首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perivascular epithelioid cell tumours (PEComas) are a family of tumours including classic angiomyolipoma, lymphangioleiomyomatosis, and clear epithelioid cell tumours reported under a variety of names such as epithelioid angiomyolipoma, pulmonary and extrapulmonary clear cell sugar tumour, and PEComa. Our previous comparative genomic hybridization study of PEComas demonstrated recurrent chromosomal aberrations including deletions on chromosome 16p, where the TSC2 gene is located. In this study, we focused on the alteration of chromosome 16p, including TSC2. We collected ten sporadic and two tuberous sclerosis complex-associated PEComas, as well as 14 sporadic classic hepatic and renal angiomyolipomas (AMLs) as controls. We used 16 microsatellite markers distributed along chromosome 16p to test for allelic imbalances on chromosome 16p and at TSC2, and two markers for TSC1. Furthermore, we carried out immunohistochemical staining for phospho-p706K, phospho-AKT, and phospho-S6 to evaluate the effect of TSC2 alterations on the mTOR signalling pathway. Loss of heterozygosity (LOH) was found in 11 PEComas and involved the region of the TSC2 locus in seven. Six classic angiomyolipomas had allelic changes at chromosome 16p. Microsatellite instability was detected in two PEComas. The incidence of genetic aberrations was significantly higher in the PEComa group. Only one PEComa showed LOH at the TSC1 locus. Eleven PEComas and 13 AMLs revealed elevated phospho-p70S6K accompanied by reduced phospho-AKT. Five PEComas and eight classic angiomyolipomas were positive for phospho-S6. The phosphorylation profile indicates functional activation of the mTOR pathway through a disrupted TSC1/2 complex. Our observations of frequent deletion of TSC2 and the mTOR signalling pathway provide evidence that the oncogenetic lineage of PEComa, as a distinct TSC2-linked neoplasm, is similar to that of angiomyolipoma.  相似文献   

2.
Lymphangioleiomyomatosis is a progressive lung disease characterized by a diffuse proliferation of pulmonary smooth muscle cells and cystic degeneration. Lymphangioleiomyomatosis can occur either independently of other disease or in association with tuberous sclerosis complex, a tumor-suppressor gene syndrome caused by mutations that inactivate either TSC1 or TSC2. TSC2 mutations and loss of heterozygosity have been identified in sporadic lymphangioleiomyomatosis-associated angiomyolipomas, thus implicating the TSC/Ras homolog-enriched in brain (Rheb)/mammalian target of Rapamycin (mTOR)/p70 S6 kinase signaling pathway in their pathogenesis. This study was undertaken to determine whether the mTOR/p70 S6 kinase signaling pathway is activated in lymphangioleiomyomatosis-associated angiomyolipomas lacking TSC1/TSC2 loss of heterozygosity. Phospho-ribosomal protein S6 (Ser235/236) immunohistochemistry was performed on five lymphangioleiomyomatosis-associated angiomyolipomas, two matched lymphangioleiomyomatosis pulmonary samples, and three sporadic angiomyolipomas. TSC1/TSC2 loss of heterozygosity was previously excluded in these angiomyolipomas. Moderate or strong phospho-ribosomal protein S6 immunoreactivity was found in all lymphangioleiomyomatosis-associated and sporadic angiomyolipomas, suggesting a high incidence of mTOR/p70 S6 kinase signaling pathway activation despite a lack of TSC1/TSC2 loss of heterozygosity. Focally positive phospho-S6 staining was also evident in both lymphangioleiomyomatosis pulmonary samples. We hypothesized that this S6 hyperphosphorylation could reflect mutational activation of Rheb or Rheb-like protein (RhebL1), Ras family members which directly activate mTOR. Mutational analysis performed on DNA from these eight angiomyolipomas plus five additional sporadic angiomyolipomas did not reveal mutations in exons 3 and 4 (homologous sites of Ras activating mutations) of either Rheb or RhebL1. These data suggest that activation of the Rheb/mTOR/p70 S6 kinase pathway is related to the pathogenesis of lymphangioleiomyomatosis-associated and sporadic angiomyolipomas lacking TSC1/TSC2 loss of heterozygosity. This high incidence of mTOR signaling pathway activation suggests that treatment with mTOR inhibitors, such as Rapamycin, may benefit patients with angiomyolipomas independent of the detection of TSC1/TSC2 loss of heterozygosity.  相似文献   

