首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proper incorporation of protein flexibility for prediction of binding poses and affinities of small compounds has attracted increasing attention recently in computational drug design. Various approaches have been proposed to accommodate protein flexibility in the prediction of binding modes and the binding free energy of ligands in an efficient manner. In this review, the significance of incorporating protein flexibility is discussed from the structural biophysical point of view, and then various approaches of generating protein conformation ensembles, as well as their successes and limitations, are introduced and compared. Special emphasis is on how to generate a proper ensemble of conformation for a specific purpose, as well as the computational efficiency of various approaches. Different searching algorithms for the prediction of optimal binding poses of ligands, which are the core engines of docking programs, are accounted for. Scoring functions for evaluation of protein-ligand complexes are compared. Two end-point methods of free energy calculation, Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the Linear Interaction Energy (LIE) method, are briefly reviewed. Finally, we also provide an example for the extension of the conventional protein-ligand docking algorithm for prediction of multiple binding sites and ligand translocation pathways.  相似文献   

2.
"Medical utility of monoclonal antibodies is only limited by our imagination. It is expected that efficient and accurate delivery strategies and technologies will continuously evolve to unveil the ever-broadening medical benefits of monoclonal antibodies".  相似文献   

3.
Among the different targets of administered drugs,there are membrane transporters that play also a role in drug delivery and disposition.Moreover,drug-transporter interactions are responsible for off-target effects of drugs underlying their toxicity.The improvement of the drug design process is subjected to the identification of those membrane transporters mostly relevant for drug absorption,delivery and side effect production.A peculiar group of proteins with great relevance to pharmacology is constituted by the membrane transporters responsible for managing glutamine traffic in different body districts.The interest around glutamine metabolism lies in its physio-pathological role;glutamine is considered a conditionally essential amino acid because highly proliferative cells have an increased request of glutamine that cannot be satisfied only by endogenous synthesis.Then,glutamine transporters provide cells with this special nutrient.Among the glutamine transporters,SLC1A5,SLC6A14,SLC6A19,SLC7A5,SLC7A8 and some members of SLC38 family are the best characterized,so far,in both physiological and pathological conditions.Few 3D structures have been solved by CryoEM;other structural data on these transporters have been obtained by computational analysis.Interactions with drugs have been described for several transporters of this group.For some of them,the studies are at an advanced stage,for others,the studies are still in nuce and novel biochemical findings open intriguing perspectives.  相似文献   

4.
The use of structure in drug design has become widespread, mainly thanks to recent advances in crystallography. Nevertheless, biological macromolecules are intrinsically flexible and it is increasingly evident that their function depends critically on both their structure and dynamics. In this review the authors discuss the implications of protein flexibility for drug design and review recent progress in incorporating protein flexibility into docking and structure-based drug design.  相似文献   

5.
Multiple conformations of a protein kinase target offer an opportunity to design small-molecule inhibitors with distinct but clinically useful profiles. This article analyzes and classifies the binding pockets in the kinase catalytic cleft in different conformational states. Targeting kinase multiple conformations as an emerging strategy in the field is exemplified with important small-molecule agents in the clinic. The structure-based analysis in the paper provides a rationale for thwarting the development of drug-resistant mutations in antikinase therapy.  相似文献   

6.
7.
8.
<正>胶质瘤是颅内常见肿瘤,占成人原发性颅内肿瘤的50%~60%。由于恶性胶质瘤呈浸润性生长,术中常难以判断边界,全切率低,应用神经导航、术中超声、术中磁共振成像(MRI)可提高肿瘤的切除率。术中实时显像手术是近年来快速发展的一项技术,它可以帮助术者在术中快速、准确地判断肿瘤组织的边界,引导术者最大程度切除肿瘤的同时避免正常功能区的损伤。  相似文献   

9.
Antibacterial drug discovery and structure-based design   总被引:1,自引:0,他引:1  
Barker JJ 《Drug discovery today》2006,11(9-10):391-404
Bacterial resistance continues to develop and pose a significant threat, both in hospitals and, more recently, in the community. A focus on other therapeutic areas by the larger pharmaceutical companies has left a shortfall in the pipeline of novel antibacterials. Recently, many new structures have been studied by structure-genomics initiatives, delivering a wealth of targets to consider. Using the tools of structure-based design, antibacterial discovery must exploit these targets to accelerate the process of drug discovery.  相似文献   

10.
11.
Structure-based drug design (SBDD) has emerged as a valuable pharmaceutical lead discovery tool, showing potential for accelerating the discovery process, while reducing developmental costs and boosting potencies of the drug that is ultimately selected. SBDD is an iterative, rational, lead compound sculpting process that involves both the synthesis of new derivatives and the evaluation of their binding to the target structure either through computational docking or elucidation of the target structure as a complex with the lead compound. This method heavily relies on the production of high-resolution (< 2 Å) 3D structures of the drug target, obtained through X-ray crystallographic analysis, in the presence or absence of the drug candidate. The lack of generalized methods for high quality crystal production is still a major bottleneck in the process of macromolecular crystallization. This review provides a brief introduction to SBDD and describes several macromolecular crystallization strategies, with an emphasis on advances and challenges facing researchers in the field today. Recent trends in the development of more universal macromolecular crystallization techniques, particularly nucleation-based techniques that are applicable to both soluble and integral membrane proteins, are also discussed.  相似文献   

