首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.

Background:

Cancerous stem-like cells (CSCs) have been implicated as cancer-initiating cells in a range of malignant tumours. Diverse genetic programs regulate CSC behaviours, and CSCs from glioblastoma patients are qualitatively distinct from each other. The intrinsic connection between the presence of CSCs and malignancy is unclear. We set out to test whether tumour stem-like cells can be identified from benign tumours.

Methods:

Tumour sphere cultures were derived from hormone-positive and -negative pituitary adenomas. Characterisation of tumour stem-like cells in vitro was performed using self-renewal assays, stem cell-associated marker expression analysis, differentiation, and stimulated hormone production assays. The tumour-initiating capability of these tumour stem-like cells was tested in serial brain tumour transplantation experiments using SCID mice.

Results:

In this study, we isolated sphere-forming, self-renewable, and multipotent stem-like cells from pituitary adenomas, which are benign tumours. We found that pituitary adenoma stem-like cells (PASCs), compared with their differentiated daughter cells, expressed increased levels of stem cell-associated gene products, antiapoptotic proteins, and pituitary progenitor cell markers. Similar to CSCs isolated from glioblastomas, PASCs are more resistant to chemotherapeutics than their differentiated daughter cells. Furthermore, differentiated PASCs responded to stimulation with hypothalamic hormones and produced corresponding pituitary hormones that are reflective of the phenotypes of the primary pituitary tumours. Finally, we demonstrated that PASCs are pituitary tumour-initiating cells in serial transplantation animal experiments.

Conclusion:

This study for the first time indicates that stem-like cells are present in benign tumours. The conclusions from this study may have applications to understanding pituitary tumour biology and therapies, as well as implications for the notion of tumour-initiating cells in general.  相似文献   

2.
The concept of stem-like cells in cancer has been gaining currency over the last decade or so since evidence for stem cell activity in human leukaemia and solid tumours, including breast cancer, was first published. The evidence established that sub-populations of cells identified by antibodies to cell surface markers behaved like developmental stem cells in their capacity to re-grow the human tumour for several generations in experimental immune-deficient hosts. The experiments established that cells with tumourigenic capacity expressed ‘cancer stem cell’ (CSC) markers and that activity could also be measured by self-renewal of tumour sphere colonies in culture. In breast and other cancers, there is good evidence that CSCs are relatively resistant to radio- and chemotherapy indicating that novel CSC-targeted therapies are needed. Several pathways are promising targets in breast CSCs. There are several ways of combating CSC activity including inducing their apoptosis, inhibiting stem cell self-renewal to either stop their division or to promote their differentiation, or targeting the CSC niche that supports them. The first challenge for developing novel CSC therapies is to ascertain which of these CSC properties is being targeted. The second challenge is to determine suitable CSC biomarkers to measure the efficacy of the novel CSC therapies. We propose using biomarkers as a means to identify and assess CSC activity in clinical trials. This is likely to be demanding but feasible in the near future. Thus, we asked if CSCs are ready for the clinic, however, the emerging question becomes: is the clinic ready for cancer stem cells?  相似文献   

3.
缺氧微环境是实体肿瘤的典型特征,被认为是导致肿瘤进展及预后差的独立因素;作为肿瘤干细胞(cancerstem cells ,CSCs)壁龛的关键组成部分,缺氧微环境对肿瘤干细胞在肿瘤中的演进以及抗凋亡能力起着重要的作用。缺氧诱导因子(hypoxia-induciblefactors,HIFs )是肿瘤适应缺氧微环境的中心调节因子,能够诱导肿瘤干细胞生物学行为的改变如抗凋亡、增强耐药基因表达、促进肿瘤侵袭转移等,从而加速肿瘤恶性转变;同时HIFs 也是维持肿瘤干细胞其干细胞特性的主要影响因素。本文对HIFs 在维持肿瘤干细胞生物学特性的研究进展进行综述。   相似文献   

4.

Introduction  

The irregular vasculature of solid tumors creates hypoxic regions, which are characterized by cyclic periods of hypoxia and reoxygenation. Accumulated evidence suggests that chronic and repetitive exposure to hypoxia and reoxygenation seem to provide an advantage to tumor growth. Although the development of hypoxia tolerance in tumors predicts poor prognosis, mechanisms contributing to hypoxia tolerance remain to be elucidated. Recent studies have described a subpopulation of cancer stem cells (CSC) within tumors, which have stem-like properties such as self-renewal and the ability to differentiate into multiple cell types. The cancer stem cell theory suggests CSCs persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors. Since hypoxia is considered to be one of the critical niche factors to promote invasive growth of tumors, we hypothesize that repetitive cycles of hypoxia/reoxygenation also play a role in the enrichment of breast CSCs.  相似文献   

