首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of all-trans-retinoic acid (ATRA; 60 mg/kg daily for 3 days) to male rats increased the rate of 5alpha-dihydrotestosterone (5alpha-DHT) formation from testosterone in microsomal fractions in vitro. The formation of androstane-3alpha,17beta-diol from testosterone was also increased because of the higher concentration of 5alpha-DHT produced in microsomal incubations. Northern analysis confirmed that the increased rate of 5alpha-DHT formation was due to the pretranslational up-regulation in delta4-3-oxosteroid 5alpha-oxidoreductase (EC 1.3.99.5) mRNA expression in ATRA-treated male rat liver. Thus, ATRA elicited in male rat liver a partial feminization of the expression of this enzyme, which normally exhibits a female-selective distribution in the rat. Subsequent experiments evaluated whether the administration of human chorionic gonadotropin or thyroxine to ATRA-treated male rats decreases 5alpha-reductase activity to that observed in untreated male rat liver. Although these treatments did not decrease 5alpha-reductase to untreated male levels, it was found that administration of ATRA to gonadectomized male rats produced complete feminization of the enzyme. Again, up-regulation was confirmed at the mRNA level. The activity of the male-specific cytochrome P450 2C11 (as reflected by microsomal testosterone 16alpha-hydroxylation activity) was correspondingly decreased by treatments that increased steroid 5alpha-reductase activity. Thus, gonadectomy in combination with ATRA administration effected a more pronounced decrease in 16alpha-hydroxylation activity than either treatment alone. These findings suggest that ATRA is a novel positive regulator of the 5alpha-reductase that in combination with the removal of circulating androgen, which normally suppresses 5alpha-reductase levels, feminizes the expression of this enzyme in rat liver.  相似文献   

2.
This study focused on the antidepressant potential of orcinol glucoside (OG) and its possible mechanisms of action. We established a depressed rat model using 3 consecutive weeks of chronic unpredictable mild stress (CUMS). The antidepressant-like effect of OG was revealed using the sucrose preference test, the open field test, the forced swimming test (FST), and the tail suspension test (TST). The activity of the hypothalamic–pituitary–adrenal (HPA) axis was evaluated by detecting the serum corticosterone (CORT) concentrations and mRNA expression of corticotrophin-releasing hormone (CRH) in the hypothalamus. The protein expression levels of brain-derived neurotrophic factor (BDNF) and total phosphorylated-ERK1/2 were detected by western blot. The results showed that OG treatment (1.5, 3, or 6 mg/kg) alleviated the depression-like behaviour of rats under CUMS, as indicated by the increased sucrose preference and the decreased immobility in both the FST and TST, although the rearing frequency in the open field test increased only in the group that received the lowest dose (1.5 mg/kg OG). Rats that received OG treatment exhibited reduced serum CORT levels and CRH mRNA expression in the hypothalamus, suggesting that the hyperactivity of the HPA axis in CUMS rats was reversed by OG treatment. Moreover, OG treatment upregulated the protein levels of BDNF and phosphorylated-ERK1/2 in the hippocampus, even above control levels. Our findings suggest that OG improved depressive behaviour in CUMS rats by downregulating HPA axis hyperactivity and increasing BDNF expression and ERK1/2 phosphorylation in the hippocampus.  相似文献   

3.
Rationale Previous work has shown that a single exposure of rats to a severe stressor (immobilization, IMO) results, days to weeks later, in a reduced response (desensitization) of the hypothalamic–pituitary–adrenal (HPA) axis to a second exposure to the same stressor.Objectives In the present work, we studied the influence of both length of exposure to IMO and circulating levels of corticosterone on the first day on the degree of desensitization of two sets of physiological variables: HPA hormones and food intake.Methods Rats were given SC saline or ACTH administration and then exposed to IMO for 0, 1 or 20 min. Seven days later, all rats were exposed to 20 min IMO. HPA response was followed on both experimental days by repeated blood sampling and food intake was measured on a 24-h basis.Results Both ACTH administration and IMO activates the HPA axis and IMO reduced food intake for several days. A single previous experience with IMO enhanced the post-IMO return of HPA hormones to basal levels on day 8 and reduced the degree of anorexia. The protective effect of previous IMO on food intake was independent of, whereas that on HPA activation was positively related to, the length of exposure on day 1. Concomitant ACTH administration on day 1 did not modify the observed effects.Conclusions Long-term protective effects of a single exposure to IMO are observed even with a brief exposure, but they are not potentiated by increasing corticosterone levels during the first exposure.  相似文献   

