to SNARE proteins involved in synaptic transmission. Interestingly, MPC 9/3L cells transfected with either LC-type (alpha1C, beta2a, alpha2delta, Cav1.2) or T-type (alpha1G, beta2a, alpha2delta, Cav3.1) Ca2+ channel subunits, which do not express synprint sites, expressed appropriate Ca2+ currents that supported rapid exocytosis. Thus MPC 9/3L cells provide a unique model for the study of exocytosis in cells expressing specific Ca2+ channels of defined subunit composition without complicating contributions from endogenous channels. This model may help to distinguish the roles that different Ca2+ channels play in Ca2+-dependent secretion.  相似文献   

6.
The present study examined brains from 6, 17, and 32 month old male (F344x BN)F1 rats to determine whether there was any age-related change in the distribution or density of L-type and N-type Ca2+ channels in hippocampus, entorhinal cortex, and neocortex, areas commonly involved in the generation of epileptic seizures. The L-type channel antagonist PN200-110 and the N-type channel antagonist omega-conotoxin GVIA were used to determine specific binding densities and the autoradiographic distribution of ligand binding was quantified by computer-assisted densitometry. One-way ANOVA noted a significant variance in the mean value of binding density between different age groups only in neocortex laminae IV-VI for [(3)H]PN200-110 binding (P < 0.05). Post-hoc testing indicated that the mean value of the 17 month old group was significantly less than those of the 6 and 32 month old groups (P < 0.05). These results indicate no overall age-related change in the number of L-type and N-type Ca2+ channels in brain areas frequently involved in seizure activity and suggest that age-related changes in brain Ca2+ physiology may be associated with changes in voltage-gated Ca2+ channel function rather than channel number.  相似文献   

7.
In this study, we explored the pharmacological and biophysical properties of voltage-activated Ca(2+) channels in human chromaffin cells using the perforated-patch configuration of the patch-clamp technique. According to their pharmacological sensitivity to Ca(2+) channel blockers, cells could be sorted into two groups of similar size showing the predominance of either N- or P/Q-type Ca(2+) channels. R-type Ca(2+) channels, blocked by 77% with 20 muM Cd(2+) and not affected by 50 muM Ni(2+), were detected for the first time in human chromaffin cells. Immunocytochemical experiments revealed an even distribution of alpha (1E) Ca(2+) channels in these cells. With regard to their biophysical properties, L- and R-type channels were activated at membrane potentials that were 15-20 mV more negative than P/Q- and N-type channels. Activation time constants showed no variation with voltage for the L-type channels, decreased with increasing potentials for the R- and P/Q-type channels, and displayed a bell shape with a maximum at 0 mV for the N-type channels. R-type channels were also the most inactivated channels. We thus show here that human chromaffin cells possess all the Ca(2+) channel types described in neurons, L, N, P/Q, and R channels, but the relative contributions of N and P/Q channels differ among cells. Given that N- and P/Q-type Ca(2+) channel types can be differentially modulated, these findings suggest the possibility of cell-specific regulation in human chromaffin cells.  相似文献   

8.
Effects of L-type Ca2+ channel blockers on intracellular Ca2+ concentration ([Ca2+]i) changes evoked by the stimulations which cause endothelium-dependent relaxation were examined in freshly isolated pig coronary endothelial cells using fura-2 fluorescent analysis. Substance P and bradykinin produced endothelium-dependent relaxations of pig coronary arteries. The relaxations were inhibited significantly but not completely by N(omega)-nitro-L-arginine (L-NNA) or aspirin, suggesting that nitric oxide (NO), prostacyclin (PGI2) and endothelium-derived hyperpolarizing factor (EDHF) were involved in the responses. Both substance P and bradykinin elevated coronary endothelial [Ca2+]i in a biphasic manner: An initial transient increase was observed within a minute, which was followed by the subsequent sustained increase declining with time. In the medium without Ca2+, substance P-induced elevation of [Ca2+]i was markedly reduced. L-type Ca2+ channel blockers (nicardipine, diltiazem and verapamil) did not affect substance P-induced increase in endothelial [Ca2+]i. In consistent with this finding, Bay k 8644 failed to increase [Ca2+]i in partially depolarized endothelial cells. In contrast, substance P-induced elevation of endothelial [Ca2+]i was suppressed in high K+ solutions. These findings indicate that: (1) Substance P and bradykinin relax pig coronary artery via production/release of NO, PGI2 and EDHF from the endothelium; (2) The synthesis and release of these endothelium-derived factors are accompanied by an increase in endothelial [Ca2+]i; (3) Activation of L-type Ca2+ channels is not involved in coronary endothelial elevation of [Ca2+]i responsible for the production/release of these endothelium-derived factors. L-type Ca2+ channel blockers seem to be advantageous in the application for the disorders of coronary circulation with respect to that they do not prevent endothelial function to produce/release of endogenous vasorelaxants.  相似文献   

