首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of the ANIMAL (Automated Nonlinear Image Matching and Anatomical Labeling) nonlinear registration algorithm for registration of thoracic 4D CT images was investigated. The algorithm was modified to minimize the incidence of deformation vector discontinuities that occur during the registration of lung images. Registrations were performed between the inhale and exhale phases for five patients. The registration accuracy was quantified by the cross-correlation of transformed and target images and distance to agreement (DTA) measured based on anatomical landmarks and triangulated surfaces constructed from manual contours. On average, the vector DTA between transformed and target landmarks was 1.6 mm. Comparing transformed and target 3D triangulated surfaces derived from planning contours, the average target volume (GTV) center-of-mass shift was 2.0 mm and the 3D DTA was 1.6 mm. An average DTA of 1.8 mm was obtained for all planning structures. All DTA metrics were comparable to inter observer uncertainties established for landmark identification and manual contouring.  相似文献   

2.
The registration of a three-dimensional (3D) ultrasound (US) image with a computed tomography (CT) or magnetic resonance image is beneficial in various clinical applications such as diagnosis and image-guided intervention of the liver. However, conventional methods usually require a time-consuming and inconvenient manual process for pre-alignment, and the success of this process strongly depends on the proper selection of initial transformation parameters. In this paper, we present an automatic feature-based affine registration procedure of 3D intra-operative US and pre-operative CT images of the liver. In the registration procedure, we first segment vessel lumens and the liver surface from a 3D B-mode US image. We then automatically estimate an initial registration transformation by using the proposed edge matching algorithm. The algorithm finds the most likely correspondences between the vessel centerlines of both images in a non-iterative manner based on a modified Viterbi algorithm. Finally, the registration is iteratively refined on the basis of the global affine transformation by jointly using the vessel and liver surface information. The proposed registration algorithm is validated on synthesized datasets and 20 clinical datasets, through both qualitative and quantitative evaluations. Experimental results show that automatic registration can be successfully achieved between 3D B-mode US and CT images even with a large initial misalignment.  相似文献   

3.
CT扫描中,水溶性碘造影的存在使得计划CT和在线CT图像中血管内的HU值出现非常大的偏差,从而导致计划CT和在线CT图像错配。针对该问题,本研究提出了一种基于预处理的计划CT和在线CT形变配准方法。首先,根据CT图像组织和结构的信息,利用阈值分割方法分割出血管,并将所有分割中最大的联通区域作为初始分割的强化血管;其次,利用分割得到的强化血管区域外扩5 mm,作为外扩的强化血管,并将血管用固定的HU值进行填充;最后,对完成填充后的图像利用Demons算法进行形变配准。实验结果显示本文提出的带有预处理的形变配准方法,可以较好地解决水溶性碘造影剂引起的CT错配问题。  相似文献   

4.
提出一种基于血管匹配的三维超声与CT图像配准的新方法.首先,基于水平集方法自动分割出CT图像中的血管;其次,由于超声图像中的声影与血管均属于低回声区域,我们结合声影形成的物理原理及图像纹理特性,自动检测出声影区域,以提高配准的鲁棒性;最后,采用进化算法,将CT图像中分割出的血管与超声图像中低回声区域进行匹配.在肝脏体模和临床脾脏数据上进行了实验验证,自动配准的成功率在95%以上,平均目标配准误差在2 mm以内,实验结果验证了本方法的可行性.  相似文献   

