首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gupta P  Bansal AK 《Die Pharmazie》2005,60(11):830-836
The present study highlights the development of ternary amorphous composites to enhance the solubility of a poorly soluble crystalline drug, celecoxib (CEL). These systems comprised of an 'amorphous drug,' and its 'stabilizer' and 'solubilizer.' The ternary amorphous system of CEL, poly(vinyl pyrrolidone) (PVP) and meglumine (MEG) (7:2:1 w/w) enhanced CEL solubility by approximately equal to 10.2-fold over that for the crystalline drug, and maintained the thermodynamic stability of the amorphous drug. However, MEG alone was unable to stabilize the amorphous CEL against thermally-induced crystallization, and so gave no solubility advantage. The PVP-MEG combination provided a 'synergistic' enhancement of CEL solubility, as compared to their use alone in the amorphous systems. Phase-solubility studies provided greater insight into molecular mechanisms underlying stability and solubility of these amorphous systems. MEG exhibited phase-specific interaction with CEL molecules, when stabilized by PVP in the amorphous state. The higher solubility of CEL from ternary amorphous systems was also thermodynamically favored, as analyzed by van't Hoff plots. A possible molecular level interaction of MEG with PVP-stabilized amorphous CEL seems to be responsible for the solubility advantage of the CEL-PVP-MEG ternary amorphous system.  相似文献   

2.
Purpose. The purpose of this study was to compare the structural relaxation and molecular mobility of amorphous celecoxib (CEL) with that of CEL amorphous mixtures consisting of various excipients and to study the effect of different excipients on the relaxation of high-energy amorphous systems. Methods. The measurement of glass transition temperatures (Tg) and enthalpy relaxation were performed using differential scanning calorimetry. The interactions between drug and excipients and the absence of crystalline forms were further confirmed by conducting Fourier transform infrared spectroscopic and X-ray powder diffraction studies on same samples. Results. All samples exhibited a single Tg value. Polymers had a prominent effect on the lowering of the relaxation rate in amorphous CEL. The lowering of the rate of relaxation was directly dependent on the concentration and type of polymer used. The total enthalpy required for relaxation was same, although additives affected the rate of relaxation. Conclusions. In absence of any specific interactions during Fourier transform infrared studies, it was concluded that the antiplasticizing activity of polymers is responsible for the stabilization of CEL amorphous systems. Glassy amorphous dispersions of CEL exhibited a complex type of relaxation pattern, which failed to fit in Kohlrausch-Williams-Watts equation with respect to calculation of relaxation time constants.  相似文献   

3.
An empirical assessment of drug release from amorphous systems of celecoxib (CEL), poly(vinyl pyrrolidone) (PVP), and meglumine (MEG) was performed and compared with that for its crystalline form. CEL-PVP (4:1 w/w) binary and CEL-PVP-MEG (7:2:1 w/w) ternary amorphous systems provided higher drug dissolution. Mathematical modeling of drug release data was found to best fit the Hixson-Crowell release model. The biphasic drug release during a 6-h duration exhibited higher release kinetics in the first phase due to the presence of drug in amorphous form. The release kinetics subdued in the latter phase due to ongoing devitrification process in amorphous systems. A comprehensive understanding of drug release from amorphous systems will accentuate the rationalized design of amorphous drug delivery systems.  相似文献   