9.
Glutamate is the major excitatory neurotransmitter in the CNS. The recent characterization of glutamate as a neurotransmitter in the enteric nervous system opened a new line of investigation concerning the role of glutamate in that system. The present study aimed to further characterize the enteric glutamate release and the calcium channels coupled to it. For this study the myenteric plexus-longitudinal muscle of guinea-pig ileum was stimulated with potassium chloride or with electrical pulses. The released glutamate was detected by spectrofluorimetry. Laser scanning confocal microscopy was used for analysis of immunolabeled enteric tissue for co-localization studies of calcium channels (N- and P/Q-type) and glutamate transporters (EAAC1).Here we report the effects of known Ca(2+)-channel blockers on glutamate release evoked by KCl-depolarization or electrical stimulation in the myenteric plexus. We find that N-type Ca(2+) channels control a major portion of evoked glutamate release from this system, with a very small contribution from L-type Ca(2+) channels. Moreover, alpha(1A)-like (P-type Ca(2+) channel) and alpha(1B)-like (N-type Ca(2+ )channel) immunoreactivity co-localized with glutamate transporters in the myenteric plexus. In addition, KCl-evoked or electrically stimulated glutamate release was sensitive to omega-agatoxin IVA, in a frequency-dependent manner, suggesting that P-type channels are also coupled to the release of glutamate. We, thus, conclude that both N-type and P-type Ca(2+) channels control most of the evoked glutamate release from the enteric nervous system, as also occurs in some parts of the CNS.  相似文献   

10.
Recent work has suggested a potential role for voltage-gated Ca(2+) channels in the pathophysiology of anoxic central nervous system white matter injury. To examine the relevance of these findings to neurotrauma, we conducted electrophysiological studies with inorganic Ca(2+) channels blockers and L- and N-subtype-specific calcium channel antagonists in an in vitro model of spinal cord injury. Confocal immunohistochemistry was used to examine for localization of L- and N-type calcium channels in spinal cord white matter tracts. A 30-mm length of dorsal column was isolated from the spinal cord of adult rats, pinned in an in vitro recording chamber and injured with a modified clip (2g closing force) for 15s. The functional integrity of the dorsal column was monitored electrophysiologically by quantitatively measuring the compound action potential at two points with glass microelectrodes. The compound action potential decreased to 71.4+/-2.0% of control (P<0. 05) after spinal cord injury. Removal of extracellular Ca(2+) promoted significantly greater recovery of compound action potential amplitude (86.3+/-7.6% of control; P< 0.05) after injury. Partial blockade of voltage-gated Ca(2+) channels with cobalt (20 microM) or cadmium (200 microM) conferred improvement in compound action potential amplitude. Application of the L-type Ca(2+) channel blockers diltiazem (50 microM) or verapamil (90 microM), and the N-type antagonist omega-conotoxin GVIA (1 microM), significantly enhanced the recovery of compound action potential amplitude postinjury. Co-application of the L-type antagonist diltiazem with the N-type blocker omega-conotoxin GVIA showed significantly greater (P<0.05) improvement in compound action potential amplitude than application of either drug alone. Confocal immunohistochemistry with double labelling for glial fibrillary acidic protein, GalC and NF200 demonstrated L- and N-type Ca(2+) channels on astrocytes and oligodendrocytes, but not axons, in spinal cord white matter.In conclusion, the injurious effects of Ca(2+) in traumatic central nervous system white matter injury appear to be partially mediated by voltage-gated Ca(2+) channels. The presence of L- and N-type Ca(2+) channels on periaxonal astrocytes and oligodendrocytes suggests a role for these cells in post-traumatic axonal conduction failure.  相似文献   

