首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient A-type K+ currents (I(A)) are known to influence the firing pattern of a number of thalamic cell types, but have not been investigated in intralaminar thalamocortical (TC) relay neurons yet. We therefore combined whole-cell patch-clamp techniques, PCR analysis, and immunohistochemistry to investigate the voltage-dependent and pharmacological properties of I(A) and to determine its molecular basis in TC neurons from the centrolateral, paracentral, and centromedial thalamic nuclei. I(A) revealed half-maximal (V (h)) activation and inactivation at about -17 and -67 mV, respectively. At a concentration of 5-10 mM 4-aminopyridine (4-AP) completely blocked I(A). Furthermore, I(A) was nearly unaffected by two sea anemone toxins (blood depressing substances 1 and 2, BDS1 and BDS2; 6-8% block at a concentration of 1 μM) but strongly sensitive to the K(V)4 channel blocker Heteropoda venatoria toxin 2 (HpTx2; about 45% block at a concentration of 5 μM). PCR screening revealed the expression of K(V)4.1-4.3, with strongest expression for K(V)4.2 and weak expression for K(V)4.1. Accordingly K(V)4.1 was not detected in immunohistochemical staining. Furthermore, K(V)4.2 and K(V)4.3 revealed mainly dendritic and somatic staining, respectively. Together with current clamp recordings, these findings point to a scenario where the fast transient I(A) in intralaminar TC neurons has a depolarized threshold at potentials negative to -50 mV, is substantially generated by K(V)4.2 and K(V)4.3 channels, allows prominent burst firing at hyperpolarized potentials, prevents the generation of high-threshold potentials, generates a delayed onset of firing at more depolarized potentials, and allows fast tonic firing.  相似文献   

2.
3.
Voltage-gated K+ channels (Kv) in primary sensory neurons are important for regulation of neuronal excitability. The dorsal root ganglion (DRG) neurons are heterogeneous, and the types of native Kv currents in different groups of nociceptive DRG neurons are not fully known. In this study, we determined the difference in the A-type Kv current and its influence on the firing properties between isolectin B4 (IB4)-positive and -negative DRG neurons. Whole cell voltage- and current-clamp recordings were performed on acutely dissociated small DRG neurons of rats. The total Kv current density was significantly higher in IB+-positive than that in IB(4)-negative neurons. Also, 4-aminopyridine (4-AP) produced a significantly greater reduction in Kv currents in IB4-positive than in IB4-negative neurons. In contrast, IB4-negative neurons exhibited a larger proportion of tetraethylammonium-sensitive Kv currents. Furthermore, IB4-positive neurons showed a longer latency of firing and required a significantly larger amount of current injection to evoke action potentials. 4-AP significantly decreased the latency of firing and increased the firing frequency in IB4-positive but not in IB4-negative neurons. Additionally, IB4-positive neurons are immunoreactive to Kv1.4 but not to Kv1.1 and Kv1.2 subunits. Collectively, this study provides new information that 4-AP-sensitive A-type Kv currents are mainly present in IB4-positive DRG neurons and preferentially dampen the initiation of action potentials of this subpopulation of nociceptors. The difference in the density of A-type Kv currents contributes to the distinct electrophysiological properties of IB4-positive and -negative DRG neurons.  相似文献   

4.
We have previously shown that the serotonergic input on Cajal-Retzius cells, mediated by 5-HT(3) receptors, plays an important role in the early postnatal maturation of the apical dendritic trees of layer 2/3 pyramidal neurons. We reported that knockout mice lacking the 5-HT(3A) receptor showed exuberant apical dendrites of these cortical pyramidal neurons. Because model studies have shown the role of dendritic morphology on neuronal firing pattern, we used the 5-HT(3A) knockout mouse to explore the impact of dendritic hypercomplexity on the electrophysiological properties of this specific class of neurons. Our experimental results show that hypercomplexity of the apical dendritic tuft of layer 2/3 pyramidal neurons affects neuronal excitability by reducing the amount of spike frequency adaptation. This difference in firing pattern, related to a higher dendritic complexity, was accompanied by an altered development of the afterhyperpolarization slope with successive action potentials. Our abstract and realistic neuronal models, which allowed manipulation of the dendritic complexity, showed similar effects on neuronal excitability and confirmed the impact of apical dendritic complexity. Alterations of dendritic complexity, as observed in several pathological conditions such as neurodegenerative diseases or neurodevelopmental disorders, may thus not only affect the input to layer 2/3 pyramidal neurons but also shape their firing pattern and consequently alter the information processing in the cortex.  相似文献   