4.
The feasibility of forming solid molecular dispersions of poorly water-soluble drugs in crosslinked poly(2-hydroethyl methacrylate) (PHEMA) hydrogel has recently been reported by our group. The purpose of the present study is to investigate the extent of enhancement of kinetic solubility of amorphous solid dispersions (ASDs) of indomethacin (IND) in crosslinked PHEMA hydrogels as compared with those based on conventional water-soluble polymer carriers. Our results show that under non-sink conditions, the initial solubility enhancement is higher for ASDs based on polyvinylpyrrolidone (PVP) and hydroxypropylmethylcellulose acetate succinate (HMPCAS), but the ability to maintain this solubility enhancement at longer times is better for ASDs based on PHEMA over a period of 24h with the extent of solubility enhancement of IND ASDs in PHEMA falling between those in PVP and HPMCAS at 10.0% IND loading after 6h and outperforming those in PVP and HPMCAS at 32.9% IND loading after 8h. The observed kinetic solubility profiles reflect the fact that the amorphous IND is released from PHEMA by a different mechanism than those from water-soluble polymer carriers. In this case, the dissolution of IND ASD from water-soluble PVP and HPMCAS is almost instantaneous, resulting in an initial surge of IND concentration followed by a sharp decline due to the nucleation and crystallization events triggered by the rapid build-up of drug supersaturation. On the other hand, the dissolution of IND ASD from insoluble crosslinked PHEMA hydrogel beads is less rapid as it is regulated by a feedback-controlled diffusion mechanism, thus avoiding a sudden surge of supersaturation in the dissolution medium. The absence of an apparent decline in drug concentration during dissolution from IND-PHEMA ASD further reflects the diminished nucleation and crystallization events during IND dissolution from hydrogel-based solid molecular dispersions. Based on the XRD analyses, a threshold IND loading level of about 34% in PHEMA has been identified, above which amorphous to crystalline transition tends to occur. Also, by selecting the appropriate particle sizes, immediate to controlled release of IND from IND-PHEMA ASD can be readily achieved as the release rate increases with decreasing PHEMA bead size. Furthermore, a robust physical stability has been demonstrated in IND-PHEMA ASD with no drug precipitation for up to 8 months at IND loadings below 16.7% under direct open cup exposure to accelerated stability conditions (40°C/75% RH).  相似文献   

5.
The solubility behavior of solid dispersions of two drugs with similar structures was studied. Valdecoxib (VLB) and etoricoxib (ETB) were used as model drugs, and their solid dispersions were prepared with 1, 2, 5, 10, 15, and 20% w/w poly(vinylpyrrolidone) (PVP) by the quench cooling method. The interactions between the drug and polymer molecules were studied by Fourier transform infrared spectroscopy (FT-IR). The thermodynamic aspects of solubility behavior were studied by plotting van't Hoff plots. Both the drugs showed significant differences in their solubility behavior. In the case of VLB, solubility was found to increase significantly with increasing PVP concentration. ETB however did not show any significant solubility enhancement and was found to have decreased solubility at high PVP concentrations. H-bonding interactions were established between VLB and PVP molecules, while none were observed in ETB-PVP dispersions. Solution thermodynamics of amorphous and crystalline forms of both the drugs were studied by van't Hoff plots. The results obtained showed very high negative value of Gibbs free energy for VLB as compared to ETB, thus demonstrating high spontaneity of VLB solubilization. Entropy of amorphous VLB was found to be highly favorable, while being slightly unfavorable for ETB. From this study H-bonding interactions were found to play a major role in dictating the solubility behavior of these drugs from solid dispersions.  相似文献   

6.
Water vapor absorption isotherms were measured for three amorphous hydrophobic drug/poly(vinylpyrrolidone) (PVP) dispersions in the concentration range 10-90% w/w PVP. Experimental isotherms were compared to predicted isotherms calculated using each individual component isotherm multiplied by its weight fraction. Indomethacin (IMC)/PVP, ursodeoxycholic acid (UDCA)/PVP and indapamide (IDP)/PVP amorphous dispersions all exhibited experimental isotherms reduced relative to predicted isotherms indicating that dispersion formation altered the water vapor absorption properties of the individual components. For all three drug/PVP systems, deviation from predicted water uptake was greatest close to the 1:1 drug:PVP monomer composition, indicating that intermolecular interaction in amorphous dispersions affects the water uptake properties of the individual components. Using dry glass transition temperature (T(g)) data, the extent of drug/PVP interaction was shown to be greatest in the IDP/PVP system, which could explain why the largest reduction in water vapor absorption was found in this system. The plasticizing effect of absorbed water varied according to dry dispersion PVP content in all systems and the resulting nonideal changes in free volume, calculated using the Vrentas model, were greatest close to the 1:1 drug:PVP monomer composition. A three-component Flory-Huggins model successfully predicted isotherms for IMC/PVP compositions from 60 to 90% w/w PVP and identified an IMC-PVP interaction parameter chi in the range 1.27-1.49, values that suggest poor homogeneity of mixing in the dry system. These data indicate that amorphous dispersion formation causes both chemical and physical changes in the individual amorphous components that can have a significant effect on their water vapor absorption properties.  相似文献   

