首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. The aim of this analysis was to explore the influence of CYP3A4*1G and CYP3A5*3 polymorphisms on the pharmacokinetics of tylerdipine in healthy Chinese subjects.

  2. A total of 64 and 63 healthy Chinese subjects were included and identified as the genotypes of CYP3A4*1G and CYP3A5*3, respectively. Plasma samples were collected for up to 120?h post-dose to characterize the pharmacokinetic profile following single oral dose of the drug (5, 15, 20, 25 and 30?mg). Plasma levels were measured by a high-performance liquid chromatography-mass spectrometry (LC-MS/MS). The pharmacokinetic parameters were calculated using non-compartmental method. The maximum concentration (Cmax) and the area under the curve (AUC0–24?h) were all corrected by the dose given.

  3. In the wild-type group, the mean dose-corrected AUC0–24?h was 1.35-fold larger than in CYP3A4*1G carriers (p?=?.018). Among the three CYP3A5 genotypes, there showed significantly difference (p?=?.008) in the t1/2, but no significant difference was observed for the AUC0–24?h and Cmax. In subjects with the CYP3A5*3/*3 genotype, the mean t1/2 was 1.35-fold higher than in CYP3A5*1/*1 group (p?=?.007). And the t1/2 in CYP3A5*3 carriers also was 1.32-fold higher than in the wild-type group (p?=?.004).

  4. CYP3A4*1G and CYP3A5*3 polymorphisms may influence tylerdipine pharmacokinetic in healthy Chinese subjects.

  相似文献   

2.
The aim of this study is to evaluate the association of the CYP3A4*18B genotype with the cyclosporine metabolism in healthy subjects. We employed PCR–RFLP assays for analysis of the CYP3A4*18B genotype. Each of 26 subjects, comprising 12 CYP3A4*1/*1, 12 CYP3A4*1/*18B and 2 CYP3A4*18B/*18B, was given a single oral dose of cyclosporine (4?mg?kg?1). The plasma concentrations of cyclosporine were measured for up to 24?h post dose by high-performance liquid chromatography–electrospray mass spectrometry. We found that the mean Cmax (95% confidence intervals) of cyclosporine were 2237 (2905, 1859) (*1/*1), 2247 (2916, 1869) (*1/*18B), and 905 (1192, 506) ng?ml?1 (*18B/*18B) (p?=?0.037) and the mean AUC0-4 were 5026 (6181, 4372) (*1/*1), 4434 (5481, 3841) (*1/*18B) and 2561 (3155, 1736) ng ml-1?h (*18B/*18B) (p?=?0.021). The CL in the *18B/*18B group was significantly higher than in the *1/*1 group. However, Tmax exhibited no difference among the three genotypes. *18B/*18B group showed 50% reduction in concentration at 2?h post dose compared with *1/*18B (p?=?0.062) or *1/*1 (p?=?0.047), but no statistical significance was detected between*1/*1 and *1/*18B groups (p?>?0.05). The data suggest that the CYP3A4*18B genotype affects cyclosporine pharmacokinetics probably resulting from a higher enzymatic activity of this mutation in healthy subjects.  相似文献   

3.
4.
5.
Tolvaptan efficacy for heart failure has a large interindividual variation. This study aimed to evaluate the influence of CYP3A5 and ABCB1 genotypes on tolvaptan pharmacokinetics and their relationships with plasma markers of CYP3A activity and laboratory test values in heart failure patients. Fifty‐eight heart failure patients receiving oral tolvaptan for volume overload were enrolled. Blood samples for determination of pre‐dose plasma concentrations of tolvaptan and its metabolites were collected. CYP3A5 and ABCB1 genotypes, plasma 4β‐hydroxycholesterol/total cholesterol ratio (4β‐OHC/TC) and 25‐hydroxyvitamin D (25‐OHD), and serum laboratory test values were evaluated. The CYP3A5*3/*3 genotype was associated with a higher plasma concentration of tolvaptan but not with its metabolic ratios. The ABCB1 3435C > T, 2677G > T/A and 1236C > T polymorphisms affected neither tolvaptan pharmacokinetics nor its metabolism. Plasma 4β‐OHC/TC and 25‐OHD concentration were not correlated with plasma tolvaptan concentration. In a stratified analysis based on CYP3A5 genotype, plasma 4β‐OHC/TC had a negative correlation with plasma tolvaptan concentration in the patients with the CYP3A5*1 allele, while the plasma concentration of 25‐OHD did not. The CYP3A5*3/*3 genotype was associated with a higher serum sodium level in the patients with volume overload. The plasma concentration of 25‐OHD had a positive correlation with the serum total bilirubin level. In conclusion, CYP3A5*3 but not ABCB1 genotypes elevated tolvaptan plasma exposure in heart failure patients. CYP3A5‐deficient patients treated with tolvaptan had a higher serum sodium level. The CYP3A5 genotype altered the relationship between plasma tolvaptan and 4β‐OHC.  相似文献   

