首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Van Damme S  Legrain V 《Pain》2012,153(6):1226-1231
This study investigated how efficient spatial attention was oriented to pain in 2 experiments. Participants detected whether painful (pain group) or nonpainful (control group) somatosensory stimuli were delivered to the left or right hand. Each stimulus was preceded by a visual cue presented near to the stimulated hand (valid trial), the opposite hand (invalid trial), or centrally between hands. To examine both exogenous and endogenous orienting of attention, the spatial predictability of somatosensory targets was manipulated. In the first experiment, visual cues were nonpredictive for the location of the pain stimulus, as a result of which, orienting was purely exogenous, i.e., resulting from the occurrence of the visual cue at the location of somatosensory input. In the second experiment, visual cues were spatially predictive, as a result of which, endogenous control was added, i.e., attention driven by expectations of where the somatosensory target will occur. The results showed that only in experiment 1 was spatial attention oriented more efficiently to painful compared with nonpainful somatosensory stimulation. This effect was due to faster responses on valid relative to baseline trials (engagement), rather than slower responses on invalid relative to baseline trials (disengagement), and was significantly correlated with self-reported bodily threat. In experiment 2, prioritization of the pain location was probably overridden by task strategies because it was advantageous for participants' task performance to attend to the cued location irrespective of whether stimulation was painful or not. Implications of these findings for theories of hypervigilance and attentional management of pain are discussed.  相似文献   

2.
To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting) and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect.  相似文献   

3.
Cristescu TC  Devlin JT  Nobre AC 《NeuroImage》2006,33(4):1178-1187
We investigated the ability to orient attention to a complex, non-perceptual attribute of stimuli-semantic category. Behavioral consequences and neural correlates of semantic orienting were revealed and compared with those of spatial orienting, using event-related functional magnetic-resonance imaging. Semantic orienting significantly shortened response times to identify word stimuli, showing that it is possible to focus attention on non-perceptual attributes of stimuli to enhance behavioral performance. Semantic-orienting cues engaged parietal and frontal areas that were also involved in spatial orienting, but in addition engaged brain areas associated with semantic analysis of words, such as the left anterior inferior frontal cortex. These findings show that attentional orienting selectively engages brain areas with functional specialization for the predicted attributes. They also support the existence of a core frontoparietal network, which controls attentional orienting in speeded response tasks independently of the type of expectations, interacting with task-relevant functionally specialized areas to optimize perception and action.  相似文献   

4.
Hahn B  Ross TJ  Stein EA 《NeuroImage》2006,32(2):842-853
Allocation of attentional resources to portions of the available sensory input can be regulated by bottom-up processes, i.e., spontaneous orientation towards an oncoming stimulus (stimulus-driven attention), and by top-down processes, i.e., intentionally and driven by knowledge, expectation and goals. The present study aimed at advancing the understanding of brain networks mediating bottom-up and top-down control of visuospatial attention by employing a paradigm that parametrically varied demands on these two processes. Spatial predictability of peripheral targets was parametrically varied by centrally cueing one, two, three or four of four possible locations. Reaction time decreased linearly with more precise valid cueing of the target location and increased with more precise invalid cueing. Event-related functional magnetic resonance imaging (fMRI) enabled measurement of blood oxygenation level-dependent (BOLD) responses to cues and to targets. A mostly left-hemispheric network consisting of left intraparietal sulcus, inferior and superior parietal lobule, bilateral precuneus, middle frontal gyri including superior frontal sulci, and middle occipital gyri displayed BOLD responses to cues that increased linearly with more precise spatial cueing, indicating engagement by top-down spatial selective attention. In contrast, bilateral temporoparietal junction, cingulate gyrus, right precentral gyrus and anterior and posterior insula, bilateral fusiform gyri, lingual gyri and cuneus displayed BOLD responses to targets that increased with their spatial unpredictability, indicating engagement by stimulus-driven orienting. The results suggest two largely dissociated neural networks mediating top-down and bottom-up control of visuospatial selective attention.  相似文献   