7.
Tenoxicam is a poorly soluble nonsteroidal anti-inflammatory drug. In this work, the solubility of tenoxicam is enhanced using amorphous spray-dried dispersions (SDDs) prepared using two molar equivalents of l-arginine and optionally with 10%-50% (w/w) polyvinylpyrrolidone (PVP). When added to the dispersions, PVP is shown to improve physical properties and also assists in maintaining supersaturation in solution. The dispersions provide a twofold increase over equilibrium solubility at the same pH. The dispersions are characterized using electron microscopy, vibrational spectroscopy, diffuse-reflectance visible spectroscopy, and X-ray powder diffraction. The structures of the dispersions are probed using solid-state nuclear magnetic resonance (SSNMR) experiments applied to the (1) H, (13) C, and (15) N nuclei, including two-dimensional dipolar correlation experiments that detect molecular association and the formation of a glass solution between tenoxicam, l-arginine, and PVP. Other aspects of the amorphous structure, including hydrogen-bonding interactions and the ionization state of tenoxicam and l-arginine, are also explored using SSNMR methods. These methods are used to show that the SDDs contain an amorphous l-arginine salt of tenoxicam in a glass solution that also includes PVP when present. Finally, the dispersions show only a minor decrease in chemical stability during accelerated stability studies relative to a crystalline form of tenoxicam.  相似文献   

8.
The overall crystallization rates and mean relaxation times of amorphous nifedipine and phenobarbital in the presence of poly(vinylpyrrolidone) (PVP) were determined at various temperatures to gain further insight into the effect of molecular mobility on the crystallization rates of amorphous drugs and the possibility of predicting stability from their molecular mobility. Nifedipine-PVP (9:1 w/w) and phenobarbital-PVP (95:5 w/w) solid dispersions were prepared by melting and rapidly cooling mixtures of each drug and PVP. The amount of amorphous nifedipine remaining in the solid dispersion was calculated from the heat of crystallization,which was obtained by differential scanning calorimetry. The amount of amorphous phenobarbital remaining in the solid dispersion was estimated from the change in the heat capacity at its glass transition temperature (T(g)). The time required for the amount of amorphous drug remaining to fall to 90% (t(90)) was calculated from the profile of time versus the amount of amorphous drug remaining. The t(90) values for the solid dispersions studied were 100-1000 times longer than those of pure amorphous drugs when compared at the same temperature. Enthalpy relaxation of the amorphous drugs in the solid dispersions was reduced compared with that in the pure amorphous drugs, indicating that the molecular mobility of the amorphous drugs is reduced in the presence of PVP. The temperature dependence of mean relaxation time (tau) for the nifedipine-PVP solid dispersion was calculated using the Adam-Gibbs-Vogel equation. Parameters D and T(0) in this equation were estimated from the heating rate dependence of T(g). Similar temperature dependence was observed for t(90) and tau values of the solid dispersion, indicating that the information on the temperature dependence of the molecular mobility, along with the crystallization data obtained at around the T(g), are useful for estimating the t(90) of overall crystallization at temperatures below T(g) in the presence of excipients.  相似文献   