6.
AIM: To assess the influence of ketoconazole on azimilide pharmacokinetics. METHODS: A two-period randomized crossover study was conducted in healthy male and female subjects (19-45 years). Placebo or 200 mg ketoconazole were administered orally every 24 h for 29 days. On day 8, a single oral dose of 125 mg azimilide dihydrochloride was coadministered following an overnight fast. Blood samples were obtained prior to and for 22 days following azimilide dihydrochloride administration. The plasma protein binding of azimilide was also assessed at 6 h after dosing. RESULTS: Following ketoconazole administration, a 16% increase in azimilide AUC (90% confidence interval (CI) 112%, 120%), a 12% increase in C(max) (95% CI 107%, 116%), a 13% increase in t(1/2,z) (95% CI 107%, 120%) and a 14% decrease in CL(o) (95% CI 82%, 90%) were observed. CONCLUSIONS: The changes in azimilide pharmacokinetics following ketoconazole treatment are not clinically important since the 90% CI for the AUC fell within the prespecified range of 80-125%. Thus, no clinically important drug interactions are expected when azimilide dihydrochloride is coadministered with CYP3A4 inhibitors.  相似文献   

7.
  1. The objective of this study was to investigate the interaction between glycyrrhizin and omeprazole and observe the effects of glycyrrhizin on CYP2C19 and CYP3A4 activities in healthy Chinese male volunteers with different CYP2C19 genotypes.

  2. Eighteen healthy subjects (six CYP2C19*1/*1, five CYP2C19*1/*2, one CYP2C19*1/*3, five CYP2C19*2/*2 and one CYP2C19*2/*3) were enrolled in a two-phase randomized crossover trial. In each phase, all subjects received placebo or glycyrrhizin salt tablet 150?mg twice daily for 14 consecutive days. The pharmacokinetics of omeprazole (20?mg orally on day 15) was determined for up to 12?h following administration by high-performance liquid chromatography.

  3. After 14-day treatment of glycyrrhizin, plasma omeprazole significantly decreased, and those of omeprazole sulfone significantly increased. However, plasma concenetrations of 5-hydroxyomeprazole did not significantly change. The ratio of AUC0–∞ of omeprazole to omeprazole sulfone decreased by 43.93% ± 13.56% (p?=?0.009) in CYP2C19*1/*1, 44.85% ± 14.84% (p?=?0.002) in CYP2C19*1/*2 or *3 and 36.16% ± 7.52% (p?<?0.001) in CYP2C19*2/*2 or *3 while those of omeprazole to 5-hydroxyomeprazole did not change significantly in all three genotypes. No significant differences in glycyrrhizin response were found among CYP2C19 genotypes.

  4. Glycyrrhizin induces CYP3A4-catalyzed sulfoxidation of omeprazole and leads to decreased omeprazole plasma concentrations, but has no significant impact on CYP2C19-dependent hydroxylation of omeprazole.