5.
Conventional approaches to image registration are generally limited to image-wide rigid transformations. However, the body and its internal organs are non-rigid structures that change shape due to changes in the body's posture during image acquisition, and due to normal, pathological and treatment-related variations. Inter-subject matching also constitutes a non-rigid registration problem. In this paper, we present a fully automated non-rigid image registration method that maximizes a local voxel-based similarity metric. Overlapping image blocks are defined on a 3D grid. The transformation vector field representing image deformation is found by translating each block so as to maximize the local similarity measure. The resulting sparsely sampled vector field is median filtered and interpolated by a Gaussian function to ensure a locally smooth transformation. A hierarchical strategy is adopted to progressively establish local registration associated with image structures at diminishing scale. Simulation studies were carried out to evaluate the proposed algorithm and to determine the robustness of various voxel-based cost functions. Mutual information, normalized mutual information, correlation ratio (CR) and a new symmetric version of CR were evaluated and compared. A T1-weighted magnetic resonance (MR) image was used to test intra-modality registration. Proton density and T2-weighted MR images of the same subject were used to evaluate inter-modality registration. The proposed algorithm was tested on the 2D MR images distorted by known deformations and 3D images simulating inter-subject distortions. We studied the robustness of cost functions with respect to image sampling. Results indicate that the symmetric CR gives comparable registration to mutual information in intra- and inter-modality tasks at full sampling and is superior to mutual information in registering sparsely sampled images.  相似文献   

6.
Deformable registration of 4D computed tomography data   总被引:2,自引:0,他引:2  
Rietzel E  Chen GT 《Medical physics》2006,33(11):4423-4430
Four-dimensional radiotherapy requires deformable registration to track delivered dose across varying anatomical states. Deformable registration based on B-splines was implemented to register 4D computed tomography data to a reference respiratory phase. To assess registration performance, anatomical landmarks were selected across ten respiratory phases in five patients. These point landmarks were transformed according to global registration parameters between different respiratory phases. Registration uncertainties were computed by subtraction of transformed and reference landmark positions. The selection of appropriate registration masks to separate independently moving anatomical subunits is crucial to registration performance. The average registration error for five landmarks for each of five patients was 2.1 mm. This level of accuracy is acceptable for most radiotherapy applications.  相似文献   

7.
融合图像放疗靶区定位精度的检验和初步临床结果   总被引:1,自引:0,他引:1  
目的:探讨以图像融合技术为基础的肿瘤三维适形放疗靶区定位精度的检验及依据融合图像放疗靶区的确定与单纯CT影像放疗靶区确定的初步临床结果。方法:利用定制的模体分别行CT、MRI和PET成像,进行CT与MRI,CT与PET融合。检验融合后定制标记点的定位精度。对3例特殊病例分别以单纯CT图像为基础和融合图像为基础,进行三维适形放疗靶区认定,对不同医生之间和同一医生在不同时间,放疗靶区定义情况进行对照分析。结果:MRI/CT融合图像总定位精度小于2mm,PET/CT图像融合图像融合精度情况(包括同机融合和异机融合),采用不同的融合算法。定位精度有显著差异(P〈0.01,t=5.385)。单纯利用CT图像进行靶区的定义,不同医生之间,在不同的时间存在差异(P〈0.05),而采用融合技术可减少他们的争议和差异。结论:利用多模式图像融合可以提高靶区定义的准确性.有利于三维适形精确放射治疗。  相似文献   

8.
In this paper we describe a method to non-rigidly co-register a 2D slice sequence from real-time 3D echocardiography with a 2D cardiovascular MR image sequence. This is challenging because the imaging modalities have different spatial and temporal resolution. Non-rigid registration is required for accurate alignment due to imprecision of cardiac gating and natural motion variations between cardiac cycles. In our approach the deformation field between the imaging modalities is decoupled into temporal and spatial components. First, temporal alignment is performed to establish temporal correspondence between a real-time 3D echocardiography frame and a cardiovascular MR frame. Spatial alignment is then performed using an adaptive non-rigid registration algorithm based on local phase mutual information on each temporally aligned image pair. Experiments on seven volunteer datasets are reported. Evaluation of registration errors based on expert-identified landmarks shows that the spatio-temporal registration algorithm gives a mean registration error of 3.56 ± 0.49 and 3.54 ± 0.27 mm for the short and long axis sequences, respectively.  相似文献   

