首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 探讨与β珠蛋白基因紧密连锁的多态性位点HumTH01在β地中海贫血(β地贫)植入前遗传学诊断(preimplantation genetic diagnosis,PGD)中的作用。方法 对4例已出生重型β地贫患儿的、双方均为β地贫基因携带者的夫妇进行了6个周期的PGD治疗,应用多重巢式PCR同时检测β珠蛋白基因及HumTH01基因,选择健康的胚胎移植入子宫。结果 6个周期共活检44个胚胎,获得44个卵裂球,其中41个卵裂球扩增成功,35个胚胎经PCR分析后获得明确诊断,移植了14个胚胎,获得1例临床妊娠。孕17周时经脐带血穿刺,证实为完全正常胚胎,现已出生一正常女婴。单个卵裂球平均扩增效率为89.7%,等位基因脱扣(allele drop-out,ADO)率为14.4%。HumTH01基因可以帮助检测出ADO及污染的发生。结论 本研究为国内首次报道应用多重巢式PCR同时检测β珠蛋白基因及HumTH01基因对β地贫进行植入前遗传学诊断并成功获得临床妊娠。在PGD中同时检测与β珠蛋白基因紧密连锁的多态性位点可以降低PGD中由于ADO及污染造成的误诊的风险。  相似文献   

2.
BACKGROUND: We report the first attempts at preimplantation genetic diagnosis (PGD) and IVF and their accompanying difficulties for achondroplasia (ACH) patients. METHODS: A PGD test was developed using fluorescent single cell PCR on lymphoblasts from patients and controls and from blastomeres from surplus IVF embryos. A specific digestion control based on the use of two fluorochromes was elaborated. Ovarian stimulation and oocyte retrieval were carried out using conventional protocols. RESULTS: We performed 88 single cell tests for which amplification was obtained in 86 (97.7%) single lymphoblasts. Allele drop out (ADO) was observed in two out of 53 (3.7%) heterozygous lymphoblasts. If we combine the results from the blastomere testing from surplus embryos with those from PGD cycles and re-analysis after PGD, we obtained a PCR signal in 84% of cases of which 91% were correctly diagnosed at the G380 locus. A total of six cycles were performed resulting in three embryo transfers. We observed difficulties in ovarian stimulation and oocyte retrieval with affected female patients. No pregnancy was obtained. CONCLUSION: A PGD test for ACH is now available at our centre but our initial practice raises questions on the feasibility of such a test, specially with affected female patients.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder with mutational heterogeneity. The scarcity of DNA from single cells in preimplantation genetic diagnosis (PGD) for DMD limits comprehensive genetic testing. Multiple displacement amplification (MDA) is reported to generate large amounts of template and give the most complete coverage and unbiased amplification to date. Here, we developed mutation and haplotype analysis in conjunction with gender determination on MDA products of single cells providing a generic approach that widens availability of PGD for female carriers with varied mutations. MDA amplified with 98.5% success for single lymphocytes and 94.2% success for single blastomeres, which was evaluated on 60 lymphocytes and 40 blastomeres. A total of six commonly mutant exons, eight short tandem repeat markers within dystrophin gene and amelogenin were incorporated into subsequent singleplex PCR assays. The mean allele dropout rate was 9.0% for single lymphocytes and 25.5% for single blastomeres. None of the blank controls gave a positive signal. Genotyping of each pedigree for three families provided 2-3 fully informative alleles per dystrophin haplotype besides specific mutant exons and amelogenin. We suggest that this approach is reliable to identify non-carrier female embryos other than unaffected male embryos and reduce the risk of misdiagnosis.  相似文献   

4.
遗传性脊髓小脑型共济失调的CAG三核苷酸突变检测   总被引:18,自引:5,他引:13  
目的 评价SCA1、SCA2、SCA3/MjD、SCA6、SCA7和DRPLA的CAG三核苷酸异常扩增突变「(CAG)n」,在中国人遗传性脊髓小脑型共济失调(spinocerebellar ataxia,SCA)患者的分布频率。方法 经聚合酶链反应、变性聚丙烯酰按凝胶电泳和银染显带技术,检测分析了85个中国人常染色体显性遗传SCA家系(其中患者167例)和37例散发SCA患者的SCA1、SCA2、  相似文献   