  相似文献   

8.
AIMS: To determine the frequencies of the genotypes of CYP3A5 and MDR1 and to examine the influence of the polymorphisms of these genes on tacrolimus pharmacokinetics in the Korean population. METHODS: Twenty-nine healthy Koreans who participated in the previous tacrolimus pharmacokinetic study were genotyped for CYP3A4*1B, CYP3A5*3, MDR1 c.1236C-->T, MDR1 c.2677G-->A/T and MDR1 c.3435C-->T. The relationship between the genotypes so obtained and tacrolimus pharmacokinetics observed in the previous study was examined. RESULTS: No subject in this study had the CYP3A4*1B variant. The observed frequencies of CYP3A5*1/*1, *1/*3, and *3/*3 were 0.069 [confidence interval (CI) -0.023, 0.161], 0.483 (CI 0.301, 0.665) and 0.448 (CI 0.267, 0.629), respectively. AUC(0-infinity) for the CYP3A5*1/*1 or *1/*3 genotype was 131.5 +/- 44.8 ng h ml(-1) (CI 109.6, 153.5), which was much lower compared with the CYP3A5*3/*3 genotype of 323.8 +/- 129.3 ng h ml(-1) (CI 253.5, 394.1) (P = 2.063E-07). Similarly, C(max) for the CYP3A5*1/*1 or *1/*3 genotype was 11.8 +/- 3.4 ng ml(-1) (CI 10.1, 13.5), which was also much lower compared with the CYP3A5*3/*3 genotype of 24.4 +/- 12.3 ng ml(-1) (CI 17.8, 31.1) (P = 0.0001). However, there was no significant difference in tacrolimus pharmacokinetics among the MDR1 diplotypes of CGC-CGC, CGC-TTT, CGC-TGC, TTT-TGC or TTT-TTT (P = 0.2486). CONCLUSIONS: This study shows that the CYP3A5*3 genetic polymorphisms may be associated with the individual difference in tacrolimus pharmacokinetics. An individualized dosage regimen design incorporating such genetic information would help increase clinical efficacy of the drug while reducing adverse drug reactions.  相似文献   

9.

Aim:

To develop a pharmacokinetic/pharmacodynamic (PK/PD) model describing the receptor/gene-mediated induction of CYP3A1/2 by dexamethasone (DEX) in rats.

Methods:

A group of male Sprague-Dawley rats receiving DEX (100 mg/kg, ip) were sacrificed at various time points up to 60 h post-treatment. Their blood sample and liver were collected. The plasma concentration of DEX was determined with a reverse phase HPLC method. CYP3A1/2 mRNA, protein levels and enzyme activity were measured using RT-PCR, ELISA and the testosterone substrate assay, respectively. Data analyses were performed using a first-order conditional estimate (FOCE) with INTERACTION method in NONMEM version 7.1.2.

Results:

A two-compartment model with zero-order absorption was applied to describe the pharmacokinetic characteristics of DEX. Systemic clearance, the apparent volume of distribution and the duration of zero-order absorption were calculated to be 172.7 mL·kg−1·h−1, 657.4 mL/kg and 10.47 h, respectively. An indirect response model with a series of transit compartments was developed to describe the induction of CYP3A1/2 via PXR transactivation by DEX. The maximum induction of CYP3A1 and CYP3A2 mRNA levels was achieved, showing nearly 21.29- and 8.67-fold increases relative to the basal levels, respectively. The CYP3A1 and CYP3A2 protein levels were increased by 8.02-fold and 2.49-fold, respectively. The total enzyme activities of CYP3A1/2 were shown to increase by up to 2.79-fold, with a lag time of 40 h from the Tmax of the DEX plasma concentration. The final PK/PD model was able to recapitulate the delayed induction of CYP3A1/2 mRNA, protein and enzyme activity by DEX.

Conclusion:

A mechanism-based PK/PD model was developed to characterize the complex concentration-induction response relationship between DEX and CYP3A1/2 and to resolve the drug- and system-specific PK/PD parameters for the course of induction.  相似文献   

10.

AIMS

To evaluate the effect of co-administration of rifampicin, an inducer of cytochrome P450 (CYP)3A4, on the pharmacokinetics of roflumilast and roflumilast N-oxide. Roflumilast is an oral, once-daily phosphodiesterase 4 (PDE4) inhibitor, being developed for the treatment of chronic obstructive pulmonary disease. Roflumilast is metabolized by CYP3A4 and CYP1A2, with further involvement of CYP2C19 and extrahepatic CYP1A1. In vivo, roflumilast N-oxide contributes >90% to the total PDE4 inhibitory activity.