5.
Auxiliary Hyperkinetic beta subunit of K+ channels: regulation of firing properties and K+ currents in Drosophila neurons. Molecular analysis and heterologous expression have shown that K+ channel beta subunits regulate the properties of the pore-forming alpha subunits, although how they influence neuronal K+ currents and excitability remains to be explored. We studied cultured Drosophila "giant" neurons derived from mutants of the Hyperkinetic (Hk) gene, which codes for a K+ channel beta subunit. Whole cell patch-clamp recording revealed broadened action potentials and, more strikingly, persistent rhythmic spontaneous activities in a portion of mutant neurons. Voltage-clamp analysis demonstrated extensive alterations in the kinetics and voltage dependence of K+ current activation and inactivation, especially at subthreshold membrane potentials, suggesting a role in regulating the quiescent state of neurons that are capable of tonic firing. Altered sensitivity of Hk currents to classical K+ channel blockers (4-aminopyridine, alpha-dendrotoxin, and TEA) indicated that Hk mutations modify interactions between voltage-activated K+ channels and these pharmacological probes, apparently by changing both the intra- and extracellular regions of the channel pore. Correlation of voltage- and current-clamp data from the same cells indicated that Hk mutations affect not only the persistently active neurons, but also other neuronal categories. Shaker (Sh) mutations, which alter K+ channel alpha subunits, increased neuronal excitability but did not cause the robust spontaneous activity characteristic of some Hk neurons. Significantly, Hk Sh double mutants were indistinguishable from Sh single mutants, implying that the rhythmic Hk firing pattern is conferred by intact Shalpha subunits in a distinct neuronal subpopulation. Our results suggest that alterations in beta subunit regulation, rather than elimination or addition of alpha subunits, may cause striking modifications in the excitability state of neurons, which may be important for complex neuronal function and plasticity.  相似文献   

6.
Long lasting outward currents mediated by Ca2+-activated K+ channels can be induced by Ca2+ influx through N-methyl-D-aspartate (NMDA)-receptor channels in voltage-clamped hippocampal pyramidal neurons. Using specific inhibitors, we have attempted to identify the channels that underlie these outward currents. At a holding potential of -50 mV, applications of 1 mM NMDA to the soma of cultured hippocampal pyramidal neurons induced the expected inward currents. In 44% of cells tested, these were followed by outward currents (average amplitude 60 +/- 7 pA) that peaked 2.5 s after the initiation of the inward NMDA currents and decayed with a time constant of 1.4 s. In 43% of those cells exhibiting an outward current, SK channel inhibitors, UCL 1848 (100 nM) and apamin (100 nM) abolished the outward current. In the remainder of the cells, the outward currents were either insensitive or only partly inhibited (44 +/- 4%) by 100 nM UCL 1848. In these cells, the outward currents were reduced by the slow afterhyperpolarization (sAHP) inhibitors, muscarine (3 microM; 43 +/- 9%), UCL 1880 (3 microM; 34 +/- 10%), and UCL 2027 (3 microM; 57 +/- 6%). Neither the BK channel inhibitor, charybdotoxin (100 nM), nor the Na+/K+ ATPase inhibitor, ouabain (100 microM), reduced these outward currents. Irrespective of the pharmacology, the time course of the outward current did not differ. Interestingly, no correlation was observed between the presence of a slow apamin-insensitive afterhyperpolarization and an outward current insensitive to SK channel blockers following NMDA-receptor activation. It is concluded that an NMDA-mediated rise in [Ca2+]i can result in the activation of apamin-sensitive SK channels and of the channels that underlie the sAHP. The activation of these channels may, however, depend on their location relative to NMDA receptors as well as on the spatial Ca2+ buffering within individual neurons.  相似文献   