5.
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours.The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.  相似文献   

6.
During the past decade, a stem-cell-like subset of cancer cells has been identified in many malignancies. These cells, referred to as cancer stem cells (CSCs), are of particular interest because they are believed to be the clonogenic core of the tumour and therefore represent the cell population that drives growth and progression. Many efforts have been made to design therapies that specifically target the CSC population, since this was predicted to be the crucial population to eliminate. However, recent insights have complicated the initial elegant model, by showing a dominant role for the tumour microenvironment in determining CSC characteristics within a malignancy. This is particularly important since dedifferentiation of non-tumorigenic tumour cells towards CSCs can occur, and therefore the CSC population in a neoplasm is expected to vary over time. Moreover, evidence suggests that not all tumours are driven by rare CSCs, but might instead contain a large population of tumorigenic cells. Even though these results suggest that specific targeting of the CSC population might not be a useful therapeutic strategy, research into the hierarchical cellular organisation of malignancies has provided many important new insights in the biology of tumours. In this Personal View, we highlight how the CSC concept is developing and influences our thinking on future treatment for solid tumours, and recommend ways to design clinical trials to assess drugs that target malignant disease in a rational fashion.  相似文献   

7.
Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability   总被引:1,自引:0,他引:1  
  相似文献   

8.
Developmentally, tumours can be viewed as aberrant versions of normal tissues. For example, tumours often retain differentiation markers of their tissue of origin. In addition, there is evidence that they contain cancer stem-like cells (CSCs) that drive tumourigenesis. In this review, we summarise current evidence that breast CSCs may partially explain endocrine resistance in breast cancer. In normal breast, the stem cells are known to possess a basal phenotype and to be mainly oestrogen receptor-α-negative (ER-). If the hierarchy in breast cancer reflects this, the breast CSC may be endocrine resistant because it expresses very little ER and can only respond to treatment by virtue of paracrine signalling from neighbouring, differentiated ER+ tumour cells. Normal breast epithelial stem cells are regulated by the epidermal growth factor receptor and other growth factor receptor signals. The observed increase in growth factor receptor expression in endocrine-resistant breast cancers may reflect a bigger proportion of CSCs selected by endocrine therapies. There is evidence from a number of studies that breast CSCs are ER- and EGR+/HER2+, which would support this view. It is reported that CSCs express mesenchymal genes, which are suppressed by ER expression, further indicating the mutual exclusion between ER+ cells and the CSCs. As we learn more about CSCs, differentiation and the expression and functional activity of the ER in these cells in diverse breast tumour sub-types, it is hoped that our understanding will lead to new modalities to overcome the problem of endocrine resistance in the clinic.  相似文献   

9.
Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.  相似文献   

10.
Eradication of all malignant cells is the ultimate but challenging goal of anti-cancer treatment; most traditional clinically-available approaches fail because there are cells in a tumour that either escape therapy or become therapy-resistant. A subpopulation of cancer cells, the cancer stem cells (CSCs), is considered to be of particular significance for tumour initiation, progression and metastasis. CSCs are considered in particular to be therapy-resistant and may drive disease recurrence, which positions CSCs in the focus of anti-cancer research, but successful CSC-targeting therapies are limited. Here, we argue that hyperthermia – a therapeutic approach based on local heating of a tumour – is potentially beneficial for targeting CSCs in solid tumours. First, hyperthermia has been described to target cells in hypoxic and nutrient-deprived tumour areas where CSCs reside and ionising radiation and chemotherapy are least effective. Second, hyperthermia can modify factors that are essential for tumour survival and growth, such as the microenvironment, immune responses, vascularisation and oxygen supply. Third, hyperthermia targets multiple DNA repair pathways, which are generally upregulated in CSCs and protect them from DNA-damaging agents. Addition of hyperthermia to the therapeutic armamentarium of oncologists may thus be a promising strategy to eliminate therapy-escaping and -resistant CSCs.  相似文献   

