首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Coreference resolution of concepts, although a very active area in the natural language processing community, has not yet been widely applied to clinical documents. Accordingly, the 2011 i2b2 competition focusing on this area is a timely and useful challenge. The objective of this research was to collate coreferent chains of concepts from a corpus of clinical documents. These concepts are in the categories of person, problems, treatments, and tests.

Design

A machine learning approach based on graphical models was employed to cluster coreferent concepts. Features selected were divided into domain independent and domain specific sets. Training was done with the i2b2 provided training set of 489 documents with 6949 chains. Testing was done on 322 documents.

Results

The learning engine, using the un-weighted average of three different measurement schemes, resulted in an F measure of 0.8423 where no domain specific features were included and 0.8483 where the feature set included both domain independent and domain specific features.

Conclusion

Our machine learning approach is a promising solution for recognizing coreferent concepts, which in turn is useful for practical applications such as the assembly of problem and medication lists from clinical documents.  相似文献   

2.

Objective

To research computational methods for coreference resolution in the clinical narrative and build a system implementing the best methods.

Methods

The Ontology Development and Information Extraction corpus annotated for coreference relations consists of 7214 coreferential markables, forming 5992 pairs and 1304 chains. We trained classifiers with semantic, syntactic, and surface features pruned by feature selection. For the three system components—for the resolution of relative pronouns, personal pronouns, and noun phrases—we experimented with support vector machines with linear and radial basis function (RBF) kernels, decision trees, and perceptrons. Evaluation of algorithms and varied feature sets was performed using standard metrics.

Results

The best performing combination is support vector machines with an RBF kernel and all features (MUC score=0.352, B3=0.690, CEAF=0.486, BLANC=0.596) outperforming a traditional decision tree baseline.

Discussion

The application showed good performance similar to performance on general English text. The main error source was sentence distances exceeding a window of 10 sentences between markables. A possible solution to this problem is hinted at by the fact that coreferent markables sometimes occurred in predictable (although distant) note sections. Another system limitation is failure to fully utilize synonymy and ontological knowledge. Future work will investigate additional ways to incorporate syntactic features into the coreference problem.

Conclusion

We investigated computational methods for coreference resolution in the clinical narrative. The best methods are released as modules of the open source Clinical Text Analysis and Knowledge Extraction System and Ontology Development and Information Extraction platforms.  相似文献   

3.

Objective

This paper describes the coreference resolution system submitted by Mayo Clinic for the 2011 i2b2/VA/Cincinnati shared task Track 1C. The goal of the task was to construct a system that links the markables corresponding to the same entity.

Materials and methods

The task organizers provided progress notes and discharge summaries that were annotated with the markables of treatment, problem, test, person, and pronoun. We used a multi-pass sieve algorithm that applies deterministic rules in the order of preciseness and simultaneously gathers information about the entities in the documents. Our system, MedCoref, also uses a state-of-the-art machine learning framework as an alternative to the final, rule-based pronoun resolution sieve.

Results

The best system that uses a multi-pass sieve has an overall score of 0.836 (average of B3, MUC, Blanc, and CEAF F score) for the training set and 0.843 for the test set.

Discussion

A supervised machine learning system that typically uses a single function to find coreferents cannot accommodate irregularities encountered in data especially given the insufficient number of examples. On the other hand, a completely deterministic system could lead to a decrease in recall (sensitivity) when the rules are not exhaustive. The sieve-based framework allows one to combine reliable machine learning components with rules designed by experts.

Conclusion

Using relatively simple rules, part-of-speech information, and semantic type properties, an effective coreference resolution system could be designed. The source code of the system described is available at https://sourceforge.net/projects/ohnlp/files/MedCoref.  相似文献   

4.
Xu Y  Liu J  Wu J  Wang Y  Tu Z  Sun JT  Tsujii J  Chang EI 《J Am Med Inform Assoc》2012,19(5):897-905

Objective

To create a highly accurate coreference system in discharge summaries for the 2011 i2b2 challenge. The coreference categories include Person, Problem, Treatment, and Test.