7.
Blocker-resistant Ca2+ currents in rat CA1 hippocampal pyramidal neurons   总被引:6,自引:0,他引:6  
Sochivko D  Chen J  Becker A  Beck H 《Neuroscience》2003,116(3):629-638
Ca(2+) currents resistant to organic Ca(2+) channel antagonists are present in different types of central neurons. Here, we describe the properties of such currents in CA1 neurons acutely dissociated from rat hippocampus. Blocker-resistant Ca(2+) currents were isolated by combined application of N-, P/Q- and L-type Ca(2+) current antagonists (omega-conotoxin GVIA 2 microM; omega-conotoxin MVIIC 3 microM; omega-agatoxin IVA 200 nM; nifedipine 10 microM) and constituted approximately 21% of the total Ba(2+) current.The blocker-resistant current showed properties similar to R-type currents in other cell types, i.e. voltages of half-maximal inactivation and activation of -76 and -17 mV, respectively, and strong inactivation during the test pulse. In addition, blocker-resistant Ca(2+) currents in CA1 neurons displayed a characteristically rapid deactivation. Application of mock action potentials revealed that charge transfer through blocker-resistant Ca(2+) channels is highly sensitive to action potential shape and changes in resting membrane voltage. Pharmacological experiments showed that these currents were highly sensitive to the divalent cation Ni(2+) (half-maximal block at 28 microM), but were relatively resistant to the spider toxin SNX-482 (8% and 52% block at 0.1 and 1 microM, respectively).In addition to the functional analysis, we examined the expression of pore-forming and accessory Ca(2+) channel subunits on the messenger RNA level in isolated CA1 neurons using quantitative real-time polymerase chain reaction. Of the pore-forming alpha subunits encoding high-threshold Ca(2+) channels, Ca(v)2.1, Ca(v)2.2 and Ca(v)2.3 messenger RNA levels were most prominent, corresponding to the high proportion of N-, P/Q- and R-type currents in these neurons.In summary, CA1 neurons display blocker-resistant Ca(2+) currents with distinctive biophysical and pharmacological properties similar to R-type currents in other neuron types, and express Ca(2+) channel messenger RNAs that give rise to R-type Ca(2+) currents in expression systems.  相似文献   

8.
目的:研究人脑皮层锥体神经元Na~+电流的急性缺氧反应特征以及白藜芦醇(resveratrol,RES)对Na~+电流缺氧反应的影响。方法:采用全细胞膜片钳记录法,在人脑皮层脑片上记录锥体神经元对TTX敏感的电压依赖性Na~+电流,观察急性缺氧和白藜芦醇对Na~+电流幅值和激活性质的影响。结果:(1)急性缺氧使人脑皮层脑片上的锥体神经元Na~+电流呈现短暂的小幅增大后,出现长时程抑制(P0.05),并使Na~+电流的I-V曲线左移(向超极化方向漂移)。(2)AMPA受体阻断剂NBQX阻断了缺氧引起的Na~+电流短暂增大(P0.01),并加剧了Na~+电流的缺氧后抑制(P0.01);GABA_A受体阻断剂Bicuculline对Na~+电流的缺氧性增大和缺氧后抑制无显著性影响(P0.05);二者对缺氧引起的Na~+电流I-V曲线左移均无显著影响。(3)50μmol/L白藜芦醇阻断了Na~+电流的缺氧性增大(P0.01),增强了Na~+电流的缺氧后抑制(P0.05);100μmol/L白藜芦醇显著延迟了Na~+电流的缺氧性反应,使Na~+电流的缺氧性增大现象消失,并使Na~+电流的缺氧后抑制现象衰减(P0.05)。50μmol/L和100μmol/L白藜芦醇均使Na~+电流激活曲线右移,接近正常。结论:人脑皮层锥体神经元Na~+电流对急性缺氧的反应主要表现为长时程抑制;AMPA受体活动可影响Na~+通道对急性缺氧的反应。白藜芦醇对人脑皮层锥体神经元Na~+电流缺氧反应的调节作用与剂量有关,小剂量可模拟NBQX的作用,而大剂量可降低Na~+通道对低氧的敏感性。  相似文献   