METHODS

Sixteen healthy male subjects were enrolled in an open-label, three-period, fixed-sequence study. They received a single oral dose of roflumilast 500 µg on days 1 and 12 and repeated oral doses of rifampicin 600 mg once daily on days 5–15. Plasma concentrations of roflumilast and roflumilast N-oxide were measured for up to 96 h. Test/Reference ratios and 90% confidence intervals (CIs) of geometric means for AUC and Cmax of roflumilast and roflumilast N-oxide and for oral apparent clearance (CL/F) of roflumilast were estimated.

RESULTS

During the steady-state of rifampicin, the AUC0–∞ of roflumilast decreased by 80% (point estimate 0.21; 90% CI 0.16, 0.27); Cmax by 68% (0.32; CI 0.26, 0.39); for roflumilast N-oxide, the AUC0–∞ decreased by 56% (0.44; CI 0.36, 0.55); Cmax increased by 30% (1.30; 1.15, 1.48); total PDE4 inhibitory activity decreased by 58% (0.42; 0.38, 0.48).

CONCLUSIONS

Co-administration of rifampicin and roflumilast led to a reduction in total PDE4 inhibitory activity of roflumilast by about 58%. The use of potent cytochrome P450 inducers may reduce the therapeutic effect of roflumilast.  相似文献   

11.
The reduced bioavailability of nimodipine after oral administration might not only be due to the metabolizing enzyme cytochrome P450 3A4(CYP3A4) but also to the P-glycoprotein efflux transporter in the small intestine. The aim of this study was to investigate the effects of baicalein on the pharmacokinetics of nimodipine in rats. The effect of baicalein on P-glycoprotein and CYP3A4 activity was evaluated. A single dose of nimodipine was administered intravenously (3 mg/kg) and orally (12 mg/kg) to rats in the presence and absence of baicalein (0.4, 2 and 8 mg/kg). Baicalein inhibited CYP3A4 enzyme activity in a concentration-dependent manner, with a 50% inhibition concentration (IC(50)) of 9.2 μM. In addition, baicalein significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-glycoprotein. Baicalein significantly altered the pharmacokinetics of orally administered nimodipine. Compared to the oral control group given nimodipine alone, the area under the plasma concentration-time curve (AUC(0-∞)) and the peak plasma concentration (C(max)) of nimodipine significantly increased (p < 0.05 for 2 mg/kg; p < 0.01 for 8 mg/kg). Consequently, the absolute bioavailability of nimodipine in the presence of baicalein (2 and 8 mg/kg) was 31.0-35.3%, which was significantly enhanced (p < 0.05 for 2 mg/kg; p < 0.01 for 8 mg/kg) compared to the oral control group (22.3%). Moreover, the relative bioavailability of nimodipine was 1.39- to 1.58-fold greater than that of the control group. The pharmacokinetics of intravenous nimodipine were not affected by baicalein in contrast to those of oral nimodipine. Baicalein significantly enhanced the oral bioavailability of nimodipine, which may be mainly due to inhibition of the CYP3A4-mediated metabolism of nimodipine in the small intestine and/or in the liver and the inhibition of the P-glycoprotein efflux pump in the small intestine by baicalein. The increase in oral bioavailability of nimodipine in the presence of baicalein should be taken into consideration as a potential drug interaction between nimodipine and baicalein.  相似文献   

12.
13.
Objective We investigated whether differences in pharmacokinetics of midazolam, a CYP3A probe, could be demonstrated between subjects with different CYP3A4 and CYP3A5 genotypes.Methods Plasma concentrations of midazolam, and of total (conjugated + unconjugated) 1OH-midazolam, and 4OH-midazolam were measured after the oral administration of 7.5 mg or of 75 µg of midazolam in 21 healthy subjects.Results CYP3A5*7, CYP3A4*1E, CYP3A4*2, CYP3A4*4, CYP3A4*5, CYP3A4*6, CYP3A4*8, CYP3A4*11, CYP3A4*12, CYP3A4*13, CYP3A4*17 and CYP3A4*18 alleles were not identified in the 21 subjects. CYP3A5*3, CYP3A5*6, CYP3A4*1B and CYP3A4*1F alleles were identified in 20, 1, 4 and 2 subjects, respectively. No statistically significant differences were observed for the AUCinf values between the different genotypes after the 75-µg or the 7.5-mg dose.Conclusion Presently, CYP3A4 and CYP3A5 genotyping methods do not sufficiently reflect the inter-individual variability of CYP3A activity.  相似文献   