Design

An integrated coreference resolution system was developed by exploiting Person attributes, contextual semantic clues, and world knowledge. It includes three subsystems: Person coreference system based on three Person attributes, Problem/Treatment/Test system based on numerous contextual semantic extractors and world knowledge, and Pronoun system based on a multi-class support vector machine classifier. The three Person attributes are patient, relative and hospital personnel. Contextual semantic extractors include anatomy, position, medication, indicator, temporal, spatial, section, modifier, equipment, operation, and assertion. The world knowledge is extracted from external resources such as Wikipedia.

Measurements

Micro-averaged precision, recall and F-measure in MUC, BCubed and CEAF were used to evaluate results.

Results

The system achieved an overall micro-averaged precision, recall and F-measure of 0.906, 0.925, and 0.915, respectively, on test data (from four hospitals) released by the challenge organizers. It achieved a precision, recall and F-measure of 0.905, 0.920 and 0.913, respectively, on test data without Pittsburgh data. We ranked the first out of 20 competing teams. Among the four sub-tasks on Person, Problem, Treatment, and Test, the highest F-measure was seen for Person coreference.

Conclusions

This system achieved encouraging results. The Person system can determine whether personal pronouns and proper names are coreferent or not. The Problem/Treatment/Test system benefits from both world knowledge in evaluating the similarity of two mentions and contextual semantic extractors in identifying semantic clues. The Pronoun system can automatically detect whether a Pronoun mention is coreferent to that of the other four types. This study demonstrates that it is feasible to accomplish the coreference task in discharge summaries.  相似文献   

5.

Objective

A method for the automatic resolution of coreference between medical concepts in clinical records.

Materials and methods

A multiple pass sieve approach utilizing support vector machines (SVMs) at each pass was used to resolve coreference. Information such as lexical similarity, recency of a concept mention, synonymy based on Wikipedia redirects, and local lexical context were used to inform the method. Results were evaluated using an unweighted average of MUC, CEAF, and B3 coreference evaluation metrics. The datasets used in these research experiments were made available through the 2011 i2b2/VA Shared Task on Coreference.

Results

The method achieved an average F score of 0.821 on the ODIE dataset, with a precision of 0.802 and a recall of 0.845. These results compare favorably to the best-performing system with a reported F score of 0.827 on the dataset and the median system F score of 0.800 among the eight teams that participated in the 2011 i2b2/VA Shared Task on Coreference. On the i2b2 dataset, the method achieved an average F score of 0.906, with a precision of 0.895 and a recall of 0.918 compared to the best F score of 0.915 and the median of 0.859 among the 16 participating teams.

Discussion

Post hoc analysis revealed significant performance degradation on pathology reports. The pathology reports were characterized by complex synonymy and very few patient mentions.

Conclusion

The use of several simple lexical matching methods had the most impact on achieving competitive performance on the task of coreference resolution. Moreover, the ability to detect patients in electronic medical records helped to improve coreference resolution more than other linguistic analysis.  相似文献   

6.
Objective Many tasks in natural language processing utilize lexical pattern-matching techniques, including information extraction (IE), negation identification, and syntactic parsing. However, it is generally difficult to derive patterns that achieve acceptable levels of recall while also remaining highly precise.Materials and Methods We present a multiple sequence alignment (MSA)-based technique that automatically generates patterns, thereby leveraging language usage to determine the context of words that influence a given target. MSAs capture the commonalities among word sequences and are able to reveal areas of linguistic stability and variation. In this way, MSAs provide a systemic approach to generating lexical patterns that are generalizable, which will both increase recall levels and maintain high levels of precision.Results The MSA-generated patterns exhibited consistent F1-, F.5-, and F2- scores compared to two baseline techniques for IE across four different tasks. Both baseline techniques performed well for some tasks and less well for others, but MSA was found to consistently perform at a high level for all four tasks.Discussion The performance of MSA on the four extraction tasks indicates the method’s versatility. The results show that the MSA-based patterns are able to handle the extraction of individual data elements as well as relations between two concepts without the need for large amounts of manual intervention.Conclusion We presented an MSA-based framework for generating lexical patterns that showed consistently high levels of both performance and recall over four different extraction tasks when compared to baseline methods.  相似文献   

7.