9.
1. T-type Ca2+ channels producing a transient inward current were studied in pyramidal neurons acutely isolated from the ventral portion of rat hippocampal CA1 region. Membrane currents were recorded by the suction-pipette technique, which allows for internal perfusion under a single-electrode voltage clamp. 2. In all cells superfused with external solution containing 10 mM Ca2+, the T-type Ca2+ current was evoked by step depolarization to potentials more positive than -60 mV from a holding potential of -100 mV and reached a peak in the current-voltage relationship around -30 mV at 20-22 degrees C. 3. Activation and inactivation processes of T-type Ca2+ current were highly potential dependent, and the latter was fitted by a single exponential function. 4. Steady-state inactivation of T-type Ca2+ current could be fitted by a Boltzmann's equation with a slope factor of 6.0 and a half-inactivated voltage of -79 mV. 5. Recovery from inactivation of T-type Ca2+ current was not a single exponent. The major component of recovery (60-90% of total) was voltage sensitive with a time constant of 215 ms at -100 mV. 6. Amplitude of the T-type Ca2+ current depended on the external Ca2+ concentration. The ratio of peak amplitude in the individual current-voltage relationships of Ca2+, Ba2+, and Sr2+ currents passing through T-type Ca2+ channel was 1.0:0.85:1.32. The current kinetics were much the same. 7. All kinetic properties, including activation and inactivation, as well as the amplitude of T-type Ca2+ current, were temperature sensitive with Q10 (temperature coefficient) values of 1.7-2.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Heritable arrhythmia syndromes, including Brugada syndrome (BrS) and idiopathic ventricular fibrillation (IVF), may serve as the pathogenic basis for autopsy-negative sudden unexplained death (SUD) and sudden infant death syndrome (SIDS). Emerging evidence has linked perturbations in the transient outward current (I(to) ) conducted by the KCND3-encoded Kv4.3 pore-forming α-subunit to BrS or IVF. However, the contribution of KCND3 mutations to autopsy-negative SUD/SIDS is unknown. To investigate the potential association between KCND3 and SUD/SIDS, mutational analysis of KCND3 was conducted in 123 SUDS and 292 SIDS victims using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct sequencing. Overall, one SIDS case (<1.0%) and two SUDS cases (1.6%) harbored potentially pathogenic mutations in KCND3. The novel p.Val392Ile, p.Ser530Pro, and p.Gly600Arg mutations involved highly conserved residues and were absent in 1,560 reference alleles. Although the SIDS-associated p.Ser530Pro mutation demonstrated a wild-type (WT) electrophysiological phenotype when heterologously expressed, the SUDS-associated p.Val392Ile and p.Gly600Arg mutations significantly increased peak current density at +40 mV in comparison with WT by 100.4% (P < 0.05) and 50.4% (P < 0.05), respectively. p.Val392Ile also slowed recovery from inactivation 3.6-fold, indicating a mixed electrophysiological phenotype. This is the first report indicating that KCND3 may serve as a rare genetic substrate in the pathogenesis of SUDS but not SIDS cases.  相似文献   

11.
Potassium channels regulate numerous aspects of neuronal excitability, and several voltage-gated K(+) channel subunits have been identified in pyramidal neurons of rat neocortex. Previous studies have either considered the development of outward current as a whole or divided currents into transient, A-type and persistent, delayed rectifier components but did not differentiate between current components defined by α-subunit type. To facilitate comparisons of studies reporting K(+) currents from animals of different ages and to understand the functional roles of specific current components, we characterized the postnatal development of identified Kv channel-mediated currents in pyramidal neurons from layers II/III from rat somatosensory cortex. Both the persistent/slowly inactivating and transient components of the total K(+) current increased in density with postnatal age. We used specific pharmacological agents to test the relative contributions of putative Kv1- and Kv2-mediated currents (100 nM α-dendrotoxin and 600 nM stromatoxin, respectively). A combination of voltage protocol, pharmacology, and curve fitting was used to isolate the rapidly inactivating A-type current. We found that the density of all identified current components increased with postnatal age, approaching a plateau at 3-5 wk. We found no significant changes in the relative proportions or kinetics of any component between postnatal weeks 1 and 5, except that the activation time constant for A-type current was longer at 1 wk. The putative Kv2-mediated component was the largest at all ages. Immunocytochemistry indicated that protein expression for Kv4.2, Kv4.3, Kv1.4, and Kv2.1 increased between 1 wk and 4-5 wk of age.  相似文献   