9.
In this study, the dissolution properties of celecoxib (CX) solid dispersions manufactured from Eudragit 4155F and polyvinylpyrrolidone (PVP) were evaluated. Hot-melt extrusion (HME) technology was used to prepare amorphous solid dispersions of drug/polymer binary systems at different mass ratios. The drug concentrations achieved from the dissolution of PVP and Eudragit 4155F solid dispersions in phosphate buffer, pH 7.4 (PBS 7.4) were significantly greater than the equilibrium solubility of CX (1.58 μg/mL). The degree of supersaturation increased significantly as the polymer concentration within the solid dispersion increased. The maximum drug concentration achieved by PVP solid dispersions did not significantly exceed the apparent solubility of amorphous CX. The predominant mechanism for achieving supersaturated CX concentrations in PBS 7.4 was attributed to stabilization of amorphous CX during dissolution. Conversely, Eudragit 4155F solid dispersions showed significantly greater supersaturated drug solutions particularly at high polymer concentrations. For example, at a drug/polymer ratio of 1:9, a concentration of 100 μg/mL was achieved after 60 min that was stable (no evidence of drug recrystallization) for up to 72 h. This clearly identifies the potential of Eudragit 4155F to act as a solubilizing agent for CX. These findings were in good agreement with the results from solubility performed using PBS 7.4 in which Eudragit 4155F had been predissolved. In these tests, Eudragit 4155F significantly increased the equilibrium solubility of CX. Solution (1)H NMR spectra were used to identify drug/polymer interactions. Deshielding of CX aromatic protons (H-1a and H-1b) containing the sulfonamide group occurred as a result of dissolution of Eudragit 4155F solid dispersions, whereas deshielding of H-1a protons and shielding of H-1b protons occurred as a result of the dissolution of PVP solid dispersions. In principle, it is reasonable to suggest that the different drug/polymer interactions observed give rise to the variation in dissolution observed for the two polymer/drug systems.  相似文献   

10.
The solid-state properties and dissolution behaviour of lamotrigine in its inclusion complex with beta-cyclodextrin (betaCD) and solid dispersions with polyvinylpyrrolidone K30 (PVP K30) and polyethyleneglycol 6000 were investigated. The phase solubility profile of lamotrigine with betaCD was classified as AL-type, indicating formation of a 1:1 stoichiometry inclusion complex, with a stability constant of 369.96+/-2.26 M(-1). Solvent evaporation and kneading methods were used to prepare solid dispersions and inclusion complexes, respectively. The interaction of lamotrigine with these hydrophilic carriers was evaluated by powder X-ray diffractometry, Fourier transform infrared spectroscopy and differential scanning calorimetry. These studies revealed that the drug was no longer present in crystalline state but was converted to an amorphous form. Among the binary systems tested, PVP K30 (1:5) showed greatest enhancement of the solubility and dissolution of lamotrigine.  相似文献   

11.
The purpose of this study was to understand the combined effect of two polymers showing drug–polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%–40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug–polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3511–3523, 2014  相似文献   

12.
Objectives Andrographolide, a natural lipophilic molecule, has a wide range of pharmacological actions. However, due to low aqueous solubility, it has low oral bioavailability. The purpose of the study was to increase the solubility and dissolution rate of isolated andrographolide by formulating its solid dispersion. Method Solid dispersions were obtained by a spray‐drying technique using different ratios of drug to polyvinylpyrrolidine (PVP K‐30). Solid dispersions in compression with isolated drug and corresponding physical mixtures were characterized for various molecular pharmaceutical properties and subjected to stability study for up to 3 months. Key findings A five‐fold increase in saturation solubility of andrographolide with higher values of Q5min (cumulative percentage release in 5 min) and lower values of t75% (time required for 75% w/w drug release) for solid dispersion was observed in different dissolution mediums. This was attributed to the formation of amorphous nature and intermolecular hydrogen bonding between drug and PVP K‐30. The stability study showed there to be no significant change in molecular pharmaceutical properties and dissolution profile over the period of 3 months. Moreover, the in‐vivo study in Wistar albino rats also justified improvement in the therapeutic efficacy of andrographolide after solid dispersion. Conclusions This study demonstrates the utility of solid dispersion to improve primary and secondary pharmaceutical properties of andrographolide using PVP K‐30 as a carrier.  相似文献   

