首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New dual binding site acetylcholinesterase (AChE) inhibitors have been designed and synthesized as a new drug candidate for the treatment of Alzheimer's disease (AD) through the binding to both catalytic and peripheral sites of the enzyme. Therefore, a series of 7H‐thiazolo[3,2‐b]‐1,2,4‐triazin‐7‐one derivatives 6a – j were synthesized and investigated for their ability to inhibit the activity of human AChE (hAChE) in comparison with huperzine‐A. All the compounds were found to inhibit AChE activity, especially compounds 6c and 6i with the inhibition value of 76.10% and 77.82%, respectively. The molecular docking study indicated that they were nicely accommodated by AChE. The molecular docking study revealed that 6c and 6i possessed a more optimal binding conformation than 6a and can perfectly fit into the active and peripheral site of hAChE, and consequently exhibited highly improved inhibitor potency to hAChE.  相似文献   

2.
A series of genistein derivatives were synthesized and evaluated as multifunctional anti‐Alzheimer agents. The results showed that these derivatives had significant acetylcholinesterase (AChE) inhibitory activity; compound 5a exhibited the strongest inhibition to AChE with an IC50 value (0.034 μM) much lower than that of rivastigmine (6.53 μM). A Lineweaver–Burk plot and molecular modeling study showed that compound 5a targeted both the catalytic active site and the peripheral anionic site of AChE. These compounds also showed potent peroxy scavenging activity and metal‐chelating ability. The compounds did not show obvious effect on HepG2 and PC12 cell viability at the concentration of 100 μM. Therefore, these genistein derivatives can be utilized as multifunctional agents for the treatment of AD.  相似文献   

3.
A computer aided ligand design study of imidazolidine‐2,4‐dione derivatives was conducted in order to obtain compounds with dual 5‐HT1A receptor and serotonin transporter (SERT) affinity. According to molecular modeling results, series of Mannich bases were chosen and synthesized. Investigated compounds were tested for 5‐HT1A, 5‐HT2A, α1 and SERT affinity. Two selected compounds ( 5 , 9 ) were characterized in functional experiments and possessed a pharmacological profile which may enhance SERT blocking efficacy – 5‐HT1A partial agonism and 5‐HT2A antagonism in one molecule. Furthermore these compounds displayed satisfactory selectivity over adrenergic α1 receptors. The most promising compounds, 5‐arylimidazolidine‐2,4‐dione derivatives with 4‐(3‐chlorophenyl)piperazinylmethyl moiety were tested for antidepressant and anxiolytic activity. In particular, compound 5 (5‐(2‐methoxyphenyl)‐3‐{1‐[4‐(3‐chlorophenyl)piperazin‐1‐yl]methyl}‐imidazolidine‐2,4‐dione), tested in the forced swim test in mice, exhibited a favorable antidepressant‐like profile without affecting spontaneous locomotor activity.  相似文献   

4.
In this study, a series of new flavones (2-phenyl-chromone), 2-naphthyl chromone, 2-anthryl-chromone, or 2-biphenyl-chromone derivatives containing 6 or 7-substituted tertiary amine side chain were designed, synthesized, and evaluated in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition. The results indicated that the alteration of aromatic ring connecting to chromone scaffold brings about a significant impact on biological activity. Compared with flavones, the inhibitory activity of 2-naphthyl chromone, 2-anthryl-chromone derivatives against AChE significantly decreased, while that of 2-biphenyl chromone derivatives with 7-substituted tertiary amine side chain is better than relative flavones derivatives. For all new synthesized compounds, the position of tertiary amine side chain obviously influenced the activity of inhibiting AChE. The results above provide great worthy information for the further development of new AChE inhibitors. Among the newly synthesized compounds, compound 5a is potent in AChE inhibition (IC50 = 1.29 ± 0.10 μmol/L) with high selectivity for AChE over BChE (selectivity ratio: 27.96). An enzyme kinetic study of compound 5a suggests that it produces a mixed-type inhibitory effect against AChE.  相似文献   

