首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 探讨Preptin对成骨细胞结缔组织生长因子(CTGF)表达的影响及其机制.方法采用人重组preptin干预人原代成骨细胞,CTGF蛋白水平用Western印迹法检测.丝裂原活化蛋白激酶p38(p38MAPK)、细胞外信号调节激酶(ERK1/2)、c-Jun氨基端激酶(JNK)及其磷酸化水平用Western印迹法检测.在preptin干预前用细胞信号阻断剂(PD98059、SP600125或SB203580)预处理阻断人成骨细胞MAPK信号转导,以分析preptin诱导人成骨细胞CTGF表达的作用机制.结果 Preptin可呈时间和剂量依赖性地促进人成骨细胞CTGF的分泌,并且preptin可诱导人成骨细胞ERK的活化,对p38MAPK或JNK无激活作用;人成骨细胞用ERK抑制剂PD98059预处理可使preptin诱导的CTGF分泌降低.结论Preptin增加CTGF的表达,并通过ERK/MAPK信号途径来介导.  相似文献   

2.
Abstract

Fibronectin fragments have been shown to up-regulate matrix metalloproteinase production in chondrocytes. We investigated the roles of mitogen-activated protein kinase (MAPK) pathways activated by the COOH-terminal heparin-binding fibronectin fragment (HBFN-f) in collagenase production by human chondrocytes in culture. In articular cartilage explant culture, HBFN-f stimulated type II collagen cleavage by collagenase in association with increased secretion of MMP-1 and MMP-13. In human articular chondrocytes, HBFN-f induced the collagenases with activation of the extracellular signal-regulated kinase (ERK), p38, and the c-Jun NH2-terminal kinase (JNK). PD98059 that inhibits the ERK pathway blocked HBFN-f-stimulated production of MMP-1 and MMP-13 in explant culture. SB203580 at 1?µM, the concentration that inhibits p38 only, partially suppressed HBFN-f-induced collagenase production, whereas at 10?µM, the inhibitor that blocks both p38 and JNK almost completely inhibited collagenase induction. PD98059 and SB203580 individually blocked HBFN-f-increased cleavage of type II collagen in the explant culture, although 10?µM SB203580 strongly inhibited the collagen cleavage compared with 1?µM of the inhibitor. These results indicate that collagenase production leading to type II collagen cleavage in cartilage explants requires ERK, p38, and JNK.  相似文献   

3.
BACKGROUND & AIMS: To explore mechanisms whereby acid reflux might contribute to carcinogenesis in Barrett's esophagus (BE) we studied: (1) the effects of acid on the mitogen-activated protein kinase (MAPK) pathways, cell proliferation, and apoptosis in a Barrett's adenocarcinoma cell line (SEG-1); and (2) the ability of acid to activate the MAPK pathways in vivo in patients with BE. METHODS: SEG-1 cells were exposed to acidic media for 3 minutes, and the activities of 3 MAPKs (ERK, p38, and JNK) were determined. Proliferation was assessed using flow cytometry; cell growth and apoptosis were assessed using cell counts and an apoptosis ELISA assay. MAPK activation was studied in biopsy specimens taken from patients with BE before and after esophageal perfusion for 3 minutes with 0.1N HCl. RESULTS: Acid-exposed SEG-1 cells exhibited a significant increase in proliferation and total cell numbers, and a significant decrease in apoptosis. These effects were preceded by a rapid increase in the activities of ERK and p38, and a delayed increase in JNK activity. PD 98059 abolished the acid-induced increase in G0/G1 and decrease in subG0 phases of the cell cycle. Both SB 203580 and DN-JNK 1/2 inhibited the acid-induced progression from G0/G1 to G2/M. The acid-induced decrease in apoptosis was abolished by inhibition of either ERK or p38. In the patients, acid exposure significantly increased the activity of p38 in the metaplastic epithelium. CONCLUSIONS: Acid increases proliferation and survival, and decreases apoptosis in SEG-1 cells by activating the MAPK pathways. Acid also activates the MAPK pathways in BE in vivo. These findings suggest that acid might contribute to carcinogenesis in BE through activation of MAPK pathways.  相似文献   