4.
Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) for naive T cells and play an important role in cancer immunology. All-trans retinoic acid (ATRA) is known to be a differentiating agent in the treatment of acute promyelocytic leukemia (APL). In this study, we investigated whether ATRA can differentiate the retinoic acid (RA)-sensitive promyelocytic leukemic cell line, NB4, to DC-like cells and whether these differentiated cells can activate T cells. NB4 cells were differentiated to myeloid cells by 4, 6, and 8 days of ATRA treatment. NB4 cells up-regulated markers found in DCs, including HLA-DR, costimulatory molecules (CD80 and CD86), adhesion molecules (CD40), and chemokine receptors (CCR6) when cultured for 8 days in the presence of 1 microM ATRA. Upregulation of CD83 was also detected on the surface of ATRA-treated NB4 cells versus untreated cells. The addition of cytokines alone, such as GM-CSF or CD40 ligand, did not affect the expression of CD83 in untreated NB4 cells but they up-regulated CD83 in ATRA-treated cells. CD11b was coexpressed with CD80, CD83, and CD86 in ATRA-treated NB4 cells. In a functional assay, ATRA-treated NB4 cells stimulated T cell proliferation when challenged with Staphylococcus enterotoxin B. These results suggest that the differentiation of NB4 cells by ATRA causes the cells to express DC markers, and that ATRA-differentiated NB4 cells are able to present antigens to T cells.  相似文献   

5.
We investigated the anxiolytic-like activity of α-asarone (AAS) from Acorus gramineus in an experimental rat model of anxiety induced by repeated administration of the exogenous stress hormone corticosterone (CORT). The putative anxiolytic effect of AAS was studied in behavioral tests of anxiety, such as the elevated plus maze (EPM) test and the hole-board test (HBT) in rats. For 21 consecutive days, male rats received 50, 100, or 200 mg/kg AAS (i.p.) 30 min prior to a daily injection of CORT. Dysregulation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily AAS (200 mg/kg) administration increased open-arm exploration significantly in the EPM test, and it increased the duration of head dipping activity in the HBT. It also blocked the increase in tyrosine hydroxylase (TH) expression in the locus coeruleus (LC) and decreased mRNA expression of brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, in the hippocampus. These results indicated that the administration of AAS prior to high-dose exogenous CORT significantly improved anxiety-like behaviors, which are associated with modification of the central noradrenergic system and with BDNF function in rats. The current finding may improve understanding of the neurobiological mechanisms responsible for changes in emotions induced by repeated administration of high doses of CORT or by elevated levels of hormones associated with chronic stress. Thus, AAS did exhibit an anxiolytic-like effects in animal models of anxiety.  相似文献   