5.
A series of bis(4‐amino‐5‐cyano‐pyrimidines) was synthesized and evaluated as dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). To further explore the multifunctional properties of the new derivatives, their antioxidant and antibacterial activities were also tested. The results showed that most of these compounds could effectively inhibit AChE and BChE. Particularly, compound 7c exhibited the best AChE inhibitory activity (IC50 = 5.72 ± 1.53 μM), whereas compound 7h was identified as the most potent BChE inhibitor (IC50 = 12.19 ± 0.57 μM). Molecular modeling study revealed that compounds 7c, 7f , and 7b showed a higher inhibitory activity than that of galantamine against both AChE and BChE. Anticholinesterase activity of compounds 7h, 7b , and 7c was significant in vitro and in silico for both enzymes, since these compounds have hydrophobic rings (Br‐phenyl, dimethyl, and methoxyphenyl), which bind very well in both sites. In addition to cholinesterase inhibitory activities, these compounds showed different levels of antioxidant activities. Indeed, in the superoxide–dimethyl sulfoxide alkaline assay, compound 7j showed very high inhibition (IC50 = 0.37 ± 0.28 μM). Also, compound 7l exhibited strong and good antibacterial activity against Staphylococcus epidermidis and Staphylococcus aureus, respectively. Taking into account the results of biological evaluation, further modifications will be designed to increase potency on different targets. In this study, the obtained results can be a new starting point for further development of multifunctional agents for the treatment of Alzheimer's disease.  相似文献   

6.
This study reports the synthesis of two series of new purine bioisosteres comprising a pyrazolo[3,4‐d]pyrimidine scaffold linked to piperazine moiety through different amide linkages. The newly synthesized compounds were evaluated for anticancer activity against four cell lines (MDA‐MB‐231, MCF‐7, SF‐268, B16F‐10) and cyclooxygenase (COX‐2) protein expression inhibition in lipopolysaccharide (LPS)‐activated rat monocytes. The results revealed that most of the synthesized compounds showed moderate‐to‐high cytotoxic activity against at least one cell line, with compound 10b being the most active against all used cell lines (IC50 values 5.5–11 μg/ml) comparable to cisplatin. In addition, six of these compounds ( 7b, 10a–d, and 12c ) demonstrated inhibition of LPS‐induced COX‐2 protein expression at low concentration (25 μg/ml) as compared to the control non‐stimulated cells and showed a COX‐2 selectivity index range comparable to diclofenac sodium. The overall results indicate that many of these pyrazolopyrimidine derivatives possess in vitro anti‐inflammatory and anticancer activities at varying doses, and the most active compounds will be subjected to in vivo pharmacological evaluation.  相似文献   

7.
A series of N‐substituted‐5‐chloro‐2(3H)‐benzoxazolone derivatives were synthesized and evaluated for their acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) inhibitory, and antioxidant activities. The structures of the title compounds were confirmed by spectral and elemental analyses. The cholinesterase (ChE) inhibitory activity studies were carried out using Ellman's colorimetric method. The free radical scavenging activity was also determined by in vitro ABTS (2,2‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid)) assay. The biological activity results revealed that all of the title compounds displayed higher AChE inhibitory activity than the reference compound, rivastigmine, and were selective for AChE. Among the tested compounds, compound 7 exhibited the highest inhibition against AChE (IC50 = 7.53 ± 0.17 μM), while compound 11 was found to be the most active compound against BuChE (IC50 = 17.50 ± 0.29 μM). The molecular docking study of compound 7 showed that this compound can interact with the catalytic active site (CAS) of AChE and also has potential metal chelating ability and a proper log P value. On the other hand, compound 2 bearing a methyl substituent at the ortho position on the phenyl ring showed better radical scavenging activity (IC50 = 1.04 ± 0.04 mM) than Trolox (IC50 = 1.50 ± 0.05 mM).
  相似文献   

8.
Twenty‐seven 3, 7‐disubstituted coumarin derivatives were designed, synthesized, and evaluated in vitro as anticancer agents. Most of the compounds showed moderate‐to‐potent antiproliferative activity against K562 cells. Compounds 7b and 7d were chosen to evaluate the concentration of 50% growth inhibition (GI50) against SN12C, OVCAR, BxPC‐3, KATO‐III, T24, SNU‐1, WiDr, HeLa, K562, and AGS cell lines. The most potent compound 7d was selected for further cell cycle arrest assay in the AGS cell line. The in vitro data indicated that methylation of benzimidazole moiety at the 3‐position of coumarin exhibited significant enhancement of anticancer activity. This study should provide important information for further modification and optimization of coumarin derivatives as anticancer agents.  相似文献   