13.
Stabilization of an amorphous solid against devitrification can be achieved using additives that interact specifically with the parent molecule, and restrain it from rearranging into a crystal lattice. The amorphous form of celecoxib (CEL) was stabilized by poly(vinylpyrrolidone) (PVP), both in the solid state and during dissolution. A comprehensive characterization of CEL-PVP binary amorphous systems by thermal, spectroscopic, and computer simulation techniques provided greater insight into the molecular interaction between the two species. PVP antiplasticized the amorphous CEL, thus raising its glass transition temperature (T(g)) and restricting the molecular mobility. The T(g)()mix values for CEL-PVP binary amorphous systems of varying composition showed positive deviation from those predicted through the Gordon-Taylor/ Kelley-Bueche equation, thus indicating a molecular interaction between CEL and PVP. This was further substantiated by shifts observed in DSC melting endotherms of CEL, and FTIR bands for C=O stretching vibrations in PVP for CEL-PVP binary amorphous systems. Computer simulation showed stronger H-bonds between amido protons of CEL and carbonyl O of a monomeric unit of PVP, compared to those observed in pure amorphous CEL. These molecular interactions between CEL and PVP supported the stabilizing action of PVP for the amorphous form of CEL.  相似文献   

14.
In the present study the release mechanism of the sparingly water-soluble drug felodipine (FELO) from particulate solid dispersions in PVP or PEG was investigated. FT-IR data indicated that a N-H...O hydrogen bond is formed between FELO and polymers. The drug-polymer interaction was theoretically studied with the density functional theory with the B3LYP exchange correlation function. The interaction energies have been estimated at -31.8 kJ/mol for PVP and -18.8 kJ/mol for PEG. Also, detailed vibrational analysis of the complexes showed that the red shift of the N-H bond stretching in FELO molecule due to H-bonding was higher in the FELO-PVP complex than in the FELO-PEG complex. Both the experimental and theoretical data indicated that a stronger interaction of FELO with PVP than with PEG was developed. The interactions of FELO with the polymer appeared to control the physical state (amorphous or crystalline) and the particle size of FELO in the solid dispersions. In the FELO/PVP dispersions, the drug is found as amorphous nanoparticles whereas in FELO/PEG dispersions the drug is dispersed as crystalline microparticles. The size of drug particles in the dispersion was also influenced by drug proportion, with an increase in drug content of the dispersion resulting in increased drug particle size. The particle size of drug, the proportion of drug in the dispersion and the properties of the polymer (molecular weight) appeared to determine the mechanism of drug release from the solid dispersions, which was drug diffusion (through the polymer layer)-controlled at low drug contents and drug dissolution-controlled at high drug contents. In situ DLS measurements indicate that the large initial particles of FELO/PVP and FELO/PEG solid dispersions with low drug content (10-20 wt%) are very rapidly decreased to smaller particles (including nanoparticles) during dissolution, leading to the observed impressive enhancement of FELO release rate from these dispersions.  相似文献   

15.
Purpose To compare the physical stability of amorphous molecular level solid dispersions of nifedipine and felodipine, in the presence of poly(vinylpyrrolidone) (PVP) and small amounts of moisture. Methods Thin amorphous films of nifedipine and felodipine and amorphous molecular level solid dispersions with PVP were stored at various relative humidities (RH) and the nucleation rate was measured. The amount of water sorbed at each RH was measured using isothermal vapor sorption and glass transition temperatures (T g) were determined using differential scanning calorimetry. The solubility of each compound in methyl pyrrolidone was measured as a function of water content. Results Nifedipine crystallizes more easily than felodipine at any given polymer concentration and in the presence of moisture. The glass transition temperatures of each compound, alone and in the presence of PVP, are statistically equivalent at any given water content. The nifedipine systems are significantly more hygroscopic than the corresponding felodipine systems. Conclusions Variations in the physical stability of the two compounds could not be explained by differences in T g. However, the relative physical stability is consistent with differences in the degree of supersaturation of each drug in the solid dispersion, treating the polymer and water as a co-solvent system for each drug compound.  相似文献   