Objective

To evaluate existing automatic speech-recognition (ASR) systems to measure their performance in interpreting spoken clinical questions and to adapt one ASR system to improve its performance on this task.

Design and measurements

The authors evaluated two well-known ASR systems on spoken clinical questions: Nuance Dragon (both generic and medical versions: Nuance Gen and Nuance Med) and the SRI Decipher (the generic version SRI Gen). The authors also explored language model adaptation using more than 4000 clinical questions to improve the SRI system''s performance, and profile training to improve the performance of the Nuance Med system. The authors reported the results with the NIST standard word error rate (WER) and further analyzed error patterns at the semantic level.

Results

Nuance Gen and Med systems resulted in a WER of 68.1% and 67.4% respectively. The SRI Gen system performed better, attaining a WER of 41.5%. After domain adaptation with a language model, the performance of the SRI system improved 36% to a final WER of 26.7%.

Conclusion

Without modification, two well-known ASR systems do not perform well in interpreting spoken clinical questions. With a simple domain adaptation, one of the ASR systems improved significantly on the clinical question task, indicating the importance of developing domain/genre-specific ASR systems.  相似文献   

8.
The 2010 i2b2/VA Workshop on Natural Language Processing Challenges for Clinical Records presented three tasks: a concept extraction task focused on the extraction of medical concepts from patient reports; an assertion classification task focused on assigning assertion types for medical problem concepts; and a relation classification task focused on assigning relation types that hold between medical problems, tests, and treatments. i2b2 and the VA provided an annotated reference standard corpus for the three tasks. Using this reference standard, 22 systems were developed for concept extraction, 21 for assertion classification, and 16 for relation classification.These systems showed that machine learning approaches could be augmented with rule-based systems to determine concepts, assertions, and relations. Depending on the task, the rule-based systems can either provide input for machine learning or post-process the output of machine learning. Ensembles of classifiers, information from unlabeled data, and external knowledge sources can help when the training data are inadequate.  相似文献   

9.

Objective

This paper describes the approaches the authors developed while participating in the i2b2/VA 2010 challenge to automatically extract medical concepts and annotate assertions on concepts and relations between concepts.

Design

The authors''approaches rely on both rule-based and machine-learning methods. Natural language processing is used to extract features from the input texts; these features are then used in the authors'' machine-learning approaches. The authors used Conditional Random Fields for concept extraction, and Support Vector Machines for assertion and relation annotation. Depending on the task, the authors tested various combinations of rule-based and machine-learning methods.

Results

The authors''assertion annotation system obtained an F-measure of 0.931, ranking fifth out of 21 participants at the i2b2/VA 2010 challenge. The authors'' relation annotation system ranked third out of 16 participants with a 0.709 F-measure. The 0.773 F-measure the authors obtained on concept extraction did not make it to the top 10.

Conclusion

On the one hand, the authors confirm that the use of only machine-learning methods is highly dependent on the annotated training data, and thus obtained better results for well-represented classes. On the other hand, the use of only a rule-based method was not sufficient to deal with new types of data. Finally, the use of hybrid approaches combining machine-learning and rule-based approaches yielded higher scores.  相似文献   

10.

Objective

To describe a system for determining the assertion status of medical problems mentioned in clinical reports, which was entered in the 2010 i2b2/VA community evaluation ‘Challenges in natural language processing for clinical data’ for the task of classifying assertions associated with problem concepts extracted from patient records.

Materials and methods

A combination of machine learning (conditional random field and maximum entropy) and rule-based (pattern matching) techniques was used to detect negation, speculation, and hypothetical and conditional information, as well as information associated with persons other than the patient.

Results

The best submission obtained an overall micro-averaged F-score of 0.9343.

Conclusions

Using semantic attributes of concepts and information about document structure