4.
目的 探讨preptin对人成骨细胞增殖和分化的影响及其信号途径.方法 体外培养人成骨细胞,用10-10、10-9、10-8和10-7mol/L preptin干预24 h,以[3H]脱氧胸腺嘧啶苷掺入法分析细胞增殖,用分光光度计法测定细胞碱性磷酸酶(ALP)活性判断细胞分化程度.Western印迹法检测细胞外信号调节激酶(ERK)、p38丝裂原活化蛋白激酶(p38MAPK)和c-Jun氨基末端激酶(JNK)的磷酸化水平.并在preptin干预前以ERK抑制剂(PD98059)、p38 MAPK抑制剂(SB203580)和JNK抑制剂(SP600125)预处理,观察preptin诱导人成骨细胞增殖和分化的途径.结果 Preptin剂量依赖地增加人成骨细胞的增殖和ALP活性,10-9mol/L浓度时达最大效应(均P<0.01).Preptin刺激人成骨细胞ERK的磷酸化,对p38MAPK和JNK无作用.PD98059阻断preptin刺激的成骨细胞增殖及ALP活性增加(均P<0.05),而SP600125和SB203580无此效应.结论 Preptin通过ERK途径促进人成骨细胞的增殖和分化.  相似文献   

5.
Background Hyperoxic exposure in vivo (> 95% oxygen) attenuates ischemia-reperfusion injury, but the signaling mechanisms of this cardioprotection are not fully determined. We studied a possible role of nitric oxide (NO) and mitogen activated protein kinases (MAPK) in hyperoxic protection. Methods Mice (n = 7–9 in each group) were kept in normoxic or hyperoxic environments for 15 min prior to harvesting the heart and Langendorff perfusion with global ischemia (45 min) and reperfusion (60 min). Endpoints were cardiac function and infarct size. Additional hearts were collected to evaluate MAPK phosphorylation (immunoblot). The nitric oxide synthase inhibitor L-NAME, the ERK1/2 inhibitor PD98059 and the p38 MAPK inhibitor FR167653 were injected intraperitoneally before hyperoxia or normoxia. Results Hyperoxia improved postischemic functional recovery and reduced infarct size (p < 0.05). Hyperoxic exposure caused cardiac phosphorylation of the MAPK family members p38 and ERK1/2, but not JNK. L-NAME, PD98059 and FR167653 all reduced the protection afforded by hyperoxic exposure, but did not influence performance or infarction in hearts of normoxic mice. The hyperoxia-induced phosphorylation of ERK1/2 and p38 was reduced by L-NAME and both MAPK inhibitors. Conclusion Nitric oxide triggers hyperoxic protection, and ERK1/2 and p38 MAPK are involved in signaling of protection against ischemia-reperfusion injury.  相似文献   

6.
Signaling molecules such as p21(ras) (Ras), mitogen-activated protein kinase (MAPK), and Akt kinase play pivotal roles in the proliferation and survival of lymphoid cells in response to many kinds of stimulation. It is not fully understood, however, how these molecules participate in the growth of malignant lymphoid cells. We determined whether Ras, MAPKs such as extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38 MAPK, and Akt kinase are activated in B-cell tumors, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, Burkitt-like lymphoma, diffuse large B-cell lymphoma, and plasma cell leukemia. We found that Lyn protein tyrosine kinase was constitutively phosphorylated on tyrosine, and that ERK and p38 MAPK were constitutively active in all cases of the B-cell tumor. In contrast, activation of Ras and Akt kinase was found in limited cases, and JNK kinase activity was not observed in any case. These results suggest that ERK and p38 play roles in the oncogenesis of B-cell tumors.  相似文献   