5.
Preimplantation genetic diagnosis for Charcot-Marie-Tooth disease type 1A   总被引:3,自引:0,他引:3  
Charcot-Marie-Tooth (CMT) disease is the 'common' name for a range of hereditary peripheral neuropathies. CMT1 is the most common form and is transmitted in an autosomal dominant manner. CMT1A maps to chromosome 17p11.2 and is caused, in the majority of cases, by a 1.5 Mb DNA duplication, that includes the peripheral myelin protein 22 (PMP) gene. This paper reports on preimplantation genetic diagnosis (PGD) for CMT1A in five couples. The CMT1A duplication was detected by fluorescent PCR analysis using polymorphic (CA)n markers localized within the duplication. Single-cell PCR on blastomeres allowed genetic analysis of embryos obtained after ICSI. Only healthy unaffected embryos were transferred to the uterus. PCR experiments with single EBV-transformed lymphoblasts or with research blastomeres allowed the evaluation of amplification efficiencies, as well as contamination and allele drop-out (ADO) rates for each PCR protocol. Three simplex PCR protocols (using one primer pair) and two duplex PCR protocols (using two primer pairs) were developed for CMT1A. Additionally, a protocol using all three primer pairs in triplex was also established. Thirteen clinical ICSI-PGD cycles were performed for five couples (12 simplex PCR cycles and one duplex PCR cycle), resulting in seven embryo transfers. Three singleton pregnancies ensued in two couples and three healthy babies were delivered. This report describes different fluorescent PCR-based tests which allow efficient and accurate single-cell level detection of the CMT1A duplication. On the basis of the presence of the healthy allele of the affected parent-to-be (and/or absence of the affected one), healthy embryos can be selected for transfer. The assays are suitable for PGD for other couples who present with the same CMT1A duplication [depending on their informativity for the (CA)n markers available] as described here.  相似文献   

6.
Cystic fibrosis (CF) is the first monogenic disorder for which single cell preimplantation genetic diagnosis (PGD) has been successfully applied. The spectrum of mutations in CF is extremely heterogeneous, and hence, the development of mutation-specific PGD protocols is impracticable. The current study reports the development and evaluation of a general multiplex marker polymerase chain reaction (PCR) protocol for PGD of CF. Four closely linked highly polymorphic (CA)(n) repeat markers D7S523, D7S486, D7S480 and D7S490, flanking the cystic fibrosis transmembrane regulator (CFTR) gene, were used. In 99% of the single cells tested (100 leukocytes and 50 blastomeres), multiplex PCR results were obtained and the overall allelic drop out (ADO) rate varied from 2 to 5%. After validation for the presence of ADO and additional alleles, 95% of the multiplex PCR results were accepted to construct the marker genotypes. Depending on the genotype of the couple, and taking into account the embryos lost for transfer due to validation criteria (5%), ADO (0-2%) and single recombination (1.1-3%), in general >90% of the embryos could be reliably genotyped by PGD using a single blastomere. The risk of misdiagnosis equals the chance of a double recombination between informative flanking markers and is <0.05%. Therefore, this polymorphic and multi-allelic marker system is a reliable and generally applicable alternative for mutation-directed PGD protocols. Furthermore, it provides a test for the origin of the detected genotype and also gives an indication of the chromosomal ploidy status of the blastomere tested.  相似文献   

7.
Preimplantation genetic diagnosis (PGD) of single gene disorders relies on PCR-based tests performed on single cells (polar bodies or blastomeres). Despite the use of increasingly robust protocols, allele drop-out (ADO; the failure to amplify one of the two alleles in a heterozygous cell) remains a significant problem for diagnosis using single cell PCR. In extreme cases ADO can affect >40% of amplifications and has already caused several PGD misdiagnoses. We suggest that an improved understanding of the origins of ADO will allow development of more reliable PCR assays. In this study we carefully varied reaction conditions in >3000 single cell amplifications, allowing factors influencing ADO rates to be identified. ADO was found to be affected by amplicon size, amount of DNA degradation, freezing and thawing, the PCR programme, and the number of cells simultaneously amplified. Factors found to have little or no affect on ADO were local DNA sequence, denaturing temperature (94 or 96 degrees C) and cell type. Consideration of the causal factors identified during this study should permit the design of PGD protocols that experience little ADO, thus improving the accuracy of PGD for single gene disorders.  相似文献   