9.
Sixteen novel coumarin‐based compounds are reported as potent acetylcholinesterase (AChE) inhibitors. The most active compound in this series, 5a (IC50 0.04 ± 0.01 µM), noncompetitively inhibited AChE with a higher potency than tacrine and galantamine. Compounds 5d , 5j , and 5 m showed a moderate antilipid peroxidation activity. The compounds showed cytotoxicity in the same range as the standard drugs in HEK‐293 cells. Molecular docking demonstrated that 5a acted as a dual binding site inhibitor. The coumarin moiety occupied the peripheral anionic site and showed π‐π interaction with Trp278. The tertiary amino group displayed significant cation‐π interaction with Phe329. The aromatic group showed π‐π interaction with Trp83 at the catalytic anionic site. The long chain of methylene lay along the gorge interacting with Phe330 via hydrophobic interaction. Molecular docking was applied to postulate the selectivity toward AChE of 5a in comparison with donepezil and tacrine. Structural insights into the selectivity of the coumarin derivatives toward huAChE were explored by molecular docking and 3D QSAR and molecular dynamics simulation for 20 ns. ADMET analysis suggested that the 2‐(2‐oxo‐2H‐chromen‐4‐yl)acetamides showed a good pharmacokinetic profile and no hepatotoxicity. These coumarin derivatives showed high potential for further development as anti‐Alzheimer agents.  相似文献   

10.
In this study, a series of new fluorine or chlorine-substituted cinnamic acid derivatives that contain tertiary amine side chain were designed, synthesized, and evaluated in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition. The results show that almost all the derivatives containing tertiary amine side chain (compounds 4a–9d ) exhibit moderate or potent activity in AChE inhibition. By contrast, their parent compounds (compounds 3a–3f ) in the absence of tertiary amine moitery exhibit poor inhibitory activity against AChE. For the compounds containing pyrroline or piperidine side chain, the bioactivity in AChE inhibition is much intense than those containing N,N-diethylamino side chain. The chlorine or fluorine substituted position produces a significant effect on the bioactivity and selectivity in AChE inhibition. Most of the compounds that contain para-substituted fluorine or chlorine exhibit potent activity against AChE and poor activity against BChE, while ortho-substituted analogs show the opposite effect. It is worth noticing that the compounds containing N,N-diethylamino side chain are exceptions to this pattern. Among the newly synthesized compounds, compounds 6d are the most potent in AChE inhibition (IC50 = 1.11 ± 0.08 μmol/L) with high selectivity for AChE over BChE (selectivity ratio: 46.58). An enzyme kinetic study of compounds 6d suggests it produces a mixed-type inhibitory effect in AChE.  相似文献   

11.
12.
2‐Hydrazinyl‐N‐(4‐sulfamoylphenyl)acetamide 3 was the key intermediate for the synthesis of novel hydrazones 4–10 and pyrazole derivatives 11–17 . All compounds were tested for their in vivo anti‐inflammatory activity and their ability to inhibit the production of PGE2 in serum samples of rats. IC50 values for the most active compounds for inhibition of COX‐1 and COX‐2 enzymes were determined in vitro, and they were also tested for their ulcerogenic effect. Molecular docking was performed on the active site of COX‐2 to predict their mode of binding to the amino acids. Most of the synthesized compounds showed good anti‐inflammatory activity especially compounds 3, 4, 8, 9, 15, and 17 which showed better activity than diclofenac as the reference drug. Compounds 3, 8, 9, 13, and 15–17 were less ulcerogenic than indomethacine as the reference drug. Most of the synthesized compounds interacted with Tyr 385 and Ser 530 in molecular docking study with additional hydrogen bond for compound 17 . Compound 17 showed good selectivity index value of 11.1 for COX‐1/COX‐2 inhibition in vitro.  相似文献   