5.
Neuropsychological research has consistently demonstrated that spatial attention can be anchored in one of several coordinate systems, including those defined with respect to an observer (viewer-centered), to the gravitational vector (environment-centered), or to individual objects (object-centered). In the present study, we used hemodynamic correlates of brain function to investigate the neural systems that mediate attentional control in two competing reference frames. Healthy volunteers were cued to locations defined in either viewer-centered or object-centered space to discriminate the shape of visual targets subsequently presented at the cued locations. Brain responses to attention-directing cues were quantified using event-related functional magnetic resonance imaging. A fronto-parietal control network was activated by attention-directing cues in both reference frames. Voluntary shifts of attention produced increased neural activity bilaterally in several cortical regions including the intraparietal sulcus, anterior cingulate cortex, and the frontal eye fields. Of special interest was the observation of hemispheric asymmetries in parietal cortex; there was significantly greater activity in left parietal cortex than in the right, but this asymmetry was more pronounced for object-centered shifts of attention, relative to viewer-centered shifts of attention. Measures of behavioral performance did not differ significantly between the two reference frames. We conclude that a largely overlapping, bilateral, cortical network mediates our ability to orient spatial attention in multiple coordinate systems, and that the left intraparietal sulcus plays an additional role for orienting in object-centered space. These results provide neuroimaging support for related claims based on findings of deficits in object-based orienting in patients with left parietal lesions.  相似文献   

6.
Mayer AR  Harrington D  Adair JC  Lee R 《NeuroImage》2006,30(3):938-949
Auditory information communicated through vocalizations, music, or sounds in the environment is commonly used to orient and direct attention to different locations in extrapersonal space. The neural networks subserving attention to auditory space remain poorly understood in comparison to our knowledge about attention in the visual system. The present study investigated whether a parietal-prefrontal right-hemisphere network controls endogenous orienting and reorienting of attention to the location of sounds just as it does for visual-spatial information. Seventeen healthy adults underwent event-related functional magnetic resonance imaging (FMRI) while performing an endogenous auditory orienting task, in which peripheral cues correctly (valid) or incorrectly (invalid) specified the location of a forthcoming sound. The results showed that a right precuneus and bilateral temporal-frontal network mediated the reorienting of auditory attention at both short and long stimulus onset asynchronies (SOAs). In contrast, the more automatic stage of auditory reorienting at the shorter SOA was associated with activation in a bilateral inferior parietal-frontal oculomotor network. These findings suggest that the reorienting of auditory attention is generally supported by a similar inferior parietal-frontal network as visual attention, but in both hemispheres. However, peripheral auditory cues also appear to elicit an automatic orienting response to the spatial location of a sound followed by a period of reduced processing of information that occurs in the same location later in time.  相似文献   

7.
Autism spectrum disorders (ASD) are characterized by significant social impairments, including deficits in orienting attention following social cues. Behavioral studies investigating social orienting in ASD, however, have yielded mixed results, as the use of naturalistic paradigms typically reveals clear deficits whereas computerized laboratory experiments often report normative behavior. The present study is the first to examine the neural mechanisms underlying social orienting in ASD in order to provide new insight into the social attention impairments that characterize this disorder. Using fMRI, we examined the neural correlates of social orienting in children and adolescents with ASD and in a matched sample of typically developing (TD) controls while they performed a spatial cueing paradigm with social (eye gaze) and nonsocial (arrow) cues. Cues were either directional (indicating left or right) or neutral (indicating no direction), and directional cues were uninformative of the upcoming target location in order to engage automatic processes by minimizing expectations. Behavioral results demonstrated intact orienting effects for social and nonsocial cues, with no differences between groups. The imaging results, however, revealed clear group differences in brain activity. When attention was directed by social cues compared to nonsocial cues, the TD group showed increased activity in frontoparietal attention networks, visual processing regions, and the striatum, whereas the ASD group only showed increased activity in the superior parietal lobule. Significant group × cue type interactions confirmed greater responsivity in task-relevant networks for social cues than nonsocial cues in TD as compared to ASD, despite similar behavioral performance. These results indicate that, in the autistic brain, social cues are not assigned the same privileged status as they are in the typically developing brain. These findings provide the first empirical evidence that the neural circuitry involved in social orienting is disrupted in ASD and highlight that normative behavioral performance in a laboratory setting may reflect compensatory mechanisms rather than intact social attention.  相似文献   

8.
Event-related fMRI was used to examine the neural basis of endogenous (top-down) and exogenous (bottom-up) spatial orienting. Shifts of attention were induced by central (endogenous) or peripheral (exogenous) cues. Reaction times on subsequently presented targets showed the expected pattern of facilitation and inhibition in both conditions. No difference in brain activity was observed when the two orienting conditions were contrasted with a liberal threshold, showing that both forms of orienting were mediated by the same neural network. Compared to within-block control trials, both endogenous and exogenous orienting activated a fronto-parietal network consisting of premotor cortex, posterior parietal cortex, medial frontal cortex and right inferior frontal cortex. Within these regions, equally strong activation was observed for both orienting conditions. It is concluded that endogenous and exogenous orienting are mediated by the same large-scale network of frontal and parietal brain areas.  相似文献   