8.
We have developed a mathematical model to explore accuracy of preimplantation genetic diagnosis (PGD) using single cell polymerase chain reaction (PCR). The model encompasses both extrinsic technical errors and intrinsic errors related to nuclear and chromosomal abnormalities. Using estimates for these errors, we have calculated the probability of a serious error (affected embryo diagnosed as unaffected) using a variety of strategies designed to increase the accuracy of PGD. Additional information from genotyping a linked marker or a second biopsied cell reduces the probability of replacing an affected embryo, while ensuring that sufficient unaffected embryos can be replaced. For a recessive disease, two genotypes are required to ensure a low probability of replacing an affected embryo (<1%) with a high proportion of unaffected embryos eligible for replacement (68%). These genotypes may be from a single cell with linked marker, or disease genotypes from two cells. PGD of a dominant disease is more difficult, as it relies on the amplification of a single copy of the mutation. Genotypes from two biopsied cells are required to ensure that a high proportion of unaffected embryos are eligible for replacement. This model can be used as a clinical tool to prioritize embryos for transfer in a PGD cycle.  相似文献   

9.
目的探讨单细胞基因扩增时,巢式PCR和引物预扩增(PEP)-巢式PCR两种扩增方法对SRY基因脱扣的影响程度;并应用PEP-巢式PCR方法对单个卵裂球细胞进行SRY基因诊断。方法获取单个正常男女淋巴细胞,随机分为巢式PCR组和PEP-巢式PCR组。同时扩增SRY基因和ZP3基因位点。选用IVF-ET后冻存的4个胚胎,处理后获取单个卵裂球11个,用PEP-巢式PCR扩增,鉴定其性别。结果单个淋巴细胞经巢式PCR和PEP-巢式PCR方法扩增后,其基因扩增成功率分别为92.39%,98.91%;性别诊断正确率分别为86.00%,98.00%;SRY基因的脱扣率分别为16.67%,2.38%。两者有统计学检验均有显著性差异(P<0.05。对单个卵裂球应用PEP-巢式PCR方法进行SRY基因和ZP3基因扩增后,有3个胚胎的8个卵裂球被诊断为男性,而另外1个胚胎的3个卵裂球被诊断为女性。结论1.行单细胞基因扩增时,PCR扩增方法会影响等位基因脱扣的发生率。2.对性连锁遗传病进行植入前遗传学诊断时,采用PEP-巢式PCR方法扩增SRY基因和ZP3基因对单个细胞对进行性别鉴定时,可以有效地降低SRY基因脱扣的发生率,提高性别诊断的特异性和敏感性,能够用于单细胞的性别诊断,可用于性连锁遗传病的植入前遗传学诊断。  相似文献   

