首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD1 trafficking: invariant chain gives a new twist to the tale.   总被引:2,自引:0,他引:2  
D B Moody  S A Porcelli 《Immunity》2001,15(6):861-865
The CD1 family of MHC class I-related proteins present foreign and self-lipid antigens for specific recognition by T cells. Based on previous experience with MHC class I and II molecules, it seems likely that a thorough knowledge of the intracellular trafficking and localization of CD1 proteins will be essential to fully understand their functions in antigen presentation and immune responses. Two studies in this issue of Immunity take a detailed look at factors affecting the localization of mouse CD1 proteins to the endocytic system of antigen-presenting cells. Their results provide intriguing evidence for the involvement of two critical components of the MHC class II endosomal processing pathway, cathepsin S and the invariant chain, in the normal functioning of CD1.  相似文献   

2.
Glycolipid targets of CD1-mediated T-cell responses.   总被引:2,自引:0,他引:2       下载免费PDF全文
D B Moody  G S Besra 《Immunology》2001,104(3):243-251
Members of the CD1 family of antigen-presenting molecules bind and present a variety of mammalian and microbial glycolipids for specific recognition by T cells. CD1 proteins accomplish their antigen-presenting function by binding the alkyl chains of the antigens within a deep, hydrophobic groove on the membrane distal surface of CD1, making the hydrophilic elements of the antigen available for contact with the variable regions of antigen-specific T-cell receptors. Most models of CD1-restricted T cells function in infectious, neoplastic, or autoimmune diseases and are based on the premise that CD1-restricted T-cell responses are initiated by alterations in cellular glycolipid content. Although a growing number of self, altered self and foreign glycolipid antigens have been identified, the cellular mechanisms that could lead to the generation of antigenic glycolipids within cells, or control the presentation of particular classes of altered self or microbial glycolipids in disease states have only recently come under investigation. Here we review the structures of known glycolipid antigens for T cells and discuss how the chemical nature of these antigens, which is quite different from that of peptides, influences their recognition by T cells.  相似文献   

3.
CD1 molecules bind foreign lipid antigens as they survey the endosomal compartments of infected antigen-presenting cells. Unlike T cells that recognize CD1-restricted foreign lipids, CD1-restricted T cells that are self-antigen-reactive function as 'auto-effectors' that are rapidly stimulated to carry out helper and effector functions upon interaction with CD1-expressing antigen-presenting cells. The functional distinctions between subsets of CD1-restricted T cells, and the pathways by which these cells both influence the inflammatory and tolerogenic effects of dendritic cells and activate natural killer cells and other lymphocytes, provide insight into how CD1-restricted T cells regulate antimicrobial responses, antitumor immunity and the balance between tolerance and autoimmunity.  相似文献   

4.
Human CD1 molecules, expressed on the surface of professional antigen-presenting cells (including dendritic cells, Langerhans' cells, B cells and activated monocytes) are structurally homologous to major histocompatibility complex (MHC) class I and class II molecules. CD1b and CD1c have been shown to present nonpeptide bacterial antigens to T cells. We hypothesized that CD1 molecules may also be involved in the presentation of bacterial protein antigens. Human peripheral blood mononuclear cells (PBMC) were exposed to two medically important proteins, tetanus toxoid (TT) and purified protein derivative (PPD), with and without murine monoclonal antibodies (MoAbs) specific for CD1a, CD1b and CD1c. All the MoAbs substantially inhibited the proliferative responses of PBMC to TT and PPD. Simultaneous interaction of CD1 and MHC class II molecules was even more inhibitory to these antigen-specific proliferative responses. In contrast, neither mixed lymphocyte reaction nor superantigen and mitogenic responses were affected by CD1-specific antibodies, indicating a certain restriction pattern in antigen presentation. Our findings suggest that, besides MHC class I and II molecules, there is a family of nonpolymorphic cell surface molecules that is able to present certain bacterial protein antigens to T cells.  相似文献   

5.
New biodefense strategies by neutrophils   总被引:1,自引:0,他引:1  
Chemokines and other chemotactic factors induce neutrophils, macrophages, and dendritic cells to migrate to an inflammatory site and efficiently ingest and destroy infective microorganisms. Moreover, antigen-presenting cells, such as macrophages and dendritic cells, present the microbial antigens via major histocompatibility complex class II molecules, resulting in the activation of specific CD4 T cells. Since neutrophils have a short life-span and are highly susceptible to apoptosis, their role in antigen presentation has been questioned. However, various pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, tumor necrosis factor alpha, and interferon gamma, produced at the site of inflammation activate neutrophils and suppress apoptotic death. These cytokine-activated neutrophils show enhanced expression of cell surface molecules and become as competent as dendritic cells and macrophages in their ability of antigen presentation. Traditionally, neutrophils are known to be responsible for innate immunity, and recently they are also considered to be intimately associated with the establishment of acquired immunity. In the present review on the role of neutrophils we describe both classic innate and acquired immunity.  相似文献   