3.
PEComas: the past,the present and the future   总被引:4,自引:0,他引:4  
The perivascular epithelioid cell (PEC) is a cell type constantly present in a group of tumors called PEComas. PEC expresses myogenic and melanocytic markers, such as HMB45 and actin. Recently, recurrent chromosomal alterations have been demonstrated in PEC. At present, PEComa is a widely accepted entity. In the past 10 years, the use of this term has allowed to report and describe numerous cases permitting to start highlighting the biology of this group of lesions. PEComas are related to the genetic alterations of tuberous sclerosis complex (TSC), an autosomal dominant genetic disease due to losses of TSC1 (9q34) or TSC2 (16p13.3) genes which seem to have a role in the regulation of the Rheb/mTOR/p70S6K pathway. There are some open questions about PEComas regarding its histogenesis, the definition of epithelioid angiomyolipoma and the identification of the histological criteria of malignancy. An innovative therapeutic trial using rapamycin is under way for tumors occurring in TSC such as renal angiomyolipoma and lymphangioleiomyomatosis. Its success could provide the rationale for the use of the same drug in other lesions composed of PECs, especially in the malignant ones.  相似文献   

4.
Tuberous sclerosis (TSC) is a autosomal dominant genetic disorder caused by mutations in either TSC1 or TSC2, and characterized by benign hamartoma growth. We developed a murine model of Tsc1 disease by gene targeting. Tsc1 null embryos die at mid-gestation from a failure of liver development. Tsc1 heterozygotes develop kidney cystadenomas and liver hemangiomas at high frequency, but the incidence of kidney tumors is somewhat lower than in Tsc2 heterozygote mice. Liver hemangiomas were more common, more severe and caused higher mortality in female than in male Tsc1 heterozygotes. Tsc1 null embryo fibroblast lines have persistent phosphorylation of the p70S6K (S6K) and its substrate S6, that is sensitive to treatment with rapamycin, indicating constitutive activation of the mTOR-S6K pathway due to loss of the Tsc1 protein, hamartin. Hyperphosphorylation of S6 is also seen in kidney tumors in the heterozygote mice, suggesting that inhibition of this pathway may have benefit in control of TSC hamartomas.  相似文献   

5.
BackgroundFocal cortical dysplasia (FCD) is a localized cortical malformation and considerable morphological overlap exists between FCD IIB and neurological lesions associated with Tuberous sclerosis complex (TSC). Abnormal mTOR pathway secondary to somatic mTOR mutation and TSC gene mutation linked to PI3K/AKT/mTOR pathway have supported the hypothesis of common pathogenesis involved. Role of converging pathway, viz. Wnt/β-Catenin and mTOR is unknown in FCD. We aimed to analyse FCD IIB for TSC1/TSC2 mutations, immunoreactivity of hamartin, tuberin, mTOR and Wnt signalling cascades, and stem cell markers.Materials and methodsSixteen FCD IIB cases were retrieved along with 16 FCD IIA cases for comparison. Immunohistochemistry was performed for tuberin, hamartin, mTOR pathway markers, markers of stem cell phenotype, and Wnt pathway markers. Mutation analysis for TSC1 and TSC2 was performed by sequencing in 9 FCD cases.ResultsAll FCD cases showed preserved hamartin and tuberin immunoreactivity. Aberrant immunoreactivity of phospho-P70S6 kinase, S6 ribosomal, phospho-S6 ribosomal and Stat3 was noted in FCD IIB, with variable phospho-4E-BP1 (45%) and absent phospho-Stat3 expression. Immunoreactivity for phospho-P70S6 kinase (100%), S6 ribosomal protein (100%) and Stat3 (100%) was noted in FCD IIA, but not for phospho-S6 ribosomal, phospho-4E-BP1 and phospho-Stat3. c-Myc immunoreactivity was noted in all FCD cases. Nestin (81%) and Sox 2 (88%) stained balloon cells in FCD IIB (44%), while in FCD IIA cases were negative. All FCD cases were immunopositive for Wnt, but were negative for β-Catenin and cyclin-D1. TSC mutations were detected in two cases of FCD IIB.ConclusionAbnormal mTOR pathway activation exists in FCD IIB and IIA, however, shows differential immunoreactivity profile, indicating varying degrees of dysregulation. Labelling of neuronal stem cell markers in balloon cells suggests they are phenotypically immature. TSC1/2 mutation play role in the pathogenesis of FCD. Deep targeted sequencing is preferred diagnostic technique since conventional sanger sequencing often fails to detect low-allele frequency variants involved in mTOR/TSC pathway genes, commonly found in FCD.  相似文献   