11.
Particular types of amacrine cells of the vertebrate retina show oscillatory membrane potentials (OMPs) in response to light stimulation. Historically it has been thought the oscillations arose as a result of circuit properties. In a previous study we found that in some amacrine cells, the ability to oscillate was an intrinsic property of the cell. Here we characterized the ionic mechanisms responsible for the oscillations in wide-field amacrine cells (WFACs) in an effort to better understand the functional properties of the cell. The OMPs were found to be calcium (Ca2+) dependent; blocking voltage-gated Ca2+ channels eliminated the oscillations, whereas elevating extracellular Ca2+ enhanced them. Strong intracellular Ca2+ buffering (10 mM EGTA or bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid) eliminated any attenuation in the OMPs as well as a Ca2+-dependent inactivation of the voltage-gated Ca2+ channels. Pharmacological and immunohistochemical characterization revealed that WFACs express L- and N-type voltage-sensitive Ca2+ channels. Block of the L-type channels eliminated the OMPs, but omega-conotoxin GVIA did not, suggesting a different function for the N-type channels. The L-type channels in WFACs are functionally coupled to a set of calcium-dependent potassium (K(Ca)) channels to mediate OMPs. The initiation of OMPs depended on penitrem-A-sensitive (BK) K(Ca) channels, whereas their duration is under apamin-sensitive (SK) K(Ca) channel control. The Ca2+ current is essential to evoke the OMPs and triggering the K(Ca) currents, which here act as resonant currents, enhances the resonance as an amplifying current, influences the filtering characteristics of the cell membrane, and attenuates the OMPs via CDI of the L-type Ca2+ channel.  相似文献   

12.
Selective activation of neuronal functions by Ca(2+) is determined by the kinetic profile of the intracellular calcium ([Ca(2+)](i)) signal in addition to its amplitude. Concurrent electrophysiology and ratiometric calcium imaging were used to measure transmembrane Ca(2+) current and the resulting rise and decay of [Ca(2+)](i) in differentiated pheochromocytoma (PC12) cells. We show that equal amounts of Ca(2+) entering through N-type and L-type voltage-gated Ca(2+) channels result in significantly different [Ca(2+)](i) temporal profiles. When the contribution of N-type channels was reduced by omega-conotoxin MVIIA treatment, a faster [Ca(2+)](i) decay was observed. Conversely, when the contribution of L-type channels was reduced by nifedipine treatment, [Ca(2+)](i) decay was slower. Potentiating L-type current with BayK8644, or inactivating N-type channels by shifting the holding potential to -40 mV, both resulted in a more rapid decay of [Ca(2+)](i). Channel-specific differences in [Ca(2+)](i) decay rates were abolished by depleting intracellular Ca(2+) stores with thapsigargin or by blocking ryanodine receptors with ryanodine, suggesting the involvement of Ca(2+)-induced Ca(2+) release (CICR). Further support for involvement of CICR is provided by the demonstration that caffeine slowed [Ca(2+)](i) decay while ryanodine at high concentrations increased the rate of [Ca(2+)](i) decay. We conclude that Ca(2+) entering through N-type channels is amplified by ryanodine receptor mediated CICR. Channel-specific activation of CICR provides a mechanism whereby the kinetics of intracellular Ca(2+) leaves a fingerprint of the route of entry, potentially encoding the selective activation of a subset of Ca(2+)-sensitive processes within the neuron.  相似文献   

13.
Previously reported changes in the gross sound-evoked cochlear potentials after intracochlear perfusion of nimodipine suggest that dihydropyridine-sensitive Ca2+ channels (L-type) control the sound-evoked release of transmitter from the inner hair cells of the mammalian cochlea. In the present study, we combined recording of the action potentials of single primary auditory afferent neurons with intracochlear perfusion to further investigate the role of voltage-gated Ca2+ channels at this synapse. Spontaneous action potential firing rates were depressed by the L-type channel blocker nimodipine, but were elevated by S(-) BAY K8644, an L-type channel agonist. Sound-evoked responses of single primary afferents were depressed by nimodipine in a manner that was consistent with a block at the inner hair cell-afferent dendrite synapse. Perfusions with solutions containing the N-type channel blocker conotoxin GVIA did not differ in their effects from control artificial perilymph perfusions. The results extend the conclusions of the earlier study by showing that L-type Ca2+ channels are primarily responsible for controlling both spontaneous and sound-evoked transmitter release from inner hair cells. In addition it was found that afferent neurons with widely different spontaneous firing rates were all sensitive to nimodipine and to BAY K8644, suggesting that the multiple synaptic outputs of each inner hair cell are under the control of only one major type of Ca2+ channel.  相似文献   