6.
Summary: The CD1 family of proteins mediates a newly described pathway for presentation of lipids and glycolipids for specific recognition by T cells. All four of the known human CD1 proteins (CD1a, CD1b, CD1c and CD1d) as well as murine CD Id have now been shown to mediate T-cell recognition of lipid or glycolipid antigens. These antigens include naturally occuring foreign glycolipids from intracellular pathogens or synthetic glycolipids that are related in structure to mammalian glycolipids. The CD l b and CD I d-presented antigens differ in their fine structures but reveal a general motif in which a rigid hydrophilic cap is botind to two aliphatic hydrocarbon chains. Different T-cell populations recognize individual antigens without cross-reactivity to closely related antigen structures or CD 1 isoforms, documenting the complexity and fine specificity of CD l-mediated T-cell responses. Mapping of the molecular detertninants of recognition for CD 1 b and CD 1d-preseced antigens reveals that T cells discriminate the fine structure of the hydrophilic cap of the antigen, but both the length and structure of the lipid chains may be altered without loss of recognition. This pattern of lipid antigen recognition may be accounted for by a simple molecular mechanism of presentation that parallels the known mechanism for presentation of peptides, but solves the special problems related to the hydrophobic chemical nature of the lipid antigens. We propose that CD 1 binds antigen by accommodating the two lipid tails within the hydrophobic groove of its two membrane distal domains, positioning the rigid hydrophilic cap of the antigen on the solvent-exposed surface of the CD1 protein, where it can directly contact the T-cell antigen receptor. This model provides a molecular basis for recognition of a new and diverse set of T-cell antigens contained within the lipid bilayers of cellular membranes.  相似文献   

7.
CD1 proteins present various glycolipid antigens to T cells, but the cellular mechanisms that control which particular glycolipids generate T cell responses are not understood. We show here that T cell recognition of glucose monomycolate antigens with long (C(80)) alkyl chains involves the delivery of CD1b proteins and antigens to late endosomes in a process that takes several hours. In contrast, analogs of the same antigen with shorter (C(32)) alkyl chains are rapidly, but inefficiently, presented by cell surface CD1b proteins. Dendritic cells (DCs) preferentially present long-chain glycolipids, which results, in part, from their rapid internalization and selective delivery of antigens to endosomal compartments. Nonprofessional antigen-presenting cells, however, preferentially present short-chain glycolipids because of their lack of prominent endosomal presentation pathways. Because long alkyl chain length distinguishes certain microbial glycolipids from common mammalian glycolipids, these findings suggest that DCs use a specialized endosomal-loading pathway to promote preferential recognition of glycolipids with a more intrinsically foreign structure.  相似文献   

8.
The aim of this review is to analyze the current state of our knowledge about cell surface molecules involved in glycolipid antigen presentation, named CD1 family. These proteins constitute a third class of antigen-presenting molecules. CD1 molecules develop diverse important immune functions in host defenses against microbial infections. In recent years these proteins have been involved in the generation of cell-mediated immune response against Mycobacterium tuberculosis. Here, we analyze relevant roles of CD1 proteins and glycolipid antigen-specific T cells.  相似文献   

9.
A molecular basis for NKT cell recognition of CD1d-self-antigen   总被引:2,自引:0,他引:2  
The antigen receptor for natural killer T?cells (NKT TCR) binds CD1d-restricted microbial and self-lipid antigens, although the molecular basis of self-CD1d recognition is unclear. Here, we have characterized NKT TCR recognition of CD1d molecules loaded with natural self-antigens (Ags) and report the 2.3???resolution structure of an autoreactive NKT TCR-phosphatidylinositol-CD1d complex. NKT TCR recognition of self- and foreign antigens was underpinned by a similar mode of germline-encoded recognition of CD1d. However, NKT TCR autoreactivity is mediated by unique sequences within the non-germline-encoded CDR3β loop encoding for a hydrophobic motif that promotes self-association with CD1d. Accordingly, NKT cell autoreactivity may arise from the inherent affinity of the interaction between CD1d and the NKT TCR, resulting in the recognition of a broad range of CD1d-restricted self-antigens. This demonstrates that multiple self-antigens can be recognized in a similar manner by autoreactive NKT TCRs.  相似文献   