6.
Inoki K  Li Y  Xu T  Guan KL 《Genes & development》2003,17(15):1829-1834
Tuberous sclerosis complex (TSC) is a genetic disease caused by mutation in either TSC1 or TSC2. The TSC1 and TSC2 gene products form a functional complex and inhibit phosphorylation of S6K and 4EBP1. These functions of TSC1/TSC2 are likely mediated by mTOR. Here we report that TSC2 is a GTPase-activating protein (GAP) toward Rheb, a Ras family GTPase. Rheb stimulates phosphorylation of S6K and 4EBP1. This function of Rheb is blocked by rapamycin and dominant-negative mTOR. Rheb stimulates the phosphorylation of mTOR and plays an essential role in regulation of S6K and 4EBP1 in response to nutrients and cellular energy status. Our data demonstrate that Rheb acts downstream of TSC1/TSC2 and upstream of mTOR to regulate cell growth.  相似文献   

7.
血管周上皮样细胞肿瘤(perivascular epithelioid cell tumours,PEComas)是由组织学和免疫组织化学上有独特表现的血管周上皮样细胞构成的间叶性肿瘤,PEComas家族包括肾血管平滑肌脂肪瘤、肺透明细胞"糖"瘤、淋巴管肌瘤病、淋巴管平滑肌瘤、镰状韧带透明细胞肌黑色素细胞性肿瘤和其他部...  相似文献   

8.
Targeting the Phosphatidylinositol 3-Kinase Pathway in Airway Smooth Muscle   总被引:1,自引:0,他引:1  
The phosphatidylinositol 3-kinase (PI3K) signaling pathway plays a critical role in regulating cell growth, proliferation, survival, and motility. Structural alterations, e.g. airway remodeling, in asthma and chronic obstructive pulmonary disease (COPD) are associated with increased airway smooth muscle (ASM) cell growth and proliferation due to the frequent stimulation of ASM by inflammatory mediators, contractile agonists, and growth factors. The critical role of the PI3K signaling pathway in regulating ASM cell growth and proliferation is well established. However, recent discovery of the tumor suppressor proteins tuberous sclerosis complex 1 (TSC1) and TSC2, also known as hamartin and tuberin, as downstream effectors of PI3K and upstream regulators of the mammalian target of rapamycin (mTOR) and S6 kinase 1(S6K1) shed a new light on the PI3K signaling cascade in regulating cell growth and proliferation. The activity of TSC1/TSC2 is regulated by growth factors, nutrients, and energy; thus, TSC1/TSC2 serves as a signaling module for protein translational regulation, cell cycle progression, and cell size, which are key events controlling cell growth and proliferation. This article highlights the potential contribution of the PI3K-TSC1/TSC2-mTOR/S6K1 pathway in smooth muscle remodeling. Pharmacologic manipulation of this signaling pathway could have a major impact on treatment of asthma and COPD.  相似文献   

9.
Dysregulation of the mammalian target of rapamycin (mTOR) signaling pathway has a variety of effects on the immune system and stem cell proliferation. Lichen planopilaris (LPP) and frontal fibrosing alopecia (FFA) are inflammatory scalp conditions resulting in permanent alopecia, which are thought to be related to stem cell damage. Here we investigate the expression of mTOR signaling pathway proteins in human hair follicles of LPP and FFA patients. The expression of mTOR pathway proteins in biopsy specimens from lesional and non-lesional scalp areas of eight LPP and five FFA patients were compared to control scalp biopsies from patients undergoing surgical excisions of sebaceous cysts. We performed immunohistochemical evaluation using a panel of antibodies including mTOR, phospho-mTOR (Ser2448), phospho-p70S6K (Thr389), phospho-4EBP1 (Thr37146), and phospho-tuberin (T1462), as well as Western blot analysis for phospho-p70S6K (Thr389) expression. All evaluated mTOR pathway proteins were similarly expressed in the control and patient non-lesional scalps. While mTOR expression did not show significant alterations between the groups, p-mTOR, p-p70S6K, p-4EBP1, and p-tuberin expressions decreased in the interfollicular epidermis in the lesional scalps of patients. p-p70S6K and p-4EBP1 expression decreased in the outer root sheath (ORS) and inner root sheath (IRS) of the bulge of hair follicles in the lesional scalps of patients. p-mTOR and p-p70S6K expression increased in the lower follicle ORS and bulb of the hair follicles, and p-4EBP1 expression decreased in the bulb of the hair follicles in the lesional scalps of patients. Phospho-tuberin expression increased in the IRS of the bulge and lower follicle ORS of the hair follicles in the lesional scalps of patients, whereas its expression decreased in the bulb. Our results indicate that the mTOR signaling pathway proteins are localized throughout normal hair follicles and that expression of mTOR signaling pathway proteins is altered in the hair follicles of LPP and FFA patients. Further research is required to understand the mechanism by which mTOR operates in the pathogenesis of these diseases.  相似文献   