9.
Deformable image registration (DIR) is increasingly used in radiotherapy applications and provides the basis for a previously described model of patient-specific respiratory motion. We examine the accuracy of a DIR algorithm and a motion model with respiration-correlated CT (RCCT) images of software phantom with known displacement fields, physical deformable abdominal phantom with implanted fiducials in the liver and small liver structures in patient images. The motion model is derived from a principal component analysis that relates volumetric deformations with the motion of the diaphragm or fiducials in the RCCT. Patient data analysis compares DIR with rigid registration as ground truth: the mean ± standard deviation 3D discrepancy of liver structure centroid positions is 2.0 ± 2.2 mm. DIR discrepancy in the software phantom is 3.8 ± 2.0 mm in lung and 3.7 ± 1.8 mm in abdomen; discrepancies near the chest wall are larger than indicated by image feature matching. Marker's 3D discrepancy in the physical phantom is 3.6 ± 2.8 mm. The results indicate that visible features in the images are important for guiding the DIR algorithm. Motion model accuracy is comparable to DIR, indicating that two principal components are sufficient to describe DIR-derived deformation in these datasets.  相似文献   

10.
We have evaluated an automated registration procedure for predicting tumor and lung deformation based on CT images of the thorax obtained at different respiration phases. The method uses a viscous fluid model of tissue deformation to map voxels from one CT dataset to another. To validate the deformable matching algorithm we used a respiration-correlated CT protocol to acquire images at different phases of the respiratory cycle for six patients with nonsmall cell lung carcinoma. The position and shape of the deformable gross tumor volumes (GTV) at the end-inhale (EI) phase predicted by the algorithm was compared to those drawn by four observers. To minimize interobserver differences, all observers used the contours drawn by a single observer at end-exhale (EE) phase as a guideline to outline GTV contours at EI. The differences between model-predicted and observer-drawn GTV surfaces at EI, as well as differences between structures delineated by observers at EI (interobserver variations) were evaluated using a contour comparison algorithm written for this purpose, which determined the distance between the two surfaces along different directions. The mean and 90% confidence interval for model-predicted versus observer-drawn GTV surface differences over all patients and all directions were 2.6 and 5.1 mm, respectively, whereas the mean and 90% confidence interval for interobserver differences were 2.1 and 3.7 mm. We have also evaluated the algorithm's ability to predict normal tissue deformations by examining the three-dimensional (3-D) vector displacement of 41 landmarks placed by each observer at bronchial and vascular branch points in the lung between the EE and EI image sets (mean and 90% confidence interval displacements of 11.7 and 25.1 mm, respectively). The mean and 90% confidence interval discrepancy between model-predicted and observer-determined landmark displacements over all patients were 2.9 and 7.3 mm, whereas interobserver discrepancies were 2.8 and 6.0 mm. Paired t tests indicate no significant statistical differences between model predicted and observer drawn structures. We conclude that the accuracy of the algorithm to map lung anatomy in CT images at different respiratory phases is comparable to the variability in manual delineation. This method has therefore the potential for predicting and quantifying respiration-induced tumor motion in the lung.  相似文献   

11.
The registration of CT and NM images can enhance patient diagnosis since it allows for the fusion of anatomical and functional information as well as attenuation correction of NM images. However, irrespective of the methods used, registration accuracy depends heavily on the characteristics of the input images and the degree of similarity between them. This poses a challenge for registering CT and NM images as they may have very different characteristics. To address the particular problem of CT and In-111 SPECT registration, we propose to perform a dual-isotope study which involves an additional injection of Tc-99m MDP to generate two inherently registered images: In-111 SPECT and Tc-99m SPECT. As skeletal structures are visible in both CT and Tc-99m SPECT, performing registration of these images may be much more effective. The very same spatial transformation derived can be immediately applied to complete the registration of CT and the corresponding In-111 SPECT. Accordingly, we hypothesize that the registration of CT and Tc-99m SPECT can be more accurately performed than the registration of CT and In-111 SPECT and seek to compare the accuracies between the aforementioned registrations. In this paper, we have collected three clinical datasets, with the ground-truth transformations known, and tested the proposed approach by using a mutual information-based algorithm to solve for the rigid/non-rigid misalignments introduced to them. Based on the results of our experiments, we conclude that registration using Tc-99m SPECT can achieve 100% success rate, and is thus much more superior to the registration using In-111 SPECT, which at best, achieves only 38% success rate. Clearly, the introduction of a dual-isotope acquisition can substantially improve the registration of SPECT and CT images.  相似文献   