12.
《Neuroscience》1999,95(3):745-752
It is demonstrated that not all voltage-gated calcium channel types expressed in neostriatal projection neurons (L, N, P, Q and R) contribute equally to the activation of calcium-dependent potassium currents. Previous work made clear that different calcium channel types contribute with a similar amount of current to whole-cell calcium current in neostriatal neurons. It has also been shown that spiny neurons posses both “big” and “small” types of calcium-dependent potassium currents and that activation of such currents relies on calcium entry through voltage-gated calcium channels. In the present work it was investigated whether all calcium channel types equally activate calcium-dependent potassium currents. Thus, the action of organic calcium channel antagonists was investigated on the calcium-activated outward current. Transient potassium currents were reduced by 4-aminopyridine and sodium currents were blocked by tetrodotoxin. It was found that neither 30 nM ω-Agatoxin-TK, a blocker of P-type channels, nor 200 nM calciseptine or 5 μM nitrendipine, blockers of L-type channels, were able to significantly reduce the outward current. In contrast, 400 nM ω-Agatoxin-TK, which at this concentration is able to block Q-type channels, and 1 μM ω-Conotoxin GVIA, a blocker of N-type channels, both reduced outward current by about 50%. These antagonists given together, or 500 nM ω-Conotoxin MVIIC, a blocker of N- and P/Q-type channels, reduced outward current by 70%. In addition, the N- and P/Q-type channel blockers preferentially reduce the afterhyperpolarization recorded intracellularly.The results show that calcium-dependent potassium channels in neostriatal neurons are preferentially activated by calcium entry through N- and Q-type channels in these conditions.  相似文献   

13.
It is demonstrated that not all voltage-gated calcium channel types expressed in neostriatal projection neurons (L, N, P, Q and R) contribute equally to the activation of calcium-dependent potassium currents. Previous work made clear that different calcium channel types contribute with a similar amount of current to whole-cell calcium current in neostriatal neurons. It has also been shown that spiny neurons possess both "big" and "small" types of calcium-dependent potassium currents and that activation of such currents relies on calcium entry through voltage-gated calcium channels. In the present work it was investigated whether all calcium channel types equally activate calcium-dependent potassium currents. Thus, the action of organic calcium channel antagonists was investigated on the calcium-activated outward current. Transient potassium currents were reduced by 4-aminopyridine and sodium currents were blocked by tetrodotoxin. It was found that neither 30 nM omega-Agatoxin-TK, a blocker of P-type channels, nor 200 nM calciseptine or 5 microM nitrendipine, blockers of L-type channels, were able to significantly reduce the outward current. In contrast, 400 nM omega-Agatoxin-TK, which at this concentration is able to block Q-type channels, and 1 microM omega-Conotoxin GVIA, a blocker of N-type channels, both reduced outward current by about 50%. These antagonists given together, or 500 nM omega-Conotoxin MVIIC, a blocker of N- and P/Q-type channels, reduced outward current by 70%. In addition, the N- and P/Q-type channel blockers preferentially reduce the afterhyperpolarization recorded intracellularly. The results show that calcium-dependent potassium channels in neostriatal neurons are preferentially activated by calcium entry through N- and Q-type channels in these conditions.  相似文献   

14.
Focal cortical dysplasia is associated with the development of seizures in children and is present in up to 40% of intractable childhood epilepsies. Transcortical freeze lesions in newborn rats reproduce many of the anatomical and physiological characteristics of human cortical dysplasia. Rats with freeze lesions have increased seizure susceptibility and a region of hyperexcitable cortex adjacent to the lesion. Since alterations in hyperpolarization-activated nonspecific cation (HCN) channels are often associated with epilepsy, we used whole cell patch-clamp recording and voltage-sensitive dye imaging to examine alterations in HCN channels and inwardly rectifying hyperpolarization-activated currents (I(h)) in cortical dysplasia. (L5) pyramidal neurons in lesioned animals had hyperpolarized resting membrane potentials, increased input resistances and reduced voltage "sag" associated with I(h) activation. These differences became nonsignificant after application of the I(h) blocker ZD7288. Temporal excitatory postsynaptic potential (EPSP) summation and intrinsic excitability were increased in neurons near the freeze lesion. Using voltage-sensitive dye imaging of neocortical slices, we found that inhibiting I(h) with ZD7288 increased the half-width of dye signals. The anticonvulsant lamotrigine produced a significant decrease in spread of activity. The ability of lamotrigine to decrease network activity was reduced in the hyperexcitable cortex near the freeze lesion. These results suggest that I(h) serves to constrain network activity in addition to its role in regulating cellular excitability. Reduced I(h) may contribute to increased network excitability in cortical dysplasia.  相似文献   