10.
Tuberous sclerosis complex (TSC) and Peutz-Jeghers syndrome (PJS) are dominantly inherited benign tumor syndromes that share striking histopathological similarities. Here we show that LKB1, the gene mutated in PJS, acts as a tumor suppressor by activating TSC2, the gene mutated in TSC. Like TSC2, LKB1 inhibits the phosphorylation of the key translational regulators S6K and 4EBP1. Furthermore, we show that LKB1 activates TSC2 through the AMP-dependent protein kinase (AMPK), indicating that LKB1 plays a role in cell growth regulation in response to cellular energy levels. Our results suggest that PJS and other benign tumor syndromes could be caused by dysregulation of the TSC2/mTOR pathway.  相似文献   

11.
Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations in one of two tumor suppressor genes, TSC1 and TSC2. Here, we show that absence of Drosophila Tsc1/2 leads to constitutive dS6K activation and inhibition of dPKB, the latter effect being relieved by loss of dS6K. In contrast, the dPTEN tumor suppressor, a negative effector of PI3K, has little effect on dS6K, but negatively regulates dPKB. More importantly, we demonstrate that reducing dS6K signaling rescues early larval lethality associated with loss of dTsc1/2 function, arguing that the S6K pathway is a promising target for the treatment of TSC.  相似文献   

12.
Mammalian target of rapamycin (mTOR) is a central regulator of protein synthesis whose activity is modulated by a variety of signals. Energy depletion and hypoxia result in mTOR inhibition. While energy depletion inhibits mTOR through a process involving the activation of AMP-activated protein kinase (AMPK) by LKB1 and subsequent phosphorylation of TSC2, the mechanism of mTOR inhibition by hypoxia is not known. Here we show that mTOR inhibition by hypoxia requires the TSC1/TSC2 tumor suppressor complex and the hypoxia-inducible gene REDD1/RTP801. Disruption of the TSC1/TSC2 complex through loss of TSC1 or TSC2 blocks the effects of hypoxia on mTOR, as measured by changes in the mTOR targets S6K and 4E-BP1, and results in abnormal accumulation of Hypoxia-inducible factor (HIF). In contrast to energy depletion, mTOR inhibition by hypoxia does not require AMPK or LKB1. Down-regulation of mTOR activity by hypoxia requires de novo mRNA synthesis and correlates with increased expression of the hypoxia-inducible REDD1 gene. Disruption of REDD1 abrogates the hypoxia-induced inhibition of mTOR, and REDD1 overexpression is sufficient to down-regulate S6K phosphorylation in a TSC1/TSC2-dependent manner. Inhibition of mTOR function by hypoxia is likely to be important for tumor suppression as TSC2-deficient cells maintain abnormally high levels of cell proliferation under hypoxia.  相似文献   

13.
The proinflammatory cytokine TNFalpha is one of the factors that links obesity-derived chronic inflammation with insulin resistance. Activation of mTOR signaling pathway has been found to suppress insulin sensitivity through serine phosphorylation and the inhibition of IRS1 by mTOR and its downstream effector, S6K1. It remains elusive that whether the mTOR pathway has a role in TNFalpha-mediated insulin resistance. In the present study, we demonstrated that TNFalpha-IKKbeta-mediated inactivation of TSC1 resulted in increasing phosphorylation of IRS1 serine 307 and serine 636/639, impaired insulin-induced glucose uptake, tyrosine phosphorylation of IRS1, and the association between IRS1 and PI3K p85. Furthermore, a higher expression of pIKKbeta (S181), pTSC1(S511), and pS6(S240/244) was found in livers obtained from both C57BL/6J mice on a high-fat diet and B6.V-Lepob/J mice. Collectively, dysregulation of the TSC1/ TSC2/mTOR signaling pathway by IKKbeta is a common molecular switch for both cancer pathogenesis and diet- and obesity-induced insulin resistance.  相似文献   