14.
The effects of calcium channel blockers on potassium-induced transmitter release were studied in thin slices of cerebellum from neonatal rats using whole-cell patch clamp methods. Miniature inhibitory postsynaptic currents (mIPSCs) mediated by gamma-aminobutyric acid (GABA) were recorded from deep cerebellar nuclear neurones in the presence of tetrodotoxin. The frequency of mIPSCs was reproducibly increased by a brief application of high-potassium solution. In the presence of the L-type Ca2+ channel blocker nicardipine (10 microM), the potassium-induced increase in mIPSC frequency was suppressed by 49%. Neither the mean amplitude nor the time course of mIPSCs was affected by the blocker. The N-type Ca2+ channel blocker omega-conotoxin GVIA (omega-CgTX, 3 microM) had no effect on the frequency of potassium-induced mIPSCs. The P-type Ca2+ channel blocker omega-Aga-IVA (200 nM) suppressed the potassium-induced increase in mIPSC frequency by 83% without affecting the mean amplitude or time course of mIPSCs. Comparing these data with previous studies of neurally evoked transmission, it is concluded that the Ca2+ channel subtypes responsible for potassium-induced transmitter release may be different from those mediating fast synaptic transmission.  相似文献   

15.
Recent studies have shown that cholinergic amacrine cells possess unique membrane properties. However, voltage-gated ionic channels in cholinergic amacrine cells have not been characterized systematically. In this study, using electrophysiological and immunohistochemical techniques, we examined voltage-gated ionic channels in a transgenic mouse line the cholinergic amacrine cells of which were selectively labeled with green fluorescent protein (GFP). Voltage-gated K(+) currents contained a 4-aminopyridine-sensitive current (A current) and a tetraethylammonium-sensitive current (delayed rectifier K(+) current). Voltage-gated Ca(2+) currents contained a omega-conotoxin GVIA-sensitive component (N-type) and a omega-Aga IVA-sensitive component (P/Q-type). Tetrodotoxin-sensitive Na(+) currents and dihydropyridine-sensitive Ca(2+) currents (L-type) were not observed. Immunoreactivity for the Na channel subunit (Pan Nav), the K channel subunits (the A-current subunits [Kv. 3.3 and Kv 3.4]) and the Ca channel subunits (alpha1(A) [P/Q-type], alpha1(B) [N-type] and alpha1(C) [L-type]) was detected in the membrane fraction of the mouse retina by Western blot analysis. Immunoreactivity for the Kv. 3.3, Kv 3.4, alpha1(A) [P/Q-type], and alpha1(B) [N-type] was colocalized with the GFP signals. Immunoreactivity for alpha1(C) [L-type] was not colocalized with the GFP signals. Immunoreactivity for Pan Nav did not exist on the membrane surface of the GFP-positive cells. Our findings indicate that signal propagation in cholinergic amacrine cells is mediated by a combination of two types of voltage-gated K(+) currents (the A current and the delayed rectifier K(+) current) and two types of voltage-gated Ca(2+) currents (the P/Q-type and the N-type) in the mouse retina.  相似文献   

16.
Irregular functions in Ca2+ channels are intimately involved in many aspects of cardiovascular diseases. We can obtain a wide variety of L-type Ca2+ channel antagonists to treat hypertension and angina pectoris. Dihydropyridines (DHPs) have, first of all, been extensively developed due to their high selectivity for L-type Ca2+ channel and safety in pharmacological aspects. In contrast, many lines of evidence suggest that clinical efficacy of those DHPs are limited and undesirable effects are sometimes observed because of the specific distribution of L-type Ca2+ channels. As well as the L-type, peripherally distributed N-type Ca2+ channel plays a key role in cardiovascular regulation through autonomic nervous system. Recently, we developed a unique DHP derivative, cilnidipine (FRC8653) which has a dual antagonistic action on both L-type and N-type Ca2+ channels. Our recent studies with this DHP have made it clear that the N-type Ca2+ channel is also a new therapeutic target in cardiovascular diseases. We review the recent advances in pharmacology of the N-type Ca2+ channel and therapeutic implications of their antagonists.  相似文献   

17.
The pharmacological properties of presynaptic calcium (Ca) channels on rat hippocampal mossy fiber synaptosomes were characterized by determining the inhibitory potencies for various classes of Ca antagonists on depolarization-induced Ca mobilization and the release of dynorphin A(1-8)-like immunoreactivity (Dyn-LI). Flunarizine and cinnarizine were the most potent inhibitors of both parameters (IC50 values less than 10(-5) M). Gadolinium and omega-conotoxin (omega-CgTx) were also effective inhibitors of Dyn-LI release (IC50 values less than 3 x 10(-5) M), but omega-CgTx only partially reduced the level of cytosolic free Ca. The release of Dyn-LI was relatively insensitive to both the L-type (dihydropyridines, verapamil and diltiazem) and T-type (amiloride and phenytoin) channel blockers. It appears that presynaptic N-type Ca channels make the most substantial contribution to the Ca influx required for the exocytosis of Dyn-LI from hippocampal mossy fiber nerve endings.  相似文献   