9.
Previous studies have investigated neural correlates of visual search and memory search independently, but none of those studies examined whether cortical regions involved in these searches are overlapping or segregated by directly comparing the two types of search. In this study, we compared the cortical regions involved in visual search and memory search in the same functional magnetic resonance imaging (fMRI) experiment run on the same subjects, using identical stimuli and time courses of stimulus presentation. The right dorsolateral prefrontal cortex (DLPFC), the left frontal eye field (FEF), the right precuneus and cuneus, and the left cerebellum were activated by both visual search and memory search. We suggest that the right DLPFC is associated with the process of monitoring and manipulating multiple elements, while the left FEF is involved in cognitive planning. We also propose that the right precuneus and cuneus as well as the left cerebellum are responsible for both spatial and nonspatial shifts of attention, including attentional shifts in long-term memory, although each of these regions has a slightly different role.  相似文献   

10.
Attention can profoundly shape the experience of pain. However, little is known about the neural mechanisms that support directed attention to nociceptive information. In the present study, subjects were cued to attend to either the spatial location or the intensity of sequentially presented pairs of painful heat stimuli during a delayed match-to-sample discrimination task. We hypothesized that attention-related brain activation would be initiated after the presentation of the attentional cue and would be sustained through the discrimination task. Conjunction analysis confirmed that bilateral portions of the posterior parietal cortex (intraparietal sulcus [IPS] and superior parietal lobule) exhibited this sustained activity during attention to spatial but not intensity features of pain. Analyses contrasting activation during spatial and intensity attention tasks revealed that the right IPS region of the posterior parietal cortex was consistently more activated across multiple phases of the spatial task. However, attention to either feature of the noxious stimulus was associated with activation of frontoparietal areas (IPS and frontal eye fields) as well as priming of the primary somatosensory cortex. Taken together, these results delineate the neural substrates that support selective amplification of different features of noxious stimuli for utilization in discriminative processes.  相似文献   

11.
Visual spatial attention has long been associated with facilitatory effects on visual perception. Here, we report that spatial attention can also modulate implicit visuomotor processing in dorsal regions of human cortex. Participants underwent fMRI scanning while performing a voluntary attentional orienting task that varied the category of a task-irrelevant object in the attended location (tool vs. non-tool). Data were then analyzed as a function of the attended location (left vs. right visual field) and the object category in that location. We found that the fMRI BOLD response in two visuomotor-related regions--the supplementary motor area (SMA) and the left inferior parietal lobule (IPL)--showed an interaction between the location of attention and the location of the tool in the bilateral display. Further, these responses were statistically distinct from those regions in dorsal cortex showing activity modulated only by the tool location or only by the attended location. While the effects of attending non-foveally within the visual field have been well documented in relation to visual perception, our findings support the proposal that voluntary visuospatial attention may also have consequences for the implicit planning of object-directed actions.  相似文献   

12.
Allocating attention to a spatial location in the visual field is associated with an increase in the cortical response evoked by a stimulus at that location, compared to when the same stimulus is unattended. We used event-related functional magnetic resonance imaging to investigate attentional modulation of the cortical response to a stimulus probe at an attended location and to multiple probes at unattended locations. A localizer task and retinotopic mapping were used to precisely identify the cortical representations of each probe within striate (V1) and extrastriate cortex (V2, VP, V3, V4v, and V3A). The magnitude and polarity of attentional modulation were assessed through analysis of event-related activity time-locked to shifts in spatial attention. Attentional facilitation at the attended location was observed in striate and extrastriate cortex, corroborating earlier findings. Attentional inhibition of visual stimuli near the attended location was observed in striate cortex, and attentional inhibition of more distant stimuli occurred in both striate and extrastriate cortex. These findings indicate that visual attention operates both through facilitation of visual processing at the attended location and through inhibition of unattended stimulus representations in striate and extrastriate cortex.  相似文献   