6.
Introduction: The hypothalamic-pituitary-adrenal (HPA) axis is a three-gland component of the endocrine system and a key modulator of the stress response. We have developed a novel in vitro perfusion system to enable the study of pharmacological and hormonal challenges to tissue components of the HPA axis. In vivo studies have shown functional sex differences (sexual diergism) in HPA responses to cholinergic drugs, and in the present in vitro study, we examine these differences at several levels of the HPA axis. Methods: Hypothalami, pituitaries, and adrenal glands were collected from male and female rats (n=3 per sex). One-half hypothalamus, one-half pituitary, and one adrenal gland were placed individually into three Erlenmeyer flasks connected by tubing. Flasks were perfused with medium (pH 7.4) at 37 degrees C. Sampling ports between the flasks were used to collect buffer for determination of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) release from the hypothalamus, pituitary, and adrenal flasks, respectively, over an extended baseline period, to determine stability of the system, and after nicotine administration. Results: The perfusion system produced steady CRH, ACTH, and CORT baselines, the ACTH and CORT values being comparable to in vivo basal ACTH and CORT values in jugular-vein-cannulated rats. In vitro CRH, ACTH, and CORT responses to nicotine were significantly increased at 10 min and returned to baseline by 30 min, the CRH and ACTH responses from female tissues being greater than responses from male tissues. These sex differences were similar to those following nicotine administration in vivo. Discussion: The ability of this novel, dynamic in vitro system to replicate in vivo HPA axis responses supports its potential as a new method for pharmacological and toxicological studies.  相似文献   

7.
The serotonin 5-HT(6) receptor has become a promising target for the treatment of neuropsychological diseases, such as affective disorders. Increasing evidence implicates stress and its effector system, the hypothalamic-pituitary-adrenal (HPA) axis, in the neurobiology of depression. In addition, there are important memory disturbances in stress-related psychiatric disorders that have been associated to an impairment of the HPA axis reactivity. The aim of the present work is to study the functional interactions between 5-HT(6) receptors and HPA axis. In a situation of increased HPA axis responsiveness (maternal separation, MS) no differences were found in the expression of 5-HT(6) gene in the hippocampus or frontal cortex, although serotonin levels were higher in the frontal cortex of MS rats. 5-HT(6) receptor mRNA expression increased significantly in the hippocampus in a situation of decreased glucocorticoid levels, such as adrenalectomy. Cognitive deficits associated to HPA dysfunction, such those found in the MS model, were fully reversed by administration of SB271046, a selective 5-HT(6) receptor antagonist. A chronic treatment with SB271046 did not modify CRF mRNA levels in the hypothalamus, but there was a higher glucocorticoid receptor density in the hippocampus compared to control. In contrast, in the frontal cortex, treatment with SB271046 induced a significant decrease in glucocorticoid receptor density. These data suggest that expression of 5-HT(6) receptors might be differentially regulated depending on levels of circulating adrenal corticoids. These results are discussed in terms of therapeutical approaches to the treatment of behavioral (depressive-like) and cognitive disturbances associated to an altered response to stress.  相似文献   

8.
全反式维甲酸对骨肉瘤细胞143B生长的影响   总被引:1,自引:1,他引:1  
  相似文献   

9.
We have recently proposed that retinoic acid receptor (NR1B) is a promising target of neuroprotective therapy for intracerebral hemorrhage, since pretreatment of mice with an NR1B1/NR1B2 agonist Am80 attenuated various pathological and neurological abnormalities associated with the disease. In the present study we further addressed the effects of retinoids as potential therapeutic drugs, using a collagenase-induced model of intracerebral hemorrhage. Daily oral administration of all-trans retinoic acid (ATRA; 5 and 15 mg/kg), a naturally occurring NR1B agonist, from 1 day before collagenase injection significantly inhibited loss of neurons within the hematoma. ATRA in the same treatment regimen also decreased the number of activated microglia/macrophages around the hematoma but did not affect the hematoma volume. ATRA (15 mg/kg) as well as Am80 (5mg/kg) rescued neurons in the central region of hematoma, even when drug administration was started from 6h after induction of intracerebral hemorrhage. However, in this post-treatment regimen, only Am80 significantly decreased the number of activated microglia/macrophages. With regard to neurological deficits, both ATRA (15 mg/kg) and Am80 (5mg/kg) given in the post-treatment regimen improved performance of mice in the beam-walking test and the modified limb-placing test. ATRA and Am80 also significantly attenuated damage of axon tracts as revealed by amyloid precursor protein immunohistochemistry. These results underscore potential therapeutic values of NR1B agonists for intracerebral hemorrhage.  相似文献   