7.
8.
The role of mitogen-activated protein kinase (MAPK) signaling pathways in the regulation of TNF-alpha and NOS2 production by human monocytes infected with Mycobacterium bovis BCG was examined. Inhibition studies showed that ERK1/2 and p38 MAPK activation were necessary for the monocyte response to M. bovis infection. Analysis of MAPK activation showed rapid phosphorylation of ERK1/2 and p38 in response to M. bovis BCG. Phosphorylation was not due to an autocrine effect of TNF-alpha secretion, since an anti-TNF-alpha antibody had no significant effect on the levels of p38 phosphorylation. The inhibitor PD98059 significantly reduced M. bovis BCG-induced TNF-alpha production and almost completely abrogated phosphorylation of ERK1/2; in addition the potent MEK inhibitor U0126 also abrogated phosphorylation. In contrast, studies using inhibitors selective for ERK1/2 and p38 showed that p38 plays an essential role in the induction of NOS2, whereas the role of ERK1/2 was minor. These results suggest that ERK1/2 and p38 kinases differentially regulate the M. bovis BCG-mediated induction of TNF-alpha and NOS2 in human monocytes.  相似文献   

9.
Although tamoxifen (TAM), which is widely used in the treatment of breast cancer, also has a beneficial effect on cisplatin-refractory ovarian cancer, the biological mechanism of this effect has remained obscure. TAM, besides its action as an antiestrogen, also inhibits cell proliferation of estrogen receptor (ER)-negative cells by an unknown mechanism. Therefore, we examined the roles of the MAPK family in the antiproliferative effect of TAM on cisplatin-resistant Caov-3, which expresses ER and cisplatin-sensitive A2780, which does not express ER. The number of viable cells was reduced by TAM dose-dependently. TAM induced the activation of ERK, c-Jun N-terminal protein kinase (JNK), and p38 with different time courses. PD98059 canceled the reduction of the number of viable cells by 1 microM TAM and inhibited the TAM-induced cell-cycle arrest at the G(1) phase and dephosphorylation of the retinoblastoma protein. Either expression of dominant-negative JNK or pretreatment with SB203580 canceled the reduction of the number of viable cells by 5 microM TAM and inhibited the apoptotic nuclear changes and the cleavage of poly (ADP-ribose) polymerase induced by TAM. These results provide evidence that whereas the ERK cascade is involved in the induction of cell-cycle arrest at the G(1) phase by lower concentrations of TAM, the JNK or p38 cascade is involved in the induction of apoptosis by higher concentrations of TAM in both types of cells.  相似文献   

10.
11.
目的探讨软脂酸(PA)诱导的血管内皮细胞凋亡中丝裂原活化蛋白激酶(MAPK)通路的作用。方法将人脐静脉内皮细胞(HUVEC)分对照组、PA组、MAPK通路干预组[分别先用p38抑制剂SB203580、氨基末端激酶(JNK)抑制剂PD98059、细胞外信号调节激酶(ERK)抑制剂SP600125干预]再分为PA+SB组、PA+PD组、PA+SP组。流式细胞仪检测细胞凋亡率;Western blot法检测caspase-3、磷酸化p38、JNK和ERK1/2表达水平;分光光度法检测caspase-3的活性。结果与对照组比较,PA组、PA+SB组、PA+PD组、PA+SP组HUVEC凋亡及caspase-3表达和活性明显增加,PA组磷酸化p38MAPK表达明显增加(P<0.05)。与PA组比较,PA+SB组HUVEC细胞凋亡率、caspase-3表达和活性明显降低(P<0.05);而PA+PD组和PA+SP组HUVEC凋亡率、caspase-3表达和活性无明显变化(P>0.05)。结论 PA通过p38MAPK通路促进内皮细胞凋亡。  相似文献   