18.
BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. Ca2+- and voltage-dependent BK-type K+ channels contribute to action potential repolarization in rat adrenal chromaffin cells. Here we characterize the Ca2+ currents expressed in these cells and identify the Ca2+ channel subtypes that gate the activation of BK channels during Ca2+ influx. Selective Ca2+ channel antagonists indicate the presence of at least four types of high-voltage-gated Ca2+ channels: L-, N-, P, and Q type. Mean amplitudes of the L-, N-, P-, and Q-type Ca2+ currents were 33, 21, 12, and 24% of the total Ca2+ current, respectively. Five-millisecond Ca2+ influx steps to 0 mV were employed to assay the contribution of Ca2+ influx through these Ca2+ channels to the activation of BK current. Blockade of L-type Ca2+ channels by 5 microM nifedipine or Q-type Ca2+ channels by 2 microM Aga IVA reduced BK current activation by 77 and 42%, respectively. In contrast, blockade of N-type Ca2+ channels by brief applications of 1-2 microM CnTC MVIIC or P-type Ca2+ channels by 50-100 nM Aga IVA reduced BK current activation by only 11 and 12%, respectively. Selective blockade of L- and Q-type Ca2+ channels also eliminated activation of BK current during action potentials, whereas almost no effects were seen by the selective blockade of N- or P-type Ca2+ channels. Finally, the L-type Ca2+ channel agonist Bay K 8644 promoted activation of BK current by brief Ca2+ influx steps by more than twofold. These data show that, despite the presence of at least four types of Ca2+ channels in rat chromaffin cells, BK channel activation in rat chromaffin cells is predominantly coupled to Ca2+ influx through L- and Q-type Ca2+ channels.  相似文献   

19.
In isolated rat hippocampal neurons, we observed 4 voltage- and extracellular Ca2+-dependent conductances; i.e. the T-, N- and L-type Ca2+ currents and tetrodotoxin-sensitive transient Ca2+ current. Intracellular perfusion with F- suppressed irreversibly the L-type Ca2+ current and partially the N-type one. omega-Conotoxin inhibited selectively the L-type Ca2+ current. Amiloride reduced strongly the T-type Ca2+ current without affecting the L-type one. Gd3+, nicardipine, phenytoin and octanol had no specific inhibition on the T-, N- and L-type Ca2+ currents. Thereby, the pharmacological property of mammalian CNS neurons for Ca2+ channel blockers considerably differs from that in the peripheral and cultured cells.  相似文献   

20.
Voltage-gated Ca2+ channels are crucial to the control of Ca2+ entry in neurosecretory cells. In the chromaffin cells of adrenal medulla, paracrinally or autocrinally released neurotransmitters induce profound changes in Ca2+ channel gating and Ca2+-dependent events controlling catecholamine secretion and cell activity. The generally held view of these processes is that neurotransmitter-induced modulation of the most widely expressed Ca2+ channels in these cells (N-, P/Q- and L-type) follows two distinct pathways: a direct membrane-delimited Gi/o-protein-induced inhibition of N- and P/Q-type and a remote cAMP-mediated facilitation of L-channels. Both actions depend on voltage, although with remarkably different molecular and kinetic aspects. Recent findings, however, challenge this simple scheme and suggest that L-channels do not require strong pre-pulses to be recruited or facilitated. They are available during normal depolarizations and may be tonically inhibited by Gi/o proteins activated by the released neurotransmitters. Like the N- and P/Q-channels, this autocrine modulation is localized to membrane microareas. Unlike N- and P/Q-channels, however, the inhibition of L-channels is largely independent of voltage and develops in parallel with cAMP-mediated potentiation of channel gating. As L-channels play a crucial role in the control of catecholamine release in chromaffin cells, the two opposite modulations mediated by Gi/o proteins and cAMP may represent an effective way to broaden the dynamic range of Ca2+ signals controlling exocytosis. Here, we review the basic features of this novel L-type channel inhibition comparing it to the well-established forms of L-channel potentiation and voltage-dependent facilitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号