10.
The spinocerebellar ataxias (SCAs) are clinically and genetically a heterogeneous group of neurodegenerative disorders. To date, eight different loci causing SCA have been identified: SCA1, SCA2, Machado-Joseph disease (MJD)/SCA3, SCA4, SCA5, SCA6, SCA7, and dentatorubropallidoluysian atrophy (DRPLA). Expansion of a CAG repeat in the disease genes has been found in five of these disorders. To estimate the relative frequencies of the SCA1, DRPLA, MJD, SCA2, and SCA6 mutations among Portuguese ataxia patients, we collected DNA samples from 48 ataxia families and performed polymerase chain reaction (PCR) amplification of the CAG repeat mutations on chromosomes 6p, 12p, 14q, 12q, and 19p, respectively. Fifty-five individuals belonging to 34 dominant families (74%) had an expanded CAG repeat at the MJD gene. In five individuals from two kindreds with a dominant pattern of inheritance (4%), an expanded CAG repeat at the SCA2 gene was found. In MJD patients, the normal allele size ranged from 13 to 41, whereas the mutant alleles contained 65 to 80 repeats. For the SCA2 patients, normal alleles had 22 or 23, while expanded alleles had between 36 and 47 CAG units. We did not find the SCA1, DRPLA, or SCA6 mutations in our group of families. The MJD mutation remains the most common cause of SCA in Portugal, while a small number of cases are caused by mutations at the SCA2 gene, and 22% are due to still unidentified genes. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 81:134–138, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Charcot-Marie-Tooth (CMT) disease type 1A is an autosomal dominant peripheral neuropathy characterized by slow progressive distal muscle wasting and weakness, and decreased nerve conduction velocities. Most CMT1A cases (>98%) are caused by a duplication of a 1.5 Mb region on the short arm of chromosome 17 containing the PMP22 gene. A couple with a previous history of CMT followed by termination of pregnancy was referred to our centre for preimplantation genetic diagnosis (PGD). The husband carries the CMT1A duplication which can be detected by polymerase chain reaction (PCR) analysis using polymorphic (CA)n markers localized within the duplication. PCR amplification of genomic DNA of the parents-to-be with one of the two primers labelled with fluorescein, followed by automated laser fluorescence (ALF) gel electrophoresis of the amplified fragments allows the distinction between both genotypes. Embryos obtained after intracytoplasmic sperm injection (ICSI) were evaluated for the presence of the normal allele of the father. PCR with single Epstein-Barr virus-transformed lymphoblasts and blastomeres resulted in 91.4 and 93.5% amplification efficiency respectively, whereas none of the blank controls gave a positive signal. Allele drop-out (ADO) was observed in eight out of 32 lymphoblasts (25%) or in five out of 21 blastomeres (23.8%). However, within this set-up ADO will never lead to transfer of an affected embryo. A first ICSI-PGD cycle did not result in embryo transfer for the patient. A second cycle involved 10 mature oocytes of which eight were fertilized, resulting in five embryos for biopsy. Two unaffected embryos were available for transfer and resulted in a singleton pregnancy. The genotype of the fetus has been confirmed healthy by chorionic villus sampling.   相似文献   

12.
目的 对东北地区 110名汉族正常人 SCA1及 SCA3/ MJD基因 (CAG) n拷贝进行检测 ,探讨其正常变异范围 ,并对临床诊断为遗传型脊髓小脑共济失调的 8个家系的 2 5例患者和 6个散发病例进行基因分型评价和症状前及产前诊断。方法 应用荧光 - PCR方法测定不同基因型片段长度 ,并进行 DNA序列分析。结果  SCA3/ MJD基因 (CAG) n正常变异范围为 14~ 38个拷贝 ,集中于 14个拷贝 ,其等位基因频率为 39.5 5 % ,杂合频率为 78.18% ,共 13种等位基因。检出一个家系先证者携带有 (CAG) 6 8的 SCA3/ MJD基因 ,并对该家系成员进行了症状前诊断 ,没有发现 (CAG) n拷贝异常突变 ;SCA1基因内 (CAG) n正常变异范围 2 0~ 39拷贝 ,集中于 2 6及 2 7次 ,等位基因频率分别为 34.0 9%和 2 0 .91% ,杂合频率为 84 .5 5 % ,共 13种等位基因 ;散发病例未检出 CAG扩展性突变。结论  SCA1及 SCA3/ MJD基因中 (CAG) n正常变异范围存在地区和种族差异 ,SCAs基因分型是该病症状前及产前诊断的首选策略。  相似文献   

13.
DNA fingerprinting of sister blastomeres from human IVF embryos   总被引:2,自引:0,他引:2  
BACKGROUND: Previously published single cell DNA fingerprinting systems have been plagued by high rates of allele drop-out (ADO) and preferential amplification (PA) preventing clinical application in preimplantation genetic diagnosis. METHODS: Tetranucleotide microsatellite markers with high heterozygosity, known allelic size ranges and minimal PCR stutter artefacts were selected for chromosomes X, 13, 18 and 21 and optimized in a multiplex fluorescent (FL)-PCR format. FL-PCR products were analysed using the ABI Prism 377 DNA sequenator and Genescan software. Validation of the DNA fingerprinting system was performed on single diploid (n = 50) and aneuploid (n = 25) buccal cells and embryonic blastomeres (n = 21). RESULTS: The optimized pentaplex PCR DNA fingerprinting system displayed a high proportion of successful amplifications (>91%) and low ADO and PA (<6%) when assessed on 50 human buccal cells. DNA fingerprints of single cells from a subject with Down's syndrome detected the expected tri-allelic pattern for the chromosome 21 marker, confirming trisomy 21. In a blind study on 21 single blastomeres, all embryos were identifiable by their unique DNA fingerprints and shared parental alleles. CONCLUSIONS: A highly specific multiplex FL-PCR based on the amplification of five highly polymorphic microsatellite markers was developed for single cells. This finding paves the way for the development of a more complex PCR DNA fingerprinting system to assess aneuploidy and single gene mutations in IVF embryos from couples at genetic risk.  相似文献   