12.
The interaction of platelets with subendothelial von Willebrand factor (VWF), especially under high shear stress, is considered to be the first activation step which primes platelets for subsequent haemostatic events. The signalling cascade which results from the interaction of VWF and its receptor GPIbIX has only been partially defined. Mitogen-activated protein kinases (MAPKs) are a family of downstream transmembrane signalling serine-threonine kinases and have been demonstrated to be present and functional in platelets; these include the extracellular signal-related kinases (ERKs), c-Jun amino-terminal kinases (JNKs) and p38 MAPK. Previously, we showed that p38 MAPK was not required in VWF-induced human platelet activation. It is not known whether VWF-dependent platelet activation involves the activation of the JNK and ERK family of signalling molecules. This report demonstrates that porcine von Willebrand factor (pVWF) induced a sustained and stable JNK activation measurable by 1 min after activation. Thrombin also induced JNK activation assessed at 1 min after activation. In contrast to thrombin, pVWF did not induce ERK2 activation at any time point tested. To ensure that ERK activation was unnecessary for pVWF-dependent platelet activation, we functionally inhibited ERK-dependent signalling with PD98059, a potent and selective inhibitor of the MAP kinase kinase (MEK-1), which is the upstream kinase of ERK1 and ERK2. Although PD98059 inhibited ERK2 activation in platelets, it had no effect on pVWF- or thrombin-induced platelet alpha or lysozomal granule release, modulation of membrane glycoprotein CD41, microparticle formation, platelet shape change or platelet agglutination. It is concluded that pVWF and thrombin induced JNK activation, but whereas thrombin induced ERK2 activation VWF did not; functional ERK2 activity was also not required for pVWF- or thrombin-dependent platelet activation.  相似文献   

13.
We previously reported that oxidized low-density lipoprotein (Ox-LDL)-induced expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) via PKC, leading to activation of phosphatidylinositol-3 kinase (PI-3K), was important for macrophage proliferation [J Biol Chem 275 (2000) 5810]. The aim of the present study was to elucidate the role of extracellular-signal regulated kinase 1/2 (ERK1/2) and of p38 MAPK in Ox-LDL-induced macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages assessed by [3H]thymidine incorporation and cell counting assays was significantly inhibited by MEK1/2 inhibitors, PD98059 or U0126, and p38 MAPK inhibitors, SB203580 or SB202190, respectively. Ox-LDL-induced GM-CSF production was inhibited by MEK1/2 inhibitors but not by p38 MAPK inhibitors in mRNA and protein levels, whereas recombinant GM-CSF-induced macrophage proliferation was inhibited by p38 MAPK inhibitors but enhanced by MEK1/2 inhibitors. Recombinant GM-CSF-induced PI-3K activation and Akt phosphorylation were significantly inhibited by SB203580 but enhanced by PD98059. Our results suggest that ERK1/2 is involved in Ox-LDL-induced macrophage proliferation in the signaling pathway before GM-CSF production, whereas p38 MAPK is involved after GM-CSF release. Thus, the importance of MAPKs in Ox-LDL-induced macrophage proliferation was confirmed and the control of MAPK cascade could be targeted as a potential treatment of atherosclerosis.  相似文献   

14.
We examined the effect of PGE1 on the expression of plasminogen activator inhibitor-1 (PAI-1) mRNA induced by tumor necrosis factor-alpha (TNF-alpha) in human mesangial cells, because PAI-1 is one of major factors for the progression of glomerulosclerosis. The expression of PAI-1 mRNA was increased after stimulation with TNF-alpha, and it was diminished by pre-incubation with PGE1. Next, we examined the effect of PGE1 on the phosphorylation of mitogen activated protein kinase (MAPK) family and Akt. TNF-alpha activated the phosphorylation of p44/42 MAPK, p38 MAPK, SAPK/JNK and Akt in mesangial cells. PGE1 inhibited the TNF-alpha induced phosphorylation of SAPK/JNK and Akt, but not p44/42 MAPK and p38 MAPK. The TNF-alpha induced expression of PAI-1 mRNA was not affected by PD98059, an inhibitor of MEK, SB203580, an inhibitor of p38 MAPK, nor LY294002, an inhibitor of PI3 K. However, DMAP, an inhibitor of SAPK/JNK, inhibited the expression of PAI-1 mRNA, suggesting that the TNF-alpha induced expression of PAI-1 mRNA is regulated by the SAPK/JNK dependent pathway in human mesangial cells. By the incubation with H8, an inhibitor of PKA, the inhibitory effect of PGE1 on the expression of PAI-1 mRNA was abolished, suggesting that PGE1 inhibited the PAI-1 mRNA expression via the PKA pathway. Our results suggest that the inhibition of PAI-1 synthesis by PGE1 in human mesangial cells may have therapeutic implications for glomerulosclerosis such as occurs in diabetic nephropathy.  相似文献   