14.
Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors that can affect any part of the body. They can be sporadic or arise in the setting of tuberous sclerosis (TSC). In this article, we report a series of three hepatic and two pancreatic PEComas diagnosed preoperatively with ultrasound‐guided fine needle aspiration (FNA). All patients were female (age range 28‐70), had no personal history of TSC and presented with a single, localized painless mass. Rapid on‐site evaluation (ROSE) of cytologic samples was performed for all cases to evaluate for cellular content and adequacy of specimens. Direct smears and cell block preparations revealed a proliferation of medium to large polygonal epithelioid cells, with abundant eosinophilic and vacuolated cytoplasm, arranged in sheets and nests. On immunohistochemistry (IHC), neoplastic cells showed co‐expression of melanocytic and smooth muscle markers and a diagnosis of PEComa was rendered. PEComas of the pancreas and liver are rare neoplasms, but should always be considered when examining “clear cell” neoplasms, especially in young female patients. If good quality cytologic samples are obtained by FNA, a correct diagnosis can be achieved with the help of IHC. This is of particular importance in order to plan adequate surgical strategy and to avoid overtreatment.  相似文献   

15.
Mammalian target of rapamycin (mTOR) has been reported to contribute to the development of HIV-associated nephropathy (HIVAN). We hypothesized that HIV may be activating renal tissue mTOR pathway through renin angiotensin system (RAS) via Angiotensin Receptor Type II receptor (AT2R). Renal tissues of Vpr transgenic and Tg26 (HIVAN) mice displayed enhanced phosphorylation of mTOR and p70S6K. Aliskiren, a renin inhibitor attenuated phosphorylation of both mTOR and p70S6K in renal tissues of HIVAN mice. Interestingly, Angiotensin Receptor Type I (AT1R) blockade did not modulate renal tissue phosphorylation of mTOR in HIVAN mice; on the other hand, AT2R blockade attenuated renal tissue phosphorylation of mTOR in HIVAN mice. In vitro studies, both renin and Ang II displayed enhanced mouse tubular cell (MTC) phosphorylation of p70S6K in a dose dependent manner. HIV/MTC also displayed enhanced phosphorylation of both mTOR and p70S6K; interestingly this effect of HIV was further enhanced by losartan (an AT1R blocker). On the other hand, AT2R blockade attenuated HIV-induced tubular cell phosphorylation of mTOR and p70S6K, whereas, AT2R agonist enhanced phosphorylation of mTOR and p70S6K. These findings indicate that HIV stimulates mTOR pathway in HIVAN through the activation of renin angiotensin system via AT2R.  相似文献   

16.
Tuberous sclerosis (TS), neurological disorder manifesting with the formation of tumors in numerous organ systems, is a disease associated with the upregulation of mammalian target of rapamycin (mTOR) pathway. It has been found that in healthy individuals two tumor suppressor genes, TSC1 and TSC2, encoding proteins called hamartin and tuberin, respectively, are responsible for the control over mTOR kinase. Loss of one of these genes constitutes the genetic background of TS. In the current study, we aimed at evaluating the fitness of the only TS-associated sarcoma cell line deposited in American Tissue Culture Collection, TSC2ang1, for the in vitro studies on TS. We found that the line shows a stable chromosome pattern with typical Robertsonian translocations. Similarly to primary tumors from TS patients, TSC2ang1 cells respond to rapamycin-induced mTOR inhibition. The cells demonstrate activation of both Akt and Erk pathways, but inhibition of neither of them is as effective as mTOR suppression when considering proliferation potential. Based on these results we propose TSC2ang1 as a good and stable model for pathophysiological and pharmacological studies on skin lesions in TS.  相似文献   

17.
Growth factors and hormones activate global and selective protein translation by phosphorylation and therefore activation of p70 S6 kinase through a wortmannin-sensitive phosphoinositide-3 kinase (PI-3K) antiapoptotic pathway and a rapamycin-sensitive signalling pathway of mTOR. Here we demonstrate that the phosphorylation of 40S ribosomal protein S6, a physiological substrate p70 S6 kinase, was highly increased by growth-stimulation of the cytolytic T cells (CTLL2) with interleukin 2 (IL2), which was accompanied with the increased phosphorylation of p70 S6K. The activity of p70 S6K and phosphorylation of the S6 protein was completely blocked by rapamycin and significantly decreased upon treatment of the cells with wortmannin, indicating an involvement of the PI-3K pathway in concert with the signalling pathway of mTOR in IL2-dependent phos-phorylation of ribosomal protein S6. The phosphorylation and activity of PKB/Akt in IL2-stimulated CTLL2 cells were rapamycin-insensitive and reduced upon wortmannin treatment of the cells, confirming a requirement for PI-3K for Akt activity. The data support the hypothesis that Akt may act downstream to PI-3K and upstream to mTOR in an IL2-mediated signal transduction pathway that controls phosphorylation of the regulatory protein S6 in CTLL2 cells.  相似文献   