15.
Han P  Lucero MT 《Neuroscience》2005,134(3):745-756
Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.  相似文献   

16.
Summary Intracellular recording techniques were used to study the effects of apamin (APA), a selective inhibitor of one type of Ca2+-activated K+ channel, on the electroresponsive properties of dopamine (DA)-containing neurons within the zona compacta of the substantia nigra (SNc) in rat. Bath application of APA (1 M) blocked the slow component of a complex post-spike afterhyperpolarization (AHPs) without affecting other characteristics of the action potential. Blockade of AHPs was accompanied by an increase in the number and frequency of action potentials evoked by depolarizing current pulses. However, APA failed to affect the cellular mechanisms underlying spike frequency adaptation or poststimulus inhibitory period. These data indicate that AHPs can exert a strong influence on the interspike interval but is probably not involved in regulating slower adaptive neuronal responses.  相似文献   

17.
The medial septum/diagonal band complex (MSDB) controls hippocampal excitability, rhythms and plastic processes. Medial septal neuronal populations display heterogeneous firing patterns. In addition, some of these populations degenerate during age-related disorders (e.g. cholinergic neurons). Thus, it is particularly important to examine the intrinsic properties of theses neurons in order to create new agents that effectively modulate hippocampal excitability and enhance memory processes. Here, we have examined the properties of voltage-gated, K(+) currents in electrophysiologically-identified neurons. These neurons were taken from young rat brain slices containing the MS/DB complex. Whole-cell, patch recordings of outward currents were obtained from slow firing, fast-spiking, regular-firing and burst-firing neurons. Slow firing neurons showed depolarization-activated K(+) current peaks and densities larger than in other neuronal subtypes. Slow firing total current exhibited an inactivating A-type current component that activates at subthreshold depolarization and was reliably blocked by high concentrations of 4-AP. In addition, slow firing neurons expressed a low-threshold delayed rectifier K(+) current component with slow inactivation and intermediate sensitivity to tetraethylammonium. Fast-spiking neurons exhibited the smaller I(K) and I(A) current densities. Burst and regular firing neurons displayed an intermediate firing phenotype with I(K) and I(A) current densities that were larger than the ones observed in fast-spiking neurons but smaller than the ones observed in slow-firing neurons. In addition, the prevalence of each current differed among electrophysiological groups with slow firing and regular firing neurons expressing mostly I(A) and fast spiking and bursting neurons exhibiting mostly delayer rectifier K(+) currents with only minimal contributions of the I(A). The pharmacological or genetic modulations of these currents constitute an important target for the treatment of age-related disorders.  相似文献   

18.
Whole cell recordings from acutely isolated rat neocortical pyramidal cells were performed to study the kinetics and the mechanisms of short-term desensitization of G-protein-activated, inwardly rectifying K+ (GIRK) currents during prolonged application (5 min) of baclofen, adenosine, or serotonin. Most commonly, desensitization of GIRK currents was characterized by a biphasic time course with average time constants for fast and slow desensitization in the range of 8 and 120 s, respectively. The time constants were independent of the agonist used to evoke the current. The biphasic time course was preserved in perforated-patch recordings, indicating that neither component of desensitization is attributable to cell dialysis. Desensitization of GIRK currents displayed a strong heterologous component in that application of a second agonist substantially reduced the responsiveness to a test agonist. Fast desensitization, but not slow desensitization, was lost in cells loaded with GDP, suggesting that the hydrolysis cycle of G proteins might underlie the initial, rapid current decline. Hydrolysis of phosphatidylinositol biphosphate is an unlikely candidate underlying short-term desensitization, because both components of desensitization were preserved in the presence of the phospholipase C inhibitor U73122. We conclude that short-term desensitization does neither result from receptor downregulation nor from altered channel gating but might involve modifications of the G-protein-dependent pathway that serves to translate receptor activation into channel opening.  相似文献   

19.
The transient outward potassium currents (also known as A-type currents or IA) are important determinants of neuronal excitability. In the brain, IA is modulated by protein kinase C (PKC), protein kinase A (PKA), and extracellular signal-related kinase (ERK), three kinases that have been shown to be critical modulators of nociception. We wanted to determine the effects of these kinases on IA in superficial dorsal horn neurons. Using whole cell recordings from cultured mouse spinal cord superficial dorsal horn neurons, we found that PKC and PKA both inhibit IA in these cells, and that PKC has a tonic inhibitory action on IA. Further, we provide evidence supporting the hypothesis that PKC and PKA do not modulate IA directly, but rather act as upstream activators of ERKs, which modulate IA. These results suggest that ERKs serve as signal integrators in modulation of IA in dorsal horn neurons and that modulation of A-type potassium currents may underlie aspects of central sensitization mediated by PKC, PKA, and ERKs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号