10.
The hypothalamic-pituitary-adrenal (HPA) axis is the primary endocrine system to respond to stress. The HPA axis may be affected by increased level of corticotrophin-releasing factors under chronic stress and by chronic administration of monosodium glutamate (MSG). The purpose of this study was to investigate whether chronic MSG administration aggravates chronic variable stress (CVS)-induced behavioral and hormonal changes. Twenty-four adult male Sprague-Dawley rats, weighing 200~220 g, were divided into 4 groups as follows: water administration (CON), MSG (3 g/kg) administration (MSG), CVS, and CVS with MSG (3 g/kg) administration (CVS+MSG). In addition, for the purpose of comparing the effect on plasma corticosterone levels between chronic stress and daily care or acute stress, 2 groups were added at the end of the experiment; the 2 new groups were as follows: naïve mice (n=7) and mice exposed to restraint stress for 2 h just before decapitation (A-Str, n=7). In an open field test performed after the experiment, the CVS+MSG group significant decrease in activity. The increase in relative adrenal weights in the CVS and CVS+MSG group was significantly greater than those in the CON and/or MSG groups. In spite of the increase in the relative adrenal weight, there was a significant decrease in the plasma corticosterone levels in the CVS+MSG group as compared to all other groups, except the naïve group. These results suggest that impaired HPA axis function as well as the decrease in the behavioral activity in adult rats can be induced by chronic MSG administration under CVS rather than CVS alone.  相似文献   

11.
Eszopiclone (Lunesta?) is used for the treatment of insomnia. It is the S (+)-enantiomer of racemic zopiclone, a cyclopyrrolone with no structural similarity to the hypnotic drugs zolpidem and zaleplon or to the benzodiazepines and barbiturates. Although eszopiclone interacts with the gamma-aminobutyric acid A-type (GABA(A)) receptor complex, it has a different binding profile than other sedative/hypnotic agents and modulates the receptor complex in a unique manner. Thus, eszopiclone might produce different pharmacological effects compared to other sedative/hypnotic agents. Beside their behavioral properties, sedative/hypnotic drugs affect the hypothalamo-pituitary-adrenal (HPA) axis. In general, low doses of benzodiazepine-type drugs decrease, whereas high doses increase the activity of the HPA axis. Furthermore, benzodiazepines reduce stress-induced increases in HPA axis activity. The goal of the present study was to characterize the effects of eszopiclone on the HPA axis in the rat. Male rats were injected with saline or eszopiclone and trunk blood was collected for the measurement of plasma levels of adrenocorticotropin (ACTH) and corticosterone by radioimmunoassay. The acute administration of eszopiclone produced dose-dependent increases in plasma levels of ACTH and corticosterone, and tolerance developed to these effects after repeated drug administration. Pretreatment with eszopiclone did not affect stress-induced stimulation of the HPA axis. These results show that eszopiclone and the benzodiazepine-type drugs differentially affect the HPA axis.  相似文献   

12.
Subjecting pregnant female rats to situations that activate the hypothalamic-pituitary-adrenal (HPA) axis can have long-term effects on the development of the offspring. Restraint under bright lights is a common method of stressing pregnant females that results in consistent behavioral changes in the offspring. We investigated the effects of gestationally administered restraint, bright lights, and heat on the HPA axis response of 21-day-old offspring following exposure to isolation in a novel environment or under resting conditions. Corticotropin-releasing factor titers in the hypothalamus were unaffected following isolation. Nonetheless, adrenocorticotropin hormone (ACTH) was found to be lower in the gestationally stressed offspring prior to or following the isolation period. Corticosterone was attenuated in gestationally stressed offspring following the postnatal stressor and there was also a tendency for the gestationally stressed females to have lower concentrations of aldosterone. Plasmatic testosterone levels were higher in the gestationally stressed males following the period of isolation. The present data suggest that the HPA axis of the offspring is differentially affected by the gestational stress procedure, that is, it is attenuated at the level of the pituitary and adrenal, but not at the level of the hypothalamus. These data have implications for behavioral differences observed in gestationally stressed animals.  相似文献   