12.
Structure-based drug design (SBDD) has emerged as a valuable pharmaceutical lead discovery tool, showing potential for accelerating the discovery process,while reducing developmental costs and boosting potencies of the drug that is ultimately selected. SBDD is an iterative, rational, lead compound sculpting process that involves both the synthesis of new derivatives and the evaluation of their binding to the target structure either through computational docking or elucidation of the target structure as a complex with the lead compound. This method heavily relies on the production of high resolution(< 2 ?) 3D structures of the drug target, obtained through X-ray crystallographic analysis, in the presence or absence of the drug candidate.The lack of generalized methods for high quality crystal production is still a major bottleneck in the process of macromolecular crystallization. This review provides a brief introduction to SBDD and describes several macromolecular crystallization strategies, with an emphasis on advances and challenges facing researchers in the field today. Recent trends in the development of more universal macromolecular crystallization techniques, particularly nucleation-based techniques that are applicable to both soluble and integral membrane proteins, are also discussed.  相似文献   

13.
Even though conceptually started in the early 1980s, the use of protein structure information in drug discovery has never reached the current level of significance, nor has it experienced the revolutionary development that it is currently undergoing. Initially used for lead optimization, structure-based drug design (SBDD) now covers and supports virtually all steps in the drug- discovery pipeline. This commentary is a critical appraisal of the current state of the art, examining both successes and failures. Future directions in SBDD are also discussed.  相似文献   

14.
Du J  Cross TA  Zhou HX 《Drug discovery today》2012,17(19-20):1111-1120
Seasonal and pandemic influenza have caused high morbidity and mortality worldwide. Recent emergence of influenza A H5N1 and H1N1 strains has heightened concern, especially as a result of their drug resistance. The life cycle of influenza viruses has been well studied and nearly all the viral proteins are becoming potential therapeutic targets. In this review, we present an overview of recent progress in structure-based anti-influenza drug design, paying close attention to the increasing role of computation and strategies for overcoming drug resistance.  相似文献   

15.
LEA3D: a computer-aided ligand design for structure-based drug design   总被引:6,自引:0,他引:6  
We present an improved version of the program LEA developed to design organic molecules. Rational drug design involves finding solutions to large combinatorial problems for which an exhaustive search is impractical. Genetic algorithms provide a tool for the investigation of such problems. New software, called LEA3D, is now able to conceive organic molecules by combining 3D fragments. Fragments were extracted from both biological compounds and known drugs. A fitness function guides the search process in optimizing the molecules toward an optimal value of the properties. The fitness function is build up by combining several independent property evaluations, including the score provided by the FlexX docking program. One application in de novo drug design is described. The example makes use of the structure of Mycobacterium tuberculosis thymidine monophosphate kinase to generate analogues of one of its natural substrates. Among 22 tested compounds, 17 show inhibitory activity in the micromolar range.  相似文献   

16.
Acyl carrier protein synthase (AcpS) catalyzes the transfer of the 4'-phosphopantetheinyl group from the coenzyme A to a serine residue in acyl carrier protein (ACP), thereby activating ACP, an important step in cell wall biosynthesis. The structure-based design of novel anthranilic acid inhibitors of AcpS, a potential antibacterial target, is presented. An initial high-throughput screening lead and numerous analogues were modeled into the available AcpS X-ray structure, opportunities for synthetic modification were identified, and an iterative process of synthetic modification, X-ray complex structure determination with AcpS, biological testing, and further modeling ultimately led to potent inhibitors of the enzyme. Four X-ray complex structures of representative anthranilic acid ligands bound to AcpS are described in detail.  相似文献   

17.
Protein ubiquitylation is a pathway by which many proteins are selectively degraded. Its role has been shown in processes such as cell division and differentiation, oncogenesis, apoptosis, DNA repair, membrane transport and the removal of abnormal proteins. The ubiquitylation pathway enzymes are an insufficiently researched area for drug development. A genetic method has been developed (supported by computational biology) to identify potentially useful small molecules that will have a positive impact on our battle against cancer and other diseases. In silico screening is used for initial selection of drug-like compounds. This method is based on docking three-dimensional chemical libraries onto the target enzyme’s functional site for initial screens using a computational scheme, followed by genetic and in vivo methods for hit optimisation. Focus has been on using the ubiquitin conjugation pathway as target for therapeutic intervention against cancer and potent inhibitors of ubiquitylation subpathways have been obtained (including those that are vital for the survival of aggressive cancer cells/tumours). Leads from the development of in vitro inhibitors provided a direction for the development of in vivo inhibitors as investigational tools, and as promising therapeutic agents.  相似文献   

18.
19.
Considerable advances in structural genomics have been witnessed in the last year. Several pilot studies have begun to report their initial results, and new centers have been funded to join the endeavor. The legacies of the genome sequencing efforts, namely high-throughput molecular biology and whole-organism genome sequences, have been integrated as front-end modules for structural genomics pipelines. Impressive advances have been made in NMR spectroscopy and X-ray crystallography. New methods in structural bioinformatics and computational chemistry have been published that provide the means to exploit the wealth of new information in drug discovery. Not surprisingly, the biopharmaceutical industry has been quick to recognize the benefits of these new developments and has begun to adopt them. This article reviews recent results from structural genomics initiatives and the potential applications of new information and technologies in the drug discovery process.  相似文献   

20.
Our understanding of the detailed recognition and processing of clinically useful therapeutic agents has grown rapidly in recent years, and we are now able to begin to apply this knowledge to the rational treatment of disease. Mammalian carboxylesterases (CEs) are enzymes with broad substrate specificities that have key roles in the metabolism of a wide variety of clinical drugs, illicit narcotics and chemical nerve agents. Here, the functions, mechanism of action and structures of human CEs are reviewed, with the goal of understanding how these proteins are able to act in such a non-specific fashion, yet catalyze a remarkably specific chemical reaction. Current approaches to harness these enzymes as protein-based therapeutics for drug and chemical toxin clearance are described, as well as their uses for targeted chemotherapeutic prodrug activation. Also included is an outline of how selective CE inhibitors could be used as co-drugs to improve the efficacy of clinically approved agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号