14.
目的:研究苯磺酸氨氯地平片在健康人体的药动学,及血药浓度与降血压效应的关系。方法:24名健康受试者单次口服10 mg苯磺酸氨氯地平片,服药后不同时间采集血样,采用LC-MS-MS法测定血浆中氨氯地平浓度,采用坐位动脉收缩压(SBP)和舒张压(DBP)的变化值为降压药效指标。结果:氨氯地平体内代谢呈二室模型,消除半衰期约36 h,表观分布容积较大,提示为全身分布,峰浓度约为(6.1±1.5)ng.mL-1。动脉收缩压和舒张压在用药后呈波动性下降,用药10 h后药效逐渐消失,可见一个药效滞后环。AUC0-120 h(ng.h.mL-1)和AUEC0-48(mmHg.h-1)分别为(237.1±77.2)和(126.1±49.8)(SBP)、(192.6±47.7)(DBP);Cmax(ng.mL-1)和Emax(mmHg)分别为(6.1±1.5)和(6.3±3.2)(SBP)、(10.1±2.9)(DBP);tmax(h)和TEmax(h)分别为(3.9±0.7)和(8.1±2.3)(SBP)、(9.2±1.2)(DBP)。结论:苯磺酸氨氯地平对动脉收缩压和舒张压均有降低作用,药效达峰时间在给药后6~10 h,均...  相似文献   

15.
16.
目的 研究安纳拉唑钠肠溶片60,80或100 mg连续给药在健康受试者中的药代动力学、药效学和安全耐受性.方法 采用随机、双盲双模拟、安慰剂和阳性药对照的试验设计,共计纳入45例中国健康受试者.各剂量组中10例受试者服用试验药物(安纳拉唑钠肠溶片60,80或100 mg),2例受试者服用阳性对照药(雷贝拉唑钠肠溶片20...  相似文献   

17.
BackgroundThe aim of this study was to investigate the effects of nifedipine on the bioavailability and pharmacokinetics of repaglinide in rats.MethodsThe effect of nifedipine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activity was evaluated. The pharmacokinetic parameters of repaglinide and blood glucose concentrations were also determined in rats after oral (0.5 mg/kg) and intravenous (0.2 mg/kg) administration of repaglinide to rats in the presence and absence of nifedipine (1 and 3 mg/kg).ResultsAdministration of nifedipine resulted in inhibition CYP3A4 activity with an IC50 value of 7.8 μM, and nifedipine significantly inhibited P-gp activity in a concentration-dependent manner. Compared to the oral control group, nifedipine significantly increased the area under the plasma concentration-time curve (AUC0–∞) and the peak plasma concentration (Cmax) of repaglinide by 49.3 and 25.5%, respectively. Nifedipine significantly decreased the total body clearance (CL/F) of repaglinide by 22.0% compared to the oral control group. Nifedipine also increased the absolute bioavailability (AB) of repaglinide by 50.0% compared to the oral control group (33.6%). In addition, the relative bioavailability (RB) of repaglinide was 1.16- to 1.49-fold greater than that of the control group. Compared to the intravenous control, nifedipine significantly increased AUC0–∞ of repaglinide. Blood glucose concentrations had significant differences compared to the oral control groups.ConclusionNifedipine enhanced the oral bioavailability of repaglinide, which may be mainly attributable to inhibition of CYP3A4-mediated metabolism of repaglinide in the small intestine and/or in the liver and to inhibition of the P-gp efflux transporter in the small intestine and/or reduction of total body clearance by nifedipine. The current study has raised awareness of potential drug interactions by concomitant use of repaglinide with nifedipine.  相似文献   