10.
Over two decades ago, it was discovered that the human T-cell repertoire contains T cells that do not recognize peptide antigens in the context of MHC molecules but instead respond to lipid antigens presented by CD1 antigen-presenting molecules. The ability of T cells to ‘see’ lipid antigens bound to CD1 enables these lymphocytes to sense changes in the lipid composition of cells and tissues as a result of infections, inflammation, or malignancies. Although foreign lipid antigens have been shown to function as antigens for CD1-restricted T cells, many CD1-restricted T cells do not require foreign antigens for activation but instead can be activated by self-lipids presented by CD1. This review highlights recent developments in the field, including the identification of common mammalian lipids that function as autoantigens for αβ and γδ T cells, a novel mode of T-cell activation whereby CD1a itself rather than lipids serves as the autoantigen, and various mechanisms by which the activation of CD1-autoreactive T cells is regulated. As CD1 can induce T-cell effector functions in the absence of foreign antigens, multiple mechanisms are in place to regulate this self-reactivity, and stimulatory CD1-lipid complexes appear to be tightly controlled in space and time.  相似文献   

11.
Four human CD1 isoforms (CD1a, -b,-c and -d) are now known to be antigen presenting molecules with the unique ability to present lipid antigens to T cells. CD1b and CD1d are found in acidic, late endocytic compartments, whereas CD1a and CD1c molecules accumulate at the plasma membrane and in early endosomes. Consistent with their differences in intracellular localization, most studies show antigen presentation by CD1b/CD1d to be dependent on endosomal acidification while CD1a/CD1c mediated antigen presentation is not. Taken together, recent advances in the analysis of CD1 molecules reinforce the hypothesis that the different CD1 isoforms are specialized to survey the lipid content of distinct intracellular compartments. This may help to explain the duplication and diversification of CD1 genes in humans and other mammalian species.  相似文献   

12.
BACKGROUND: Evidences from mice and human beings indicate that gammadelta T cells could be relevant in recognition of stress-induced self and/or yet unidentified inhaled foreign antigens. Their specificity differs from classic MHC-restricted alphabeta T cells and involves the immunoglobulin-like structure of the gammadelta T-cell receptor with the recognition of small organic molecules, alkylamines, and self lipid compounds presented by CD1+ dendritic cells. OBJECTIVE: Because CD1 receptors are mainly devoted to lipid antigen presentation, we sought to determine whether exogenous pollen membrane lipids may act as allergens for CD1-restricted gammadelta T cells. METHODS: Peripheral blood and nasal mucosa-associated gammadelta T cells were cloned from normal controls and cypress-sensitive subjects and tested for their antigen specificity and CD1-restriction with phospholipids extracted from tree pollen grains, as well with other natural or synthetic compounds. Phospholipid reactivity of cloned gammadelta T cells was measured by mean of proliferative response and cytokine release as well as by testing their helper activity on IgE production in vitro and in vivo. RESULTS: Cloned gammadelta T lymphocytes from subjects with allergy, but not normal controls, were found to recognize pollen-derived phosphatidyl-ethanolamine (PE) in a CD1d-restricted fashion. Only 16:0/18:2 and 18:2/18:2 PE were stimulatory, whereas no response was recorded for disaturated PE, phosphatidylcholine, neutral lipids, or protein extract. Proliferating clones secreted both T(H)1-type and T(H)2-type cytokines and drove IgE production in vitro and in vivo. CONCLUSION: CD1d-restricted gammadelta T cells specific for phospholipids can represent a key mucosal regulatory subset for the control of early host reactivity against tree pollens. CLINICAL IMPLICATIONS: By knowing how lipid allergen constituents interact with mucosal immune system, we can expand our possibilities in diagnostic and therapeutic interventions.  相似文献   

13.
Antigen-presenting molecules, including MHC I, II and CD1, have central roles in the induction of T cell-mediated immunity against pathogens and tumors and also in the maintenance of tolerance towards self-antigens. The presentation of exogenously derived peptide and lipid antigens to specific T cells by professional antigen-presenting cells (pAPCs) is an essential part of both processes. Exogenous antigen loading takes place mostly within specialized endocytic and phagocytic compartments of pAPCs and targeting of antigen-presenting molecules to these intracellular compartments is mediated by highly conserved cytoplasmic sorting motifs. Recent data have revealed that the cytoplasmic tails of antigen-presenting molecules, by controlling the access of these molecules to exogenously derived antigens, have a crucially important and largely underappreciated role in the generation of tolerance and T-cell mediated immunity.  相似文献   

14.
Both microbial products and T cell factors influence dendritic cell (DC) maturation. However, it is not known which T cells are capable of interacting with DCs at the initiation of adaptive immunity, when foreign antigen-specific T cells are rare. We show here that self-reactive CD1-restricted T cells can promote DC maturation by recognizing CD1 in the absence of foreign antigens. T cell recognition of all four CD1 isoforms can trigger DC maturation, but their distinct mechanisms of costimulation lead to profound differences in concomitant interleukin 12 p70 production. Distinct CD1-reactive T cells may thus differentially direct DC development early in the immune response, thereby controlling subsequent polarization of acquired immunity.  相似文献   