15.
16.
OBJECTIVE: We have previously shown that p38 mitogen-activated protein kinase (MAPK) regulates, at least in part, hyperosmolarity induced interleukin (IL)-8 expression in human bronchial epithelial cells (BEC). In the previous study, hyperosmolarity also activated c-Jun-NH2-terminal kinase (JNK); however, the role of the JNK signalling pathway has not been determined. In the present study, we examined the role of the JNK signalling pathway in hyperosmolarity induced IL-8 and RANTES production by BEC using the novel inhibitor of the JNK signalling pathway CEP 11004 in order to clarify these issues. METHODS: Bronchial epithelial cells that had been pre-incubated with SB 203580, CEP 11004 or a combination of these were exposed to a hyperosmolar medium and then the p38 MAPK and JNK phosphorylation activity in these cells and IL-8 and RANTES concentrations in the culture supernatants were determined. RESULTS: The results showed that: (i) hyperosmolarity induced the threonine and tyrosine phosphorylation of p38 MAPK and JNK; (ii) SB 203580, as the specific inhibitor of p38 MAPK activity, and CEP 11004 attenuated hyperosmolarity induced p38 MAPK and JNK activity, respectively; (iii) SB 203580 and CEP 11004, but not PD 98059, partially attenuated IL-8 and RANTES production; and (iv) a combination of SB 203580 and CEP 11004 attenuated IL-8 and RANTES production in an additive fashion. CONCLUSION: These results indicate that p38 MAPK and the JNK pathway regulate hyperosmolarity induced IL-8 and RANTES production by BEC.  相似文献   

17.
Three major mammalian mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), p38, and c-Jun NH(2)-terminal protein kinase (JNK), have been identified in the cardiomyocyte, but their respective roles in the heart are not well understood. The present study explored their functions and cross talk in ischemia/reoxygenation (I/R)-induced cardiac apoptosis. Exposing rat neonatal cardiomyocytes to ischemia resulted in a rapid and transient activation of ERK, p38, and JNK. On reoxygenation, further activation of all 3 mitogen-activated protein kinases was noted; peak activities increased (fold) by 5.5, 5.2, and 6.2, respectively. Visual inspection of myocytes exposed to I/R identified 18.6% of the cells as showing morphological features of apoptosis, which was further confirmed by DNA ladder and terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL). Myocytes treated with PD98059, a MAPK/ERK kinase (MEK1/MEK2) inhibitor, displayed a suppression of I/R-induced ERK activation, whereas p38 and JNK activities were increased by 70.3% and 55.0%, respectively. In addition, the number of apoptotic cells was increased to 33.4%. With pretreatment of cells with SB242719, a selective p38 inhibitor, or SB203580, a p38 and JNK2 inhibitor, I/R+PD98059-induced apoptotic cells were reduced by 42.8% and 63.3%, respectively. Hearts isolated from rats treated with PD98059 and subjected to global ischemia (30 minutes)/reoxygenation (1 hour) showed a diminished functional recovery compared with the vehicle group. Coadministration of SB203580 attenuated the detrimental effects of PD98059 and significantly improved cardiac functional recovery. The data taken together suggest that ERK plays a protective role, whereas p38 and JNK mediate apoptosis in cardiomyocytes subjected to I/R, and the dynamic balance of their activities is critical in determining cardiomyocyte fate subsequent to reperfusional injury.  相似文献   

18.
Fibronectin fragments have been shown to up-regulate matrix metalloproteinase production in chondrocytes. We investigated the roles of mitogen-activated protein kinase (MAPK) pathways activated by the COOH-terminal heparin-binding fibronectin fragment (HBFN-f) in collagenase production by human chondrocytes in culture. In articular cartilage explant culture, HBFN-f stimulated type II collagen cleavage by collagenase in association with increased secretion of MMP-1 and MMP-13. In human articular chondrocytes, HBFN-f induced the collagenases with activation of the extracellular signal-regulated kinase (ERK), p38, and the c-Jun NH2-terminal kinase (JNK). PD98059 that inhibits the ERK pathway blocked HBFN-f-stimulated production of MMP-1 and MMP-13 in explant culture. SB203580 at 1µM, the concentration that inhibits p38 only, partially suppressed HBFN-f-induced collagenase production, whereas at 10µM, the inhibitor that blocks both p38 and JNK almost completely inhibited collagenase induction. PD98059 and SB203580 individually blocked HBFN-f-increased cleavage of type II collagen in the explant culture, although 10µM SB203580 strongly inhibited the collagen cleavage compared with 1µM of the inhibitor. These results indicate that collagenase production leading to type II collagen cleavage in cartilage explants requires ERK, p38, and JNK.  相似文献   