12.
We present a technique for modeling liver motion during the respiratory cycle using intensity-based nonrigid registration of gated magnetic resonance (MR) images. Three-dimensional MR images of the abdomens of four volunteers were acquired at end-inspiration, end-expiration, and eight time points in between using respiratory gating. The deformation fields between the images were computed using intensity-based rigid and nonrigid registration algorithms. Global motion is modeled by a rigid transformation while local motion is modeled by a free-form deformation based on B-splines. Much of the liver motion was cranial-caudal translation, which was captured by the rigid transformation. However, there was still substantial residual deformation (approximately 10 mm averaged over the entire liver in four volunteers, and 34 mm at one place in the liver of one volunteer). The computed organ motion model can potentially be used to determine an appropriate respiratory-gated radiotherapy window during which the position of the target is known within a specified excursion.  相似文献   

13.
Registration of magnetic resonance brain images is a geometric operation that determines point-wise correspondences between two brains. It remains a difficult task due to the highly convoluted structure of the brain. This paper presents novel methods, Brain Image Registration Tools (BIRT), that can rapidly and accurately register brain images by utilizing the brain structure information estimated from image derivatives. Source and target image spaces are related by affine transformation and non-rigid deformation. The deformation field is modeled by a set of Wendland’s radial basis functions hierarchically deployed near the salient brain structures. In general, nonlinear optimization is heavily engaged in the parameter estimation for affine/non-rigid transformation and good initial estimates are thus essential to registration performance. In this work, the affine registration is initialized by a rigid transformation, which can robustly estimate the orientation and position differences of brain images. The parameters of the affine/non-rigid transformation are then hierarchically estimated in a coarse-to-fine manner by maximizing an image similarity measure, the correlation ratio, between the involved images. T1-weighted brain magnetic resonance images were utilized for performance evaluation. Our experimental results using four 3-D image sets demonstrated that BIRT can efficiently align images with high accuracy compared to several other algorithms, and thus is adequate to the applications which apply registration process intensively. Moreover, a voxel-based morphometric study quantitatively indicated that accurate registration can improve both the sensitivity and specificity of the statistical inference results.  相似文献   

14.
在股骨近端骨质疏松进程以及股骨头坏死状况评估方法中,图像分析是常用的工具,通过不同时相以及不同模式的多组影像可以对病人病情进行更全面的综合评估。然而,在综合评估过程中,由于病人多次在不同系统中成像,体位的差异使不同图像组之间的解剖点位置无法一一对应,因此分析之前需要将多组图像对齐,才能观察同一感兴趣区在不同模式或不同时间骨组织状况的差异。针对这个问题,设计一种多模式、多时相图像配准的解决方案,通过图像的前处理、双阈值分类并结合贝叶斯分类的股骨分割得到股骨体素,然后通过基于归一化互信息的图像配准获得各组图像中股骨之间的三维空间刚性变换矩阵,其中CT与MR图像的配准误差在4 mm以下,CT与CT图像的配准误差在2 mm以下。利用矩阵传递关系,以CT-CT多时相的配准矩阵为基础,可获取任何两组图像间的变换矩阵。在此基础上,再进行任意两组图像的融合、点对点的分析以及骨质状况和血供状况的定量评估。通过该方案,可以对多时相、多模式图像分析中相同感兴趣的区域进行对比。  相似文献   