13.
Visual conjunction search is proposed to be a multicomponent process which involves scaling and successive shifts of attention in space as well as object identification. Here, we first mapped brain areas sustaining the proposed attentional subprocesses and then tested whether their activity was modulated by search load, i.e., the number of shifts, as predicted by serial search models. Search load was manipulated indirectly by precueing a varying number of locations at which relevant objects were shown. Multiple subregions within the intraparietal sulcus (IPS) and the prefrontal cortex were activated after cueing. Activity in the right posterior IPS was modulated by the distance of attention shifts and in the left posterior IPS by "zooming out" to cover a large region of the visual field. More anterior subregions of the left IPS responded to object identification irrespective of the need for serial scanning. Corresponding regions in the right IPS were modulated parametrically with respect to search load, along with the right temporoparietal junction. These results support a functional segregation of subregions of the IPS. The posterior regions participate in large-scale shifts and scaling of the attentional focus and the anterior regions in object identification and rapid serial shifts during search. The sustained activation in the frontal eye fields after cueing suggests a role in maintaining attention in the periphery. Together with the findings in early visual areas from this experiment (Müller et al., 2003) the current observations are best accounted for by hybrid models of visual conjunction search, where parallel processing in visual and temporoparietal regions and serial scanning controlled by the right IPS cooperate.  相似文献   

14.
目的:探讨脑损伤后致左侧空间忽略患者的注意捕捉效应。方法:本研究对右侧大脑半球损伤伴左侧忽略的患者及健康被试各20例,分别进行神经心理学背景测试及关联性注意捕捉效应测试,观察左侧空间忽略患者与健康被试之间注意捕捉效应的差异,分析影响关联性注意捕捉效应强度的因素。结果:①与健康对照组相比,左侧空间忽略组的数字捕捉正确率明显降低(P<0.01)。②健康对照组:无论干扰刺激颜色与目标刺激颜色是否一致,左侧视野出现干扰刺激时的数字捕捉正确率均明显低于右侧视野出现干扰刺激时(P<0.01);无论干扰刺激在目标刺激的左侧或右侧,当干扰刺激颜色与目标刺激颜色一致时,数字捕捉正确率低于干扰刺激颜色与目标刺激颜色不一致时(P<0.01,0.05)。③左侧空间忽略组:无论干扰刺激颜色与目标刺激颜色是否一致,右侧视野出现干扰刺激时的数字捕捉正确率均低于左侧视野出现干扰刺激时(P<0.05);左侧视野出现的干扰刺激颜色与目标刺激颜色一致或不一致时,对数字捕捉正确率的影响差异无统计学意义,而右侧视野出现的干扰刺激颜色与目标刺激颜色一致时,数字捕捉正确率低于颜色不一致时(P<0.05)。结论:左侧空间忽略患者的注意功能下降,但无论对于健康受试者或者左侧空间忽略患者,符合目标刺激颜色特征的干扰刺激均能够增强非随意性地注意捕捉效应。  相似文献   

15.
目的:探讨右侧额顶网络(FPN)与视空间注意认知功能的关联性和作用机制.方法:选取志愿受试者60人参加本实验,随机分为顶叶组和额叶组.采用持续短阵快速脉冲(cTBS)经颅磁刺激(rTMS)右侧背外侧前额叶(DLPFC)和后顶叶皮质(DPC)后进行注意网络测试(ANT),所有受试者均按照随机顺序进行真/假刺激.结果:持续短阵快速脉冲经颅磁刺激施加于前额叶和后顶叶,不同提示和刺激类型的平均反应时均无明显改变.右侧后顶叶抑制,警觉和定向功能受损(P<0.05);右侧额叶抑制,执行功能受损(P<0.05),而定向功能增强(P<0.05).结论:在视空间注意过程中,右侧后顶叶是定向功能的关键区,右侧前额叶是执行功能的关键区,并且右侧额顶区之间存在竞争性抑制现象.  相似文献   

16.
Functional magnetic resonance imaging (fMRI) was used to determine the brain regions activated by two types of covert visuospatial attentional shifts: one based on exogenous spatial priming and the other on foveally presented cues which endogenously regulated the direction of spatial expectancy. Activations were seen in the cortical and subcortical components of a previously characterized attentional network, namely, the frontal eye fields, posterior parietal cortex, the cingulate gyrus, the putamen, and the thalamus. Additional activations occurred in the anterior insula, dorsolateral prefrontal cortex, temporo-occipital cortex in the middle and inferior temporal gyri, the supplementary motor area, and the cerebellum. Direct comparisons showed a nearly complete overlap in the location of activations resulting from the two tasks. However, the spatial priming task displayed a more pronounced rightward asymmetry of parietal activation, and a conjunction analysis showed that the area of posterior parietal cortex jointly activated by both tasks was more extensive in the right hemisphere. Furthermore, the posterior parietal and temporo-occipital activations were more pronounced in the task of endogenous attentional shifts. The results show that both exogenous (based on spatial priming) and endogenous (based on expectancy cueing) shifts of attention are subserved by a common network of cortical and subcortical regions. However, the differences between the two tasks, especially in the degree of rightward asymmetry, suggests that the pattern of activation within this network may show variations that reflect the specific attributes of the attentional task.  相似文献   