19.
Cadmium is a widespread environmental pollutant which induces severe toxic alterations, including osteomalacia and osteoporosis, likely by estrogen receptor-dependent mechanisms. Indeed, cadmium has been described to act as an endocrine disruptor and its toxicity is exerted both in vivo and in vitro through induction of apoptosis and/or necrosis by not fully clarified intracellular mechanism(s) of action. Aim of the present study was to further investigate the molecular mechanism by which cadmium might alter homeostasis of estrogen target cells, such as osteoblast homeostasis, inducing cell apoptosis and/or necrosis. Human osteoblastic cells (hFOB 1.19) in culture were used as an in vitro model to characterize the intracellular mechanisms induced by this heavy metal. Cells were incubated in the presence/ absence of 10-50 μM cadmium chloride at different times and DNA fragmentation and activation of procaspases- 8 and -3 were induced upon CdCl(2) treatment triggering apoptotic and necrotic pathways. Addition of caspase-8 and -3 inhibitors (Z-IETD-FMK and Z-DQMD-FMK) partially blocked these effects. No activation of procaspase-9 was observed. To determine the role of mitogen-activated protein kinases (MAPK) in these events, we investigated c-jun N-terminal kinase (JNK), p38 and extracellular signal-regulated protein kinase (ERK1/2) phosphorylation which were activated by 10 μM CdCl(2). Chemical inhibitors of JNK, p38, and ERK1/2, SP600125, SB202190, and PD98059, significantly reduced the phosphorylation of the kinases and blunted apoptosis. In contrast, caspase inhibitors did not reduce the cadmium-induced MAPK phosphorylation, suggesting an independent activation of these pathways. In conclusion, at least 2 pathways appear activated by cadmium in osteoblasts: a direct induction of caspase-8 followed by activation of caspase-3 and an indirect induction by phosphorylation of ERK1/2, p38, and JNK MAPK triggering activation of caspase-8 and -3.  相似文献   

20.
Transforming growth factor-beta1 (TGF-beta1) stimulates articular chondrocyte cell proliferation and extracellular matrix formation. We reported previously that immediate and transient expression of c-fos mRNA through protein kinase C activation is required for the mitogenic effect of TGF-beta1 on cultured rat articular chondrocytes (CRAC). In gel kinase assays using myelin basic protein (MBP) showed that total cell lysates from cells treated with TGF-beta1 caused rapid phosphorylation of MBP, which suggests the involvement of mitogen-activated protein kinase (MAPK) activation. To identify specific MAPK pathways activated by TGF-beta1, we performed in vitro kinase assays using specific substrates. TGF-beta1 induced a rapid activation of extracellular signal regulated kinase (ERK) with a peak at 5 min, which decreased to basal levels within 240 min after TGF-beta1 stimulation. In contrast, the c-jun N-terminal kinase activity increased only about 2.5-fold after 240 min of stimulation and p38 MAPK activity did not change significantly. ERK activation by TGF-beta1 was also confirmed by in vivo phosphorylation assays of Elk1. However, a specific MEK1 inhibitor, PD98059, significantly decreased TGF-beta1 induced Elk1 phosphorylation in a dose-dependent manner. Furthermore, PD98059 reduced the TGF-beta1-induced cell growth by 40%. These results indicate that TGF-beta1 specifically activates MEK1 and subsequent ERK pathways in CRAC, and that the activation of this MAPK pathway plays a role in the mitogenic response to TGF-beta1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号