18.
目的研究CYP2C19基因多态性对奥美拉唑在中国人体内的药物动力学和药效学的影响。方法在18例幽门螺杆菌感染阴性的健康志愿者中,应用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)方法确定CYP2C19基因型,分为纯合子强代谢型(homEM),杂合子强代谢型(hetEM)和弱代谢型(PM)3组,每组6人。受试者口服奥美拉唑20 mg.d-1,连续8 d。分别在服药后d 1和d 8,应用高效液相色谱法测定奥美拉唑血药浓度,采用24 h胃内pH监测仪监测胃内pH情况。结果服用奥美拉唑d1,PM组的血药浓度-时间曲线下面积(AUC)高于homEM组和hetEM组,在三种基因型之间的相对比率为1∶1.1∶4.2(homEM∶hetEM∶PM);在服药d 8,PM组的AUC值也高于homEM组和hetEM组,在三种基因型之间的相对比率为1.0∶1.3∶3.3(homEM∶hetEM∶PM)。在服药d1,24 h胃内pH中位值、pH>3的总时间和pH>4的总时间在三种基因型间差异有显著性;在服药d 8,这些参数在PM组高于其它两组。结论CYP2C19基因多态性对奥美拉唑在中国人体内的药物动力学和药效学有明显影响。  相似文献   

19.

AIMS

To determine the effects of the CYP2C9*1/*13 genotype on the pharmacokinetics and pharmacodynamics of meloxicam in Korean subjects.

METHODS

Meloxicam (15 mg) was orally administered to 21 healthy Korean volunteers with either the CYP2C9*1/*1 or the CYP2C9*1/*13 genotype. Plasma meloxicam concentrations were analysed by HPLC-UV for 72 h after drug administration. The pharmacodynamic effects of meloxicam were determined by measuring TXB2 generated in blood.

RESULTS

The AUC(0,∞) and Cmax of meloxicam were 2.43- and 1.46-fold higher in the CYP2C9*1/*13 group than in the CYP2C9*1/*1 group, respectively. The oral clearance of meloxicam was significantly lower in the CYP2C9*1/*13 group (37.9% of wild type) than in the CYP2C9*1/*1 group. The t1/2 of meloxicam was 1.84-fold longer in the CYP2C9*1/*13 group than in the CYP2C9*1/*1 group. The rate of TXB2 production was significantly lower in the CYP2C9*1/*13 group than in the CYP2C9*1/*1 group.

CONCLUSIONS

The CYP2C9*1/*13 genotype is associated with decreased metabolism and increased pharmacodynamic effects of meloxicam.  相似文献   

20.
Intestinal cytochrome P450 3A (CYP3A) plays an important role in oral drug metabolism, but only endogenous metabolic markers for measuring hepatic CYP3A activity were identified. Our study evaluated whether hepatic CYP3A markers reflected intestinal CYP3A activity. An open-label, three-period, six-treatment, one-sequence clinical trial was performed in 16 healthy Korean males. In the control phase, all subjects received a single dose of intravenous (IV) and oral midazolam (1 mg and 5 mg, respectively). Clarithromycin (500 mg) was administered twice daily for 4 days to inhibit hepatic and intestinal CYP3A, and 500 mL of grapefruit juice was given to inhibit intestinal CYP3A. Clarithromycin significantly inhibited total CYP3A activity, and the clearance of IV and apparent clearance of oral midazolam decreased by 0.15- and 0.32-fold, respectively. Grapefruit juice only reduced the apparent clearance of oral midazolam by 0.84-fold, which indicates a slight inhibition of intestinal CYP3A activity. Urinary markers, including 6β–OH–cortisol/cortisol and 6β–OH–cortisone/cortisone, were significantly decreased 0.5-fold after clarithromycin administration but not after grapefruit juice. The fold changes in 6β–OH–cortisol/cortisol and 6β–OH–cortisone/cortisone did not correlate to changes in intestinal availability but did correlate to hepatic availability. In conclusion, endogenous metabolic markers are only useful to measure hepatic, but not intestinal, CYP3A activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号