18.
The activation of competing intracellular pathways has been proposed to explain the reduced training adaptations after concurrent strength and endurance exercises (CE). The present study investigated the acute effects of CE, strength exercises (SE), and endurance exercises (EE) on phosphorylated/total ratios of selected AMPK and Akt/mTOR/p70S6K1 pathway proteins in rats. Six animals per exercise group were killed immediately (0 h) and 2 h after each exercise mode. In addition, 6 animals in a non-exercised condition (NE) were killed on the same day and under the same conditions. The levels of AMPK, phospho-Thr172AMPK (p-AMPK), Akt, phospho-Ser473Akt (p-Akt), p70S6K1, phospho-Thr389-p70S6K1 (p-p70S6K1), mTOR, phospho-Ser2448mTOR (p-mTOR), and phospho-Thr1462-TSC2 (p-TSC2) expression were evaluated by immunoblotting in total plantaris muscle extracts. The only significant difference detected was an increase (i.e., 87%) in Akt phosphorylated/total ratio in the CE group 2 h after exercise compared to the NE group (P = 0.002). There were no changes in AMPK, TSC2, mTOR, or p70S6K1 ratios when the exercise modes were compared to the NE condition (P ≥ 0.05). In conclusion, our data suggest that low-intensity and low-volume CE might not blunt the training-induced adaptations, since it did not activate competing intracellular pathways in an acute bout of strength and endurance exercises in rat skeletal muscle.  相似文献   

19.
Preclinical studies have implicated the mammalian target of rapamycin (mTOR) pathway in the cell cycle progression and growth of prostate cancer cells. Downstream signaling from PI3'-K/Akt leads to phosphorylation (p) of mTOR at serine 2448 and to activation of its substrate, p70S6Kinase (p70S6K), phosphorylated on threonine 389. This promotes translation and cell cycle progression. Morphoproteomic analysis, that combines both the application of phosphospecific probes directed against putative sites of activation on protein analytes and cellular compartmentalization [1] was carried out on tissue microarray (TMA) slides from 64 cases of primary, previously untreated adenocarcinomas of the prostate. Gleason scores ranged from 6 to 10. High grade prostatic intraepithelial neoplasia (HGPIN), which accompanied the invasive cancer in 20 cases, and 15 non-neoplastic controls from benign prostatic hypertrophy specimens in a separate TMA were also included. Ninety-three percent (93%) of tumors exhibited moderate to strong cytoplasmic/plasmalemmal expression of p-mTOR and eighty-five percent (85%) showed similar staining intensity for p-p70S6K. HGPIN demonstrated comparable and occasionally, stronger expression levels for these protein analytes. Quantitative digital imaging revealed an overall increase in the mean expression levels in HGPIN, reaching statistical significance for p-mTOR (Ser 2448) at p<0.05. Morphoproteomic analysis confirms the constitutive activation of the mTOR pathway in prostate cancer and HGPIN, with relative overexpression of p-mTOR in HGPIN. These findings coincide with preclinical studies in supporting a role for the mTOR pathway in the biology and development of prostate cancer through its putative precursor lesion, HGPIN and in suggesting a potential therapeutic target.  相似文献   

20.
Angiomyolipomas (AMLs) are renal tumors that occur both sporadically and in association with tuberous sclerosis (TSC). TSC is an autosomal dominant disorder characterized by hamartomatous lesions in multiple organs. Two TSC loci are recognized TSCl on 9q34 and TSC2 on 16pl3. Loss of heterozygosity (LOH) at the TSCI and TSC2 loci in lesions from TSC patients has recently been reported. Lesions that are not associated with TSC have not been previously examined for LOH at the TSC loci. We analyzed 29 renal angiomyolipomas from patients without a history of TSC. Three tumors demonstrated LOH on I6p 13. This is the first report indicating that mutations in TSC2 occur in tumors of patients who do not have TSC. We also found LOH on I6p 13 in 5 of 8 TSC-associated AMLs. Two of these tumors were from a single patient and demonstrated different regions of LOH. These findings support the hypothesis that the TSC2 gene functions as a tumor suppressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号