14.
Ornithine transcarbamylase (OTC) deficiency is an X-linked co-dominant disorder. A couple, with a previous history of a neonatal death and a therapeutical termination due to OTC deficiency, was referred to our center for preimplantation genetic diagnosis (PGD). The female partner has a nonsense mutation in the exon 9 of the OTC gene (R320X). We carried out nested polymerase chain reaction (PCR) for R320X mutation and fluorescence in situ hybridization (FISH) for aneuploidy screening. Among a total of 11 embryos, two blastomeres per embryo from 9 embryos were biopsied and analyzed by duplex-nested PCR and FISH, and one blastomere per embryo from 2 embryos by only duplex-nested PCR. As a result of PCR and restriction fragment length polymorphism analysis, four embryos were diagnosed as unaffected embryos having the normal OTC gene. Among these embryos, only one embryo was confirmed as euploidy for chromosome X, Y and 18 by FISH analysis. A single normal embryo was transferred to the mother, yielding an unaffected pregnancy and birth of a healthy boy. Based on our results, PCR for mutation loci and FISH for aneuploidy screening with two blastomeres from an embryo could provide higher accuracy for the selection of genetically and chromosomally normal embryos in the PGD for single gene defects.  相似文献   

15.
In order to carry out preimplantation genetic diagnosis (PGD) for beta-thalassaemia, we have applied direct sequencing of single cell PCR products to detect mutations and polymorphic loci within the beta-globin gene. Conventional duplex PCR was used to amplify two regions of the beta-globin gene with an amplification efficiency of 79% for blastomeres. Sequencing data were obtained for 100% of amplified products, with 12% having confirmed allele drop-out (ADO). A double ADO event was observed at least twice, confirming the real risk of such an event during PGD. In one couple, the presence of a polymorphism linked to the female partner's mutation enabled us to eliminate the risk of misdiagnosis due to double ADO without having to amplify both mutations within the same PCR product. We present here the data from eight clinical PGD cycles for three couples resulting in a singleton pregnancy and a twin pregnancy with all babies confirmed to be free from beta-thalassaemia (major).  相似文献   

16.
Multiple displacement amplification (MDA) is a technique used in the amplification of very low amounts of DNA and reported to yield large quantities of high-quality DNA. We used MDA to amplify the whole genome directly from a single cell. The most common techniques used in PGD are PCR and fluorescent in-situ hybridization (FISH). There are many limitations to these techniques including, the number of chromosomes diagnosed for FISH or the quality of DNA issued from a single cell PCR. This report shows, for the first time, use of MDA for single cell whole genome amplification. A total of 16 short tandem repeats (STRs) were amplified successfully with a similar pattern to the genomic DNA. Furthermore, allelic drop out (ADO) derived from MDA was assessed in 40 single cells by analysing (i) heterozygosity for a known beta globin mutation (IVSI-5 C-G) and by studying (ii) the heterozygous loci present in the STRs. ADO turned out to be 10.25% for the beta globin gene sequencing and 5% for the fluorescent PCR analysis of STRs. Moreover, the amplification accuracy of MDA permitted the detection of trisomy 21 on a single cell using comparative genome hybridization-array. Altogether, these data suggest that MDA can be used for single cell molecular karyotyping and the diagnosis of any single gene disorder in PGD.  相似文献   

17.
目的研究一脊髓小脑性共济失调大家系的基因分型。方法收集该脊髓小脑性共济失调大家系中的13名患者的血液标本,结合该家系的临床表现和我国该类疾病的发病率,采用聚合酶链反应对SCA1、SCA2和SCA3/MJD三个基因的三核苷酸重复片段进行扩增,并通过琼脂糖凝胶电泳和PCR产物测序的方法确定所有正常和异常扩增等位基因内三核苷酸重复次数。结果 SCA1和SCA2基因内三核苷酸重复次数在正常范围内,SCA3/MJD的两个等位基因中一个等位基因三核苷酸重复次数在正常范围内,另一个等位基因三核苷酸重复次数在异常范围内。结论该家系经基因诊断确诊为SCA3/MJD型。  相似文献   