13.
Pitt JA  Buckalew AR  House DE  Abbott BD 《Toxicology》2000,151(1-3):25-35
Although in utero maternal stress has been shown to have lasting effects on rodent offspring, fetal effects of chemically-induced alterations of the maternal hypothalamic-pituitary-adrenal axis (HPA) have not been well studied. This study examined the effects of in vivo 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on pituitary-adrenal function in the male rat, pregnant female rat and pregnant female mouse. The secretion of adrenocorticotropin (ACTH) and corticosterone (CORT) in pituitary and adrenal glands, respectively, was assessed in ex vivo perifusion cultures. Male and pregnant female (gestation day 8) Sprague-Dawley rats were gavaged once with 10 microgram/kg TCDD, pregnant female mice once with 24 microgram/kg TCDD, and euthanized 10 days later. Hemi-pituitary (rat) or whole anterior pituitaries (mice) and right adrenal glands from the same animal were quartered, perifused under baseline and stimulated conditions. In both males and pregnant females, TCDD did not affect corticotropin releasing hormone (CRH)-stimulated ACTH secretion. Neither total pituitary ACTH nor plasma ACTH was altered in either sex or species by TCDD treatment. ACTH-stimulated CORT secretion was not affected by TCDD in either sex or species, and adrenal tissue and plasma CORT levels were unchanged in males and pregnant females by TCDD. However, the plasma ACTH:CORT ratio was decreased about 46% in male rats treated with TCDD. Plasma CORT levels were 23-fold higher and plasma ACTH levels were 1.5-fold higher in pregnant females than in male rats. In male versus female rats, adrenal CORT and anterior pituitary ACTH tissue levels were about 7.5- and 1.75-fold higher and ACTH, respectively. Female mouse adrenal tissue CORT was about 4-fold greater than female rat. The reduced plasma ACTH:CORT ratio in the male rat suggests that TCDD disturbs HPA function. Exposure of male rat to a 5-fold higher dose in earlier studies clearly demonstrated effects of TCDD on male rat HPA. The present study identified substantial HPA performance differences between male and pregnant female rats. The failure to detect a response to TCDD in pregnant female rat and mouse could be a function of both TCDD dose and the high level of secretion of both ACTH and CORT in pregnant animals. For the rat or mouse, a single exposure to TCDD during pregnancy does not appear sufficient to induce maternally-mediated developmental, reproductive and behavioral toxicity via the HPA axis.  相似文献   

14.
Exposure to psychological trauma is the precipitating factor for PTSD. In addition, a history of chronic or traumatic stress exposure is a predisposing risk factor. We have developed a Chronic plus Acute Prolonged Stress (CAPS) treatment for rats that models some of the characteristics of stressful events that can lead to PTSD in humans. We have previously shown that CAPS enhances acute fear responses and impairs extinction of conditioned fear. Further, CAPS reduced the expression of glucocorticoid receptors in the medial prefrontal cortex. In this study we examined the effects of CAPS exposure on behavioral stress coping style, anxiety-like behaviors, and acute stress reactivity of the hypothalamic–pituitary–adrenal (HPA) axis. Male Sprague-Dawley rats were exposed to CAPS treatment, consisting of chronic intermittent cold stress (4 °C, 6 h/day, 14 days) followed on day 15 by a single 1-h session of sequential acute stressors (social defeat, immobilization, swim). After CAPS or control treatment, different groups were tested for shock probe defensive burying, novelty suppressed feeding, or evoked activation of adrenocorticotropic hormone (ACTH) and corticosterone release by an acute immobilization stress. CAPS resulted in a decrease in active burying behavior and an increase in immobility in the shock probe test. Further, CAPS-treated rats displayed increases in the latency to feed in the novelty suppressed feeding test, despite an increase in food intake in the home cage. CAPS treatment also reduced the HPA response to a subsequent acute immobilization stress. These results further validate CAPS treatment as a rat model of relevance to PTSD, and together with results reported previously, suggest that CAPS impairs fear extinction, shifts coping behavior from an active to a more passive strategy, increases anxiety, and alters HPA reactivity, resembling many aspects of human PTSD.  相似文献   