15.
Lipid antigens are presented to T cells by the non-polymorphic MHC class I-related CD1 molecules. Microsomal triglyceride transfer protein (MTP) is an endoplasmic reticulum (ER)-resident chaperone that has been shown to lipidate the group 2 CD1 molecule CD1d and thus to regulate its function. We now report that MTP also regulates the function of group 1 CD1 molecules CD1a, CD1b, and CD1c. Pharmacological inhibition of MTP in monocyte-derived dendritic cells and lymphoblastoid B cell lines transfected with group 1 CD1 resulted in a substantial decrease in endogenous self lipid antigen presentation to several CD1-restricted T cell lines. Silencing MTP expression in CD1c-transfected HeLa cells similarly resulted in decreased self reactivity. Unexpectedly, inhibition of ER-resident MTP, which was confirmed by confocal microscopy, also markedly decreased presentation of exogenous, endosomally loaded, mycobacterial lipid antigens by CD1a and CD1c to T cells. Thus, these studies indicate that MTP, despite its ER localization, regulates endogenous as well as exogenous lipid antigen presentation, and suggest a broad role for MTP in the regulation of CD1 antigen presentation.  相似文献   

16.
T lymphocytes recognize antigen presented on the surface of antigen-presenting cells byMHC class I and class II molecules. Classically, MHC class I molecules present self- or pathogen-derived antigens that are synthesized within the cell, whereas exogenous antigens derived via endocytic uptake are loaded onto MHC class II molecules for presentation to CD4+ T cells. It is becoming increasingly clear that some dendritic cells are also specialized to process exogenous antigens into the MHC class I pathway for presentation to CD8+ T cells. This process is known as cross-presentation. It provides a mechanism that can drive dendritic cells to generate either tolerance to self-antigens or immunity to pathogens. The cells responsible for, and mechanisms underlying, this decision between tolerance and immunity via cross-presentation has become the focus of intense study to determine how various dendritic cell subsets effect the different outcomes.  相似文献   

17.
CD1 and lipid antigens: intracellular pathways for antigen presentation   总被引:3,自引:0,他引:3  
Recently, different members of the CD1 family of MHC-like molecules have been shown to sample different intracellular compartments to present lipid and glycolipid antigens to T cells. Emerging models suggest that CD1 may have evolved to monitor the integrity of membrane lipids and/or to present microbial lipid antigens to both alpha beta and gamma delta T cells.  相似文献   

18.
MHC class II and CD1-mediated antigen presentation on various APCs [B cells, monocytes, and dendritic cells (DC)] are subject to at least three distinct levels of regulation. The first one concerns the expression and structure of the antigen-presenting molecules; the second is based on the extracellular environment and signals of danger detected. However, a third level of regulation, which has been largely overlooked, is determined by lateral associations between antigen-presenting molecules and other proteins, their localization in specialized microdomains within the plasma membrane, and their trafficking pathways. This review focuses on features common to MHC II and CD1 molecules in their ability to activate specific T lymphocytes with the objective of addressing one basic question: What are the mechanisms regulating antigen presentation by MHC II and CD1 molecules within the same cell? Recent studies in immature DC, where MHC II and CD1 are coexpressed, suggest that the invariant chain (Ii) regulates antigen presentation by either protein. Ii could therefore favor MHC II or CD1 antigen presentation and thereby discriminate between antigens.  相似文献   

19.
T cells recognizing lipid antigens presented by CD1 molecules have an important role in the immune response. Several lipid antigens for CD1-restricted T cells have been identified, as have some rules of CD1 loading and CD1-restricted presentation. Little is known, however, about the delivery of lipid antigens from either extracellular compartments or CD1-negative cells to CD1-expressing antigen-presenting cells (APCs). A recent study provides evidence for a role for apolipoprotein E in binding lipid antigens and delivering them to APCs.  相似文献   

20.
Separate pathways for antigen presentation by CD1 molecules   总被引:5,自引:0,他引:5  
The ability to sample relevant intracellular compartments is necessary for effective antigen presentation. To detect peptide antigens, MHC class I and II molecules differentially sample cytosolic and endosomal compartments. CD1 constitutes another lineage of lipid antigen-presenting molecules. We show that CD1b traffics deeply into late endosomal compartments, while CD1a is excluded from these compartments and instead traffics independently in the recycling pathway of the early endocytic system. Further, CD1b but not CD1a antigen presentation is dependent upon vesicular acidification. Since lipids and various bacteria are known to traffic differentially, either penetrating deeply into the endocytic system or following the route of recycling endosomes, these findings elucidate efficient monitoring of distinct components of the endocytic compartment by CD1 lipid antigen-presenting molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号