18.
Preimplantation genetic diagnosis (PGD) of single gene defects following assisted conception typically involves removal of single cells from preimplantation embryos and analysis using highly sensitive PCR amplification methods taking stringent precautions to prevent contamination from foreign or previously amplified DNA. Recently, whole genome amplification has been achieved from small quantities of genomic DNA by isothermal amplification with bacteriophage 29 DNA polymerase- and exonuclease-resistant random hexamer primers. Here we report that isothermal whole genome amplification from single and small numbers of lymphocytes and blastomeres isolated from cleavage stage embryos yielded microgram quantities of amplified DNA, and allowed analysis of 20 different loci, including the DeltaF508 deletion causing cystic fibrosis and polymorphic repeat sequences used in DNA fingerprinting. As with analysis by PCR-based methods, some preferential amplification or allele drop-out at heterozygous loci was detected with single cells. With 2-5 cells, amplification was more consistent and with 10 or 20 cells results were indistinguishable from genomic DNA. The use of isothermal whole genome amplification as a universal first step marks a new era for PGD since, unlike previous PCR-based methods, sufficient DNA is amplified for diagnosis of any known single gene defect by standard methods and conditions.  相似文献   

19.
We report an improvement in the PGD test for fragile X syndrome (FXS). Recently, multiple displacement amplification (MDA) has been reported to yield large amounts of DNA from single cells. Taking into account this technique, we developed a new PGD test for FXS, enabling combined analysis of linked polymorphic markers with the study of the non-expanded CGG repeat. Single cell amplification efficiency was first assessed on single lymphocytes. Amplification rate of the different markers ranged from 85 to 95% with an allele drop-out (ADO) rate comprised between 7 and 34%. Using this test, eight PGD cycles were carried out for six couples, and 37 embryos were analysed after preliminary MDA. Amplification rate was increased by this technique from 41 to 66% so that embryos with no results were rarer (14 versus 45% without MDA). Reliability of the test was considerably improved by combining direct with indirect genetic analysis. Furthermore, in cases of fully expanded alleles too large to be amplified by PCR, this test gives an internal amplification control. Embryonic transfers were carried out in all but one PGD cycles. One biochemical and one clinical pregnancy resulted, and a healthy child was born. This single diagnosis procedure could be suitable to most patients carrying FXS.  相似文献   

20.
BACKGROUND: We report on our experience with preimplantation genetic diagnosis (PGD) for single gene disorders (SGDs), from 1999 to 2004, describing strategies and overall clinical outcome of 250 cycles in 174 couples for 23 different genetic conditions. METHODS: PGD cycles included 15 for autosomal dominant, 148 for autosomal recessive and 19 for X-linked SGDs. In addition, 68 cycles of PGD for SGDs were performed in combination with HLA matching. The strategy in each case used an initial multiplex PCR, followed by minisequencing to identify the mutation(s) combined with multiplex PCR for closely linked informative markers to increase accuracy. Linkage analysis, using intragenic and/or extragenic polymorphic microsatellite markers, was performed in cases where the disease-causing mutation(s) was unknown or undetectable. RESULTS: In 250 PGD cycles, a total of 1961 cleavage stage embryos were biopsied. PCR was successful in 3409 out of 3149 (92.4%) biopsied blastomeres and a diagnosis was possible in 1849 (94.3%) embryos. Four hundred and twenty-seven embryos were transferred in 211 cycles, resulting in 71 pregnancies (33.6% per embryo transfer), including 15 biochemical pregnancies, six spontaneous miscarriages, two ectopic pregnancies, which were terminated, and nine pregnancies which are still ongoing. The remaining pregnancies were confirmed to be unaffected and went to term without complications, resulting in the birth of 35 healthy babies. CONCLUSIONS: Minisequencing for mutation detection combined with multiplex fluorescence PCR for linkage analysis is an efficient, accurate and widely applicable strategy for PGD of SGDs. Our experience provides a further demonstration that PGD is an effective clinical tool and a useful option for many couples with a high risk of transmitting a genetic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号