15.
Rationale. There is evidence for alterations in imidazoline2 (I2) receptor density in depressed patients. Selective I2 receptor ligands modulate central monoamine levels and activate the hypothalamo-pituitary-adrenal (HPA) axis and may have potential as antidepressants. Objectives. To study the behavioral effects of the selective I2 receptor ligand BU224 in the rat forced swim test (FST) and its effects on the HPA axis and central monoaminergic responses. Methods. Rats received saline or BU224 (10 mg/kg IP) 24, 18 and 1 h prior to 15 min exposure to the FST. Saline- and BU224-treated non-stressed groups were included. Time spent immobile, struggling and swimming calmly was measured. Plasma adrenocorticotrophic hormone (ACTH) and corticosterone levels 90 min post-BU224 were measured in addition to tissue levels of monoamines and metabolites in the frontal cortex, hippocampus and hypothalamus. Results. Administration of BU224 significantly reduced immobility and increased mild swimming without affecting struggling. Exposure to the FST significantly increased plasma ACTH and corticosterone levels. BU224 administration also increased ACTH and potentiated the ACTH response to FST with no effect on corticosterone. BU224 administration significantly increased frontal cortex 5-hydroxytryptamine (5-HT) levels and decreased 5-HT turnover in the frontal cortex and hypothalamus of rats exposed to FST. In non-stressed rats, BU224 decreased 5-HT turnover in the hippocampus and hypothalamus and decreased norepinephrine turnover in the frontal cortex. Conclusions. The selective I2 receptor ligand BU224 reduces immobility of rats in the FST, indicative of antidepressant-like activity. This effect is accompanied by alterations in HPA axis and central monoaminergic activity. Electronic Publication  相似文献   

16.
Previous studies have demonstrated that repeated administration of the exogenous stress hormone corticosterone (CORT) induces dysregulation in the hypothalamic-pituitary-adrenal (HPA) axis and results in depression and anxiety. The current study sought to verify the impact of catechin (CTN) administration on chronic CORT-induced behavioral alterations using the forced swimming test (FST) and the elevated plus maze (EPM) test. Additionally, the effects of CTN on central noradrenergic systems were examined by observing changes in neuronal tyrosine hydroxylase (TH) immunoreactivity in rat brains. Male rats received 10, 20, or 40 mg/kg CTN (i.p.) 1 h prior to a daily injection of CORT for 21 consecutive days. The activation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily CTN administration significantly decreased immobility in the FST, increased open-arm exploration in the EPM test, and significantly blocked increases of TH expression in the locus coeruleus (LC). It also significantly enhanced the total number of line crossing in the open-field test (OFT), while individual differences in locomotor activities between experimental groups were not observed in the OFT. Taken together, these findings indicate that the administration of CTN prior to high-dose exogenous CORT significantly improves helpless behaviors, possibly by modulating the central noradrenergic system in rats. Therefore, CTN may be a useful agent for the treatment or alleviation of the complex symptoms associated with depression and anxiety disorders.  相似文献   