15.
This paper describes a computer-aided navigation system using image fusion to support endoscopic interventions such as the accurate collection of biopsy specimens. An endoscope provides the physician with real-time ultrasound (US) and a video image. An image slice that corresponds to the corresponding image from the US scan head is derived from a preoperative computed tomography (CT) or magnetic resonance image volume data set using oblique reformatting and displayed side by side with the US image. The position of the image acquired by the US scan head is determined by a miniaturized electromagnetic tracking system (EMTS) after calibrating the endoscope's scan head. The transformation between the patient coordinate system and the preoperative data set is calculated using a 2D/3D registration. This is achieved by calibrating an intraoperative interventional CT slice with an optical tracking system (OTS) using the same algorithm as for the US calibration. The slice is then used for 2D/3D registration with the coordinate system of the preoperative volume. The fiducial registration error (FRE) for the US calibration was 2.0 mm +/- 0.4 mm; the interventional CT FRE was 0.36 +/- 0.12 mm; and the 2D/3D registration target registration error (TRE) was 1.8 +/- 0.3 mm. The point-to-point registration between the OTS and the EMTS had an FRE of 0.9 +/- 0.4 mm. Finally, we found an overall TRE for the complete system to be 3.9 +/- 0.6 mm.  相似文献   

16.
The endorectal coil is being increasingly used in magnetic resonance imaging (MRI) and MR spectroscopic imaging (MRSI) to obtain anatomic and metabolic images of the prostate with high signal-to-noise ratio (SNR). In practice, however, the use of endorectal probe inevitably distorts the prostate and other soft tissue organs, making the analysis and the use of the acquired image data in treatment planning difficult. The purpose of this work is to develop a deformable image registration algorithm to map the MRI/MRSI information obtained using an endorectal probe onto CT images and to verify the accuracy of the registration by phantom and patient studies. A mapping procedure involved using a thin plate spline (TPS) transformation was implemented to establish voxel-to-voxel correspondence between a reference image and a floating image with deformation. An elastic phantom with a number of implanted fiducial markers was designed for the validation of the quality of the registration. Radiographic images of the phantom were obtained before and after a series of intentionally introduced distortions. After mapping the distorted phantom to the original one, the displacements of the implanted markers were measured with respect to their ideal positions and the mean error was calculated. In patient studies, CT images of three prostate patients were acquired, followed by 3 Tesla (3 T) MR images with a rigid endorectal coil. Registration quality was estimated by the centroid position displacement and image coincidence index (CI). Phantom and patient studies show that TPS-based registration has achieved significantly higher accuracy than the previously reported method based on a rigid-body transformation and scaling. The technique should be useful to map the MR spectroscopic dataset acquired with ER probe onto the treatment planning CT dataset to guide radiotherapy planning.  相似文献   

17.
We developed a novel digital tomosynthesis (DTS) reconstruction method using a deformation field map to optimally estimate volumetric information in DTS images. The deformation field map is solved by using prior information, a deformation model, and new projection data. Patients' previous cone-beam CT (CBCT) or planning CT data are used as the prior information, and the new patient volume to be reconstructed is considered as a deformation of the prior patient volume. The deformation field is solved by minimizing bending energy and maintaining new projection data fidelity using a nonlinear conjugate gradient method. The new patient DTS volume is then obtained by deforming the prior patient CBCT or CT volume according to the solution to the deformation field. This method is novel because it is the first method to combine deformable registration with limited angle image reconstruction. The method was tested in 2D cases using simulated projections of a Shepp-Logan phantom, liver, and head-and-neck patient data. The accuracy of the reconstruction was evaluated by comparing both organ volume and pixel value differences between DTS and CBCT images. In the Shepp-Logan phantom study, the reconstructed pixel signal-to-noise ratio (PSNR) for the 60 degrees DTS image reached 34.3 dB. In the liver patient study, the relative error of the liver volume reconstructed using 60 degrees projections was 3.4%. The reconstructed PSNR for the 60 degrees DTS image reached 23.5 dB. In the head-and-neck patient study, the new method using 60 degrees projections was able to reconstruct the 8.1 degrees rotation of the bony structure with 0.0 degrees error. The reconstructed PSNR for the 60 degrees DTS image reached 24.2 dB. In summary, the new reconstruction method can optimally estimate the volumetric information in DTS images using 60 degrees projections. Preliminary validation of the algorithm showed that it is both technically and clinically feasible for image guidance in radiation therapy.  相似文献   