11.
Osteosarcoma (OS) is the most common primary malignant tumor of bone. It is a common phenomenon that osteosarcoma cells have a hypoxic microenvironment. Hypoxia can dedifferentiate cells of several malignant tumor types into stem cell-like phenotypes. However, the role of hypoxia in stemness induction and the expression of cancer stem cell (CSC) markers in human osteosarcoma cells has not been reported. The present study examined the effects of hypoxia on stem-like cells in the human osteosarcoma MNNG/HOS cells. Under the incubation with 1% oxygen, the expression of CSCs markers (Oct-4, Nanog and CD133) in MNNG/HOS cells were increased. Moreover, MNNG/HOS cells cultured under hypoxic conditions were more likely to proliferate into spheres and resulted in larger xenograft tumor. Hypoxia also increased the mRNA and protein levels of hypoxia-inducible factor (HIF)-1α. Then rapamycin was used, which has been shown to lower HIF-1α protein level, to inhibit the hypoxic response. Rapamycin suppressed the expression of HIF-1α protein and CSCs markers (Oct4, Nanog and CD133) in MNNG/HOS cells. In addition, pretreatment with rapamycin reduced the efficiency of MNNG/HOS cells in forming spheres and xenograft tumors. The results demonstrated that hypoxia (1% oxygen) can dedifferentiate some of the MNNG/HOS cells into stem cell-like phenotypes, and that the mTOR signaling pathway participates in this process via regulating the expression of HIF-1α protein.  相似文献   

12.
ABSTRACT: Aldehyde dehydrogenase (ALDH) has recently been shown to be a marker of cancer stem-like cells (CSCs) across tumour types. The primary goals of this study were to investigate whether ALDH is expressed in liposarcomas, and whether CSCs can be identified in the ALDHhigh subpopulation. We have demonstrated that ALDH is indeed expressed in 10 out of 10 liposarcoma patient samples. Using a liposarcoma xenograft model, we have identified a small population of cells with an inducible stem cell potential, expressing both ALDH and CD133 following culturing in stem cell medium. This potential CSC population, which makes up for 0,1-1,7 % of the cells, displayed increased self-renewing abilities and increased tumourigenicity, giving tumours in vivo from as few as 100 injected cells.  相似文献   

13.

Introduction  

The cancer stem cell (CSC) hypothesis states that tumours consist of a cellular hierarchy with CSCs at the apex driving tumour recurrence and metastasis. Hence, CSCs are potentially of profound clinical importance. We set out to establish the clinical relevance of breast CSC markers by profiling a large cohort of breast tumours in tissue microarrays (TMAs) using immunohistochemistry (IHC).  相似文献   

14.
Stem cells are responsible for maintaining differentiated cell numbers during normal physiology and at times of tissue stress. They have the unique capabilities of proliferation, self-renewal, clonogenicity and multi-potentiality. It is a widely held belief that stem-like cells, known as cancer stem cells (CSCs), maintain tumours. The majority of currently identified intestinal stem cell populations appear to be rapidly cycling. However, quiescent stem cell populations have been suggested to exist in both normal intestinal crypts and tumours. Quiescent CSCs may have particular significance in the modern management of colorectal cancer making their identification and characterisation a priority. In this review, we discuss the current evidence surrounding the identification and microenvironmental control of stem cell populations in intestinal crypts and tumours as well as exploring the evidence supporting the existence of a quiescent stem and CSC population in the gut and other tissues.  相似文献   

15.
In cancer stem cell (CSC) hypothesis, tumors are organized in a hierarchical model with CSC at the top of the hierarchy. CSCs display both stem cell properties (self-renewal and differentiation) and specific tumoral properties (tumorigenicity, metastatic capacity, resistance to conventional therapies). Recent works on breast cancer allow CSCs isolation and help deciphering CSC biology and targeting with specific therapies. In clinical trials, CSC biology has to be taken into account and the criteria to judge therapeutic efficiency have to change.  相似文献   

16.
Cancer stem cells (CSCs), i.e. cancer cells that can self-renew, constitute only a minority of the cells of a tumour, but, because of their ability to initiate and repopulate tumours, failure to control CSCs can potentially lead to tumour re-growth, even though the bulk tumour may have been treated successfully. Nanomedicines improve spatio-temporal control over drug kinetics and distribution, thus opening the prospect of safer and more specific therapies to address the challenges posed by CSCs. In particular, these systems have the potential to facilitate CSC-aware therapy by overcoming resistance to conventional cytotoxic drugs and by targeting novel therapies to the tumour and CSC-marker positive cells. This review examines the implications of the CSC paradigm specifically for the development of nanomedicines, i.e. therapies based on macromolecules or supramolecular aggregates.  相似文献   