17.
Major depression is characterized by overactivity of the hypothalamic–pituitary–adrenal (HPA) axis. Dexamethasone (DEX), the glucocorticoid agonist, has been shown to be effective in the treatment of depression. We chose to examine the impact of a short course of DEX treatment on depressive symptomatology, and on the pituitary‐adrenal response to CRH administration. In this preliminary study, five subjects with major depression were treated for 4 days with 3 mg DEX; a CRH test was performed before and after treatment. Four subjects showed a reduction in ACTH (p=0·01) and cortisol output (p<0·01) following DEX treatment. All subjects showed a drop in depression scores after treatment; the Hamilton Depression score fell by 11·4±1·7 (mean±SEM) from baseline (p=0·01) and the Beck Depression score by 9·2±2·5 (mean±SEM) from baseline (p=0·01); this represented a reduction by almost 50 per cent from baseline levels on both depression indices. We suggest that the impact of DEX treatment on depressive symptoms may reflect a restraining influence on an overactive HPA, with a normalization of pituitary–adrenal response to CRH drive. Larger studies are required to investigate this further and to ascertain whether the mood and neuroendocrine changes induced by dexamethasone are sustained. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
mRNA levels of kinin B1 and B2 receptors were determined in HPA axis of type 1 (STZ-induced) and type 2 diabetic rats (ZDF and obese Zucker rats). B2 mRNA levels were elevated in hypothalamus of STZ-induced diabetic (STZ-D) and ZDF rats. Pituitary B2 mRNA levels were elevated in ZDF and obese rats. Adrenal B2 mRNA level was attenuated in STZ-D rats. Kinin B1 receptor may not play a role in HPA axis in diabetes since its expression was unchanged. Enhanced mRNA expression of B2 receptors in hypothalamus of STZ-D and ZDF rats parallels a rise in plasma glucose and reflect a functional relationship. Enhanced pituitary B2 mRNA in type 2 and reduced adrenal in type 1 diabetes account for a differential pattern in release of transmitters.  相似文献   

19.

Introduction  

The selective breeding of Roman low-avoidance (RLA) and high-avoidance (RHA) rats for, respectively, poor versus rapid acquisition of active avoidance in a shuttle-box has produced two phenotypes that differ drastically in the reactivity to stressful stimuli: in tests used to assess emotionality, RLA rats display passive (“reactive”) coping and robust hypothalamus–pituitary–adrenal (HPA) axis reactivity, whereas RHA rats show proactive coping and blunted HPA axis responses. The behavioral and neuroendocrine traits that distinguish these lines suggest that RLA rats may be prone, whereas RHA rats may be resistant to develop depression-like behavior when exposed to stressful experimental conditions.  相似文献   

20.
Depression is one of the most common psychiatric diseases and is commonly comorbid with type 1 or 2 diabetes mellitus (DM). However, the pathophysiology underlying the depressive state in DM remains poorly understood. Animal models are useful tools to investigate the association between depression and DM. In the present study we investigated whether the Spontaneously Diabetic Torii (SDT) fatty rat, a novel animal model of type 2 DM, shows depression‐related features. We assessed depression‐like behaviour, hyperactivation of the hypothalamic‐pituitary‐adrenal (HPA) axis, and neurotransmitter levels in the brain. Behaviour was evaluated using a forced swimming test, and the HPA axis was evaluated with changes in plasma corticosterone levels after a swimming stress exposure or dexamethasone challenge. In addition, serotonin (5‐hydroxytryptamine; 5‐HT), noradrenaline, glutamate and γ‐aminobutyric acid (GABA) concentrations in the frontal cortex, hippocampus and brain stem were measured. In the forced swimming test, SDT fatty rats exhibited increased duration of immobility compared with control Sprague–Dawley (SD) rats. Moreover, basal corticosterone levels were significantly elevated in SDT fatty compared with control SD rats. However, there were no stress‐induced increases or changes in dexamethasone‐induced suppression of corticosterone in SDT fatty compared with control SD rats. Furthermore, there were significant changes in 5‐HT concentrations in the prefrontal cortex, and in GABA and glutamate concentrations in the hippocampus in SDT fatty compared with controls. The results of the present study suggest that the SDT fatty rat may be an appropriate model for diabetes with comorbid depression associated with neurotransmitter impairments and aberrant basal HPA hyperactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号