17.
Visual attention can be automatically re-oriented by another person's non-predictive gaze as well as by symbolic arrow cues. We investigated whether the shifts of attention triggered by biologically relevant gaze cues and biologically non-relevant arrow cues rely on the same neural systems by comparing the effects of gaze-cued and arrow-cued orienting on blood oxygenation level-dependent (BOLD) signal in humans. Participants detected laterally presented reaction signals preceded by centrally presented non-predictive gaze and arrow cues. Directional gaze cues and arrow cues were presented in separate blocks. Furthermore, two separate control blocks were run in which non-directional cues (straight gaze or segment of a line) were used. The BOLD signals during the control blocks were subtracted from those during the respective blocks with directional cues. Behavioral data showed that, for both cue types, reaction times were shorter on congruent than incongruent trials. Imaging data revealed three foci of activation for gaze-cued orienting: in the left inferior occipital gyrus and right medial and inferior occipital gyri. For arrow-cued orienting, a much more extensive network was activated. There were large postcentral activations bilaterally including areas in the medial/inferior occipital gyri and medial temporal gyri and in the left intraparietal area. Interestingly, arrow cuing also activated the right frontal eye field and supplementary eye field. The results suggest that attention orienting by gaze cues and attention orienting by arrow cues are not supported by the same cortical network and that attention orienting by symbolic arrow cues relies on mechanisms associated with voluntary shifts of attention.  相似文献   

18.
Functional studies of auditory spatial attention generally report enhanced neural responses in auditory cortical regions. However, activity in regions of the spatial attentional network as described in the visual modality is not consistently observed. Data analysis limitations due to oppositely lateralized activity depending on the side of attentional orientation and heterogeneity of paradigms makes it hard to untangle the possible causes of these various activation patterns. In the present article we present a PET study of auditory spatial attention in which we manipulated orientation of attention, attentional load, and difficulty of the task by means of the dichotic listening paradigm. Moreover, we designed a systematic, voxel-specific, method in order to deal with oppositely lateralized activity. The results show that when listeners are involved in auditory spatial attention tasks an interacting network of frontal, temporal, and parietal regions is activated. Selective orientation toward one side mostly yields activity and connectivity modulations in the hemisphere contralateral to the attended side while in divided attention activity is mostly bilateral. Taken together, our observations are consistent with the idea of a multimodal large-scale attentional network.  相似文献   

19.
Thiel CM  Zilles K  Fink GR 《NeuroImage》2004,21(1):318-328
The identification of brain systems contributing to different aspects of visuospatial attention is of both clinical and theoretical interest. Cued target detection tasks provide a simple means to dissociate attentional subcomponents, such as alerting, orienting or reorienting of attention. Event-related functional magnetic resonance imaging (fMRI) was used to study neural correlates of these distinct attentional processes. Volunteers were scanned while performing a centrally cued target detection task. Four different types of trials (no cue, neutral cue, valid cue and invalid cue trials) with targets appearing either in the right or left hemifield were randomly intermixed. Behaviourally, the data provided evidence for alerting, spatial orienting and reorienting of attention. Neurally, the alerting effect was seen in bilaterally increased extrastriatal blood oxygenation level-dependent (BOLD) activity in neutral as compared to no cue trials. Neural correlates of spatial orienting were seen in anterior cingulate cortex, which was more active during valid as compared to neutral cue trials. Neural correlates of reorienting of attention, that is, higher BOLD activity to invalid as compared to validly cued trials were evident in several brain regions including left and right intraparietal sulcus, right temporo-parietal junction and middle frontal gyrus bilaterally. The data suggest that frontal and parietal regions are specifically involved in reorienting rather than orienting attention to a spatial position. Alerting effects were seen in extrastriate regions which suggest that increased phasic alertness results in a top-down modulation of neural activity in visual processing areas.  相似文献   

20.
This study investigated attentional biases for linguistic pain-related stimuli in individuals suffering from chronic headaches and healthy controls. Attentional bias was assessed using a visual probe (also reported as dot probe in previous investigations) task which presented pain-related (sensory and affective) and neutral words at two exposure duration conditions, 500 and 1250 ms. The results indicated that individuals suffering from chronic headaches showed a significantly greater attentional bias at 1250 ms compared to the controls, which indicates a bias in maintained attention to pain cues in this group. No significant differences between groups were found in attentional bias scores at the shorter stimulus duration of 500 ms, which instead correlated significantly with trait anxiety. Results are discussed in relation to research into pain-related and anxiety-related biases in initial orienting and maintained attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号