13.
New N‐allyl/propargyl 4‐substituted 1,2,3,4‐tetrahydroquinolines derivatives were efficiently synthesized using acid‐catalyzed three components cationic imino Diels–Alder reaction (70–95%). All compounds were tested in vitro as dual acetylcholinesterase and butyryl‐cholinesterase inhibitors and their potential binding modes, and affinity, were predicted by molecular docking and binding free energy calculations (∆G) respectively. The compound 4af (IC50 = 72 μm ) presented the most effective inhibition against acetylcholinesterase despite its poor selectivity (SI = 2), while the best inhibitory activity on butyryl‐cholinesterase was exhibited by compound 4ae (IC50 = 25.58 μm ) with considerable selectivity (SI = 0.15). Molecular docking studies indicated that the most active compounds fit in the reported acetylcholinesterase and butyryl‐cholinesterase active sites. Moreover, our computational data indicated a high correlation between the calculated ∆G and the experimental activity values in both targets.  相似文献   

14.
This study synthesized a series of novel coumarin‐isatin derivatives and evaluated them for α‐glucosidase inhibitory activity. The majority of the screened compounds exhibited excellent inhibition activities with IC50 values of 2.56 ± 0.08–268.79 ± 3.04 μm , when compared to acarbose. Among the newly derivatives, compound 5p was found to be the most active compound in the library of coumarin‐isatin derivatives. Furthermore, enzyme kinetic studies showed that compound 5p is a non‐competitive inhibitor with a Ki of 2.14 μm . Molecular docking analysis revealed the existence of hydrophobic and hydrogen interactions between compound 5p and the active site of α‐glucosidase. Our results indicate that coumarin‐isatin derivatives as a new class of α‐glucosidase inhibitors.  相似文献   

15.
A series of novel 4‐isochromanone compounds bearing N‐benzyl pyridinium moiety were designed and synthesized as acetylcholinesterase (AChE) inhibitors. The biological evaluation showed that most of the target compounds exhibited potent inhibitory activities against AChE. Among them, compound 1q possessed the strongest anti‐AChE activity with an IC50 value of 0.15 nm and high AChE/BuChE selectivity (SI > 5,000). Moreover, compound 1q had low toxicity in normal nerve cells and was relatively stable in rat plasma. Together, the current finding may provide a new approach for the discovery of novel anti‐Alzheimer's disease agents.  相似文献   

16.
Hit, Lead & Candidate Discovery
In recent studies, we have shown that pyrrolo[3,4‐f]indole‐5,7‐dione and indole‐5,6‐dicarbonitrile derivatives act as good potency in vitro inhibitors of the monoamine oxidase (MAO) enzymes. To expand on these series and to further derive structure‐activity relationships (SARs) for MAO inhibition, in the present study we synthesized additional homologs and related analogs of these chemical classes. Analyzes of the MAO inhibition properties of the synthesized compounds show that among the pyrrolo[3,4‐f]indole‐5,7‐dione derivatives good potency MAO inhibitors exist as exemplified by 10 , which possesses IC50 values for the inhibition of MAO‐A and MAO‐B of 0.023 and 0.178 µM, respectively. Among thirteen pyrrolo[3,4‐f]indole‐5,7‐diones, nine compounds exhibit IC50 values for the inhibition of an MAO isoform in the submicromolar range. It may be concluded that active MAO inhibitors, such as 10 represent suitable leads for the development of drugs for neurodegenerative and neuropsychiatric disorders such as Parkinson's disease and depression. MAO inhibitors are also of interest for the treatment of prostate cancer, certain types of cardiomyopathies and Alzheimer's disease.  相似文献   