16.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to-carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

17.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to‐carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile of Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

18.
Amorphous nifedipine-PVP and phenobarbital-PVP solid dispersions with various drug contents were prepared by melting and subsequent rapid cooling of mixtures of PVP and nifedipine, or phenobarbital. Chemical shifts and spin-lattice relaxation times (T(1)) of PVP, nifedipine, and phenobarbital carbons were determined by (13)C-CP/MAS NMR to elucidate drug-PVP interactions and the localized molecular mobility of drug and PVP in the solid dispersions. The chemical shift of the PVP carbonyl carbon increased as the drug content increased, appearing to reach a plateau at a molar ratio of drug to PVP monomer unit of approximately 1:1, suggesting hydrogen bond interactions between the PVP carbonyl group and the drugs. T(1) of the PVP carbonyl carbon in the solid dispersions increased as the drug content increased, indicating that the mobility of the PVP carbonyl carbon was decreased by hydrogen bond interactions. T(1) of the drug carbons increased as the PVP content increased, and this increase in T(1) became less obvious when the molar ratio of PVP monomer unit to drug exceeded approximately 1:1. These results suggest that the localized motion of the PVP pyrrolidone ring and the drug molecules is reduced by hydrogen bond interactions. Decreases in localized mobility appear to be one of the factors that stabilize the amorphous state of drugs.  相似文献   

19.
Glassy pharmaceuticals, characterized by excess thermodynamic properties, are theoretically more soluble than their crystalline counterparts. The practical solubility advantage of the amorphous form of celecoxib (CEL) is lost due to its proclivity to lose energy and undergo solvent-mediated devitrification. Theoretical assessment of solubility advantage using differences in isobaric heat capacities (Cp) revealed a 7-21-fold enhancement in the solubility of the amorphous form over that of the crystalline state of CEL. The present study attempts to unveil these differences between experimental and theoretical solubility using thermodynamic parameters such as free energy, enthalpy, and entropy. Amorphous CEL exhibited 1.3-1.5 times enhancement in Cp over that for the crystalline form. The zero and critical molecular mobility regions, represented by Kauzmann temperature (TK) and glass transition temperature (Tg), were found to lie near 246 and 323 K, respectively, for amorphous CEL. The fictive temperature (Tf), an indicator of the configurational entropy of glass, was determined for glassy CEL, signifying the retention of considerable molecular mobility in the glassy phase that may favor nucleation even below Tg. Further, the estimation of various thermodynamic quantities and strength/fragility parameters (D = 11.5 and m = 67.0) postulated the classification of glassy CEL into moderately fragile liquid, as per Angell's classification. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches toward development of stable glassy pharmaceuticals with adequate solubility advantage.  相似文献   

20.
Hydroflumethiazide was spray-dried with polyvinylpyrrolidone (PVP) to produce products containing 0-30% PVP. These systems were amorphous and differed from previously prepared coprecipitates of similar composition. Differential scanning calorimetry (DSC) suggested that at low PVP weight fractions both amorphous drug and an amorphous drug-PVP complex can be present in spray-dried systems. The apparent solubility of hydroflumethiazide in spray-dried products increased with increasing PVP content reaching a plateau value approximately four times that of the pure crystalline drug. The estimated free energy and entropy of the spray-dried drug were greater than that of crystalline drug and also increased with increasing PVP content. Dissolution studies with compressed discs supported the apparent solubility data. The results suggest that amorphous phases having different orders of organization are formed in spray-dried systems with increasing PVP content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号