18.
Positron emission tomography (PET) provides important information on tumor biology, but lacks detailed anatomical information. Our aim in the present study was to develop and validate an automatic registration method for matching PET and CT scans of the head and neck. Three difficulties in achieving this goal are (1) nonrigid motions of the neck can hamper the use of automatic ridged body transformations; (2) emission scans contain too little anatomical information to apply standard image fusion methods; and (3) no objective way exists to quantify the quality of the match results. These problems are solved as follows: accurate and reproducible positioning of the patient was achieved by using a radiotherapy treatment mask. The proposed method makes use of the transmission rather than the emission scan. To obtain sufficient (anatomical) information for matching, two bed positions for the transmission scan were included in the protocol. A mutual information-based algorithm was used as a registration technique. PET and CT data were obtained in seven patients. Each patient had two CT scans and one PET scan. The datasets were used to estimate the consistency by matching PET to CT1, CT1 to CT2, and CT2 to PET using the full circle consistency test. It was found that using our method, consistency could be obtained of 4 mm and 1.3 degrees on average. The PET voxels used for registration were 5.15 mm, so the errors compared quite favorably with the voxel size. Cropping the images (removing the scanner bed from images) did not improve the consistency of the algorithm. The transmission scan, however, could potentially be reduced to a single position using this approach. In conclusion, the represented algorithm and validation technique has several features that are attractive from both theoretical and practical point of view, it is a user-independent, automatic validation technique for matching CT and PET scans of the head and neck, which gives the opportunity to compare different image enhancements.  相似文献   

19.
目的提出一种基于Contourlet变换,用于放射治疗定位的CT与锥形束CT(cone beam CT,CBCT)图像配准的方法。方法利用Contourlet变换多尺度多方向的分辨特性,将待配准图像进行Contourlet变换分解,分解后的高频方向子带合成梯度图像,采用归一化互信息作为相似性测度,把梯度图像与低频方向子带以加权函数结合,进行临床医学图像的刚性配准,有效弥补了互信息配准中缺少空间信息的不足。结果通过已知空间变换参数图像的配准结果验证了算法的准确性。配准后lO幅图像变换参数的误差极小,且均方根误差接近于0。结论该图像配准算法精确度高,并具有很好的鲁棒性,有助于提高图像引导放射治疗(image guid edradiation therapy,IGRT)中解剖组织结构和靶区的定位精度。  相似文献   

20.
A successful surface-based image-to-physical space registration in image-guided liver surgery (IGLS) is critical to provide reliable guidance information to surgeons and pertinent surface displacement data for use in deformation correction algorithms. The current protocol used to perform the image-to-physical space registration involves an initial pose estimation provided by a point based registration of anatomical landmarks identifiable in both the preoperative tomograms and the intraoperative presentation. The surface based registration is then performed via a traditional iterative closest point (ICP) algorithm between the preoperative liver surface, segmented from the tomographic image set, and an intraoperatively acquired point cloud of the liver surface provided by a laser range scanner. Using this more conventional method, the registration accuracy can be compromised by poor initial pose estimation as well as tissue deformation due to the laparotomy and liver mobilization performed prior to tumor resection. In order to increase the robustness of the current surface-based registration method used in IGLS, we propose the incorporation of salient anatomical features, identifiable in both the preoperative image sets and intraoperative liver surface data, to aid in the initial pose estimation and play a more significant role in the surface-based registration via a novel weighting scheme. Examples of such salient anatomical features are the falciform groove region as well as the inferior ridge of the liver surface. In order to validate the proposed weighted patch registration method, the alignment results provided by the proposed algorithm using both single and multiple patch regions were compared with the traditional ICP method using six clinical datasets. Robustness studies were also performed using both phantom and clinical data to compare the resulting registrations provided by the proposed algorithm and the traditional method under conditions of varying initial pose. The results provided by the robustness trials and clinical registration comparisons suggest that the proposed weighted patch registration algorithm provides a more robust method with which to perform the image-to-physical space registration in IGLS. Furthermore, the implementation of the proposed algorithm during surgical procedures does not impose significant increases in computation or data acquisition times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号