17.
New derivatives with the tetrahydro‐β‐carboline‐imidazolidinedione and tetrahydro‐β‐carboline‐piperazinedione scaffolds and a pendant bromothienyl moiety at C‐5/C‐6 were synthesized and tested for their ability to inhibit PDE5 in vitro. The following SAR can be concluded: The tetracyclic scaffold is essential for PDE5 inhibition; the ethyl group is the most suitable among the adopted N‐substituents on the terminal ring (hydantoin/piperazinedione); the appropriate stereochemistry of C‐5/C‐6 derived from the aldehyde rather than C‐11a/C‐12a derived from tryptophan appears crucial for inhibition of PDE5; surprisingly, derivatives with the hydantoin terminal ring are more active than their analogs with the piperazinedione ring; the selectivity versus PDE5 relative to PDE11 with cGMP as a substrate is mainly a function of the substitution and stereochemistry pattern of the external ring, in other words of the interaction with the H‐loop residues of the isozymes. Thirteen derivatives showed PDE5 inhibitory activity with IC50 values in the range of 0.16–5.4 µm. Compound 8 was the most potent PDE5 inhibitor and showed selectivity towards PDE5 versus other PDEs, with a selectivity index of 49 towards PDE5 rather than PDE11 with cGMP as the substrate.  相似文献   

18.
A new series of‐fluoro chalcones‐substituted amino‐alkyl derivatives ( 3a?3l ) were designed, synthesized, characterized and evaluated for the inhibitory activity against acetylcholinesterase and butyrylcholinesterase. The results showed that the alteration of fluorine atom position and amino‐alkyl groups markedly influenced the activity and the selectivity of chalcone derivates in inhibiting acetylcholinesterase and butyrylcholinesterase. Among them, compound 3l possesses the most potent inhibitory against acetylcholinesterase (IC50 = 0.21 ± 0.03 μmol/L), and the highest selectivity for acetylcholinesterase over butyrylcholinesterase (IC50 (BuChE)/IC50 (AChE) = 65.0). Molecular modeling and enzyme kinetic study on compound 3l supported its dual acetylcholinesterase inhibitory profile, simultaneously binding at the catalytic active and peripheral anionic site of the enzyme.  相似文献   

19.
Drugs used in breast cancer treatments target the suppression of estrogen biosynthesis. During this suppression, the main goal is to inhibit the aromatase enzyme that is responsible for the cyclization and structuring of estrogens either with steroid or non‐steroidal‐type inhibitors. Non‐steroidal derivatives generally have a planar aromatic structure attached to the triazole ring system in their structures, which inhibits hydroxylation reactions during aromatization by coordinating the heme group. Bioisosteric replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase the selectivity for aromatase enzyme inhibition. In this study, pyridine‐substituted thiazolylphenol derivatives, which are non‐steroidal triazole bioisosteres, were synthesized using the Hantzsch method, and physical analysis and structural determination studies were performed. The IC50 values of the compounds were determined by a fluorescence‐based aromatase inhibition assay. Then, their antiproliferative activities on the MCF7 and HEK 293 cell lines were evaluated with the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. Furthermore, the crystal structure of human placental aromatase was subjected to a series of docking experiments to identify the possible interactions between the most active structure and the active site. Lastly, an in silico technique was performed to analyze and predict the drug‐likeness, molecular and ADME properties of the synthesized molecules.
  相似文献   

20.
Curcumin has shown pharmacological properties against different phenotypes of various disease models. Different synthetic routes have been employed to develop its numerous derivatives for diverse and improved therapeutic roles. In this study, we have synthesized curcumin derivatives containing isoxazole, pyrazoles, and pyrimidines and then the synthesized molecules were evaluated for their anti‐inflammatory and antinociceptive activities in experimental animal models. Acute toxicity of synthesized molecules was evaluated in albino mice by oral administration. Any behavioral and neurological changes were observed at dose of 10 mg/kg body weight. Additionally, cyclooxygenase‐2 (COX‐2) enzyme inhibition studies were performed through in vitro assays. In vivo anti‐inflammatory studies showed that curcumin with pyrimidines was the most potent anti‐inflammatory agent which inhibited induced edema from 74.7% to 75.9%. Compounds 7 , 9 , and 12 exhibited relatively higher prevention of writhing episodes than any other compound with antinociceptive activity of 73.2%, 74.9%, and 71.8%, respectively. This was better than diclofenac sodium (reference drug, 67.1% inhibition). Similarly, COX‐2 in vitro inhibition assays results revealed that compound 12 (75.3% inhibition) was the most potent compound. Molecular docking studies of 10 , 11 , and 12 compounds in human COX‐2 binding site revealed the similar binding modes as that of other COX‐2‐selective inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号