17.
Tumour heterogeneity is a key characteristic of cancer and has significant implications relating to tumour response to chemotherapy as well as patient prognosis and potential relapse. It is being increasingly accepted that tumours are clonal in origin, suggestive of a tumour arising from a deregulated or mutated cell. Cancer stem cells (CSC) possess these capabilities, and with appropriate intracellular triggers and/or signalling from extracellular environments, can purportedly differentiate to initiate tumour formation. Additionally through epithelial mesenchymal plasticity (EMP), where cells gain and maintain characteristics of both epithelial and mesenchymal cell types, epithelial-derived tumour cells have been shown to de-differentiate to acquire cancer stem attributes, which also impart chemotherapy resistance. This new paradigm places EMP centrally in the process of tumour progression and metastasis, as well as modulating drug response to current forms of chemotherapy. Furthermore, EMP and CSCs have been identified in cancers arising from different tissue types making it a possible generic therapeutic target in cancer biology. Using breast cancer (BrCa) as an example, we summarise here the current understanding of CSCs, the role of EMP in cancer biology – especially in CSCs and different molecular subtypes, and the implications this has for current and future cancer treatment strategies.  相似文献   

18.
Cancer hypoxia correlates with therapeutic resistance and metastasis, suggesting that hypoxic adaptation is a critical survival advantage for cancer stem cells (CSCs). Hypoxic metabolism, however, may be a disadvantage in aerobic circulation as the extremely low incidence of metastasis—compared to the high circulating tumor‐cell numbers (CTCs)—appears to suggest. As rare metastatic CSCs still survive, we searched for a mechanism that protects them from oxygen in circulation. CSCs form multicellular spheroids in vitro from virtually all cancers tested. We asked, therefore, whether cancers also form spheroids in vivo and whether circulating spheroids play a role in metastasis. We used metabolic, apoptotic and hypoxia assays, we measured aerobic barriers and calculated hypoxia vs. spheroid‐size correlations. We detected metabolic/oxidative stress in spheroids, we found correlation between stem cell presence and hypoxia and we showed that the size of hypoxic spheroids is compatible with circulation. To detect spheroids in patients, we worked out a new light‐scatter flow cytometry blood test and assayed 67 metastatic and control cases. We found in vivo spheroids with positive stem cell markers in cancer blood and they showed exclusive correlation with metastasis. In conclusion, our data suggest that metastatic success depends on CSC‐association with in vivo spheroids. We propose that the mechanism involves a portable “micro‐niche” in spheroids that may support CSC‐survival/adaptation in circulation. The new assay may establish a potential early marker of metastatic progression.  相似文献   

19.
Despite continuous improvements in cancer management, locoregional recurrence or metastatic spread still occurs in a high proportion of patients after radiotherapy or combined treatments. One underlying reason might be a low efficacy of current treatments on eradication of cancer stem cells (CSCs). It has been recognised for a long time, that only the small subpopulation of CSCs can cause recurrences and that all CSCs need to be killed for permanent tumour cure. However, only recently novel technologies have allowed to enrich CSCs and to investigate their biology. An emerging experimental and clinical database provides first hints that cell populations accumulated by putative stem cell markers or tumours that highly express such markers may be more radioresistant than their marker-negative counterparts. Other data support a higher tolerance of CSCs to hypoxia and preferential location in specific microenvironmental niches. However, conflicting data, methodological problems of the assays and a generally small database on only few tumour types necessitate further large and well-designed prospective experimental and clinical investigations that specifically address this question to corroborate this hypothesis. If such investigations confirm biological differences between CSCs and non-CSCs, this would imply that novel treatment strategies need to be tested specifically for their effect on CSCs. Another implication is that also biomarkers for prediction of local tumour control after radiotherapy or combined treatments need to reflect the behaviour of CSCs and not of the bulk of all cancer cells. This review discusses the importance of CSCs for treatment failure and challenges occurring from the CSC concept for cancer diagnosis, treatment and prediction of outcome. It is concluded that CSC-based endpoints and biomarkers are eventually expected to considerably improve tumour cure rates in the clinics through individualised tailoring of treatment.  相似文献   

20.
Cancer stem cells (CSCs) are a subpopulation of tumour cells that possess the stem cell properties of self-renewal and differentiation. Stem cells might be the target cells responsible for malignant transformation, and tumour formation may be a disorder of stem cell self-renewal pathway. Epigenetic alterations and mutations of genes involved in signal transmissions may promote the formation of CSCs. These cells have been identified in many solid tumours including breast, brain, lung, prostate, testis, ovary, colon, skin, liver, and also in acute myeloid leukaemia. The CSC theory clarifies not only the issue of tumour initiation, development, metastasis and relapse, but also the ineffectiveness of conventional cancer therapies. Treatments directed against the bulk of the cancer cells may produce striking responses but they are unlikely to result in long-term remissions if the rare CSCs are not targeted. In this review, we consider the properties of CSCs and possible strategies for controlling the viability and tumourigenecity of these cells, including therapeutic models for selective elimination of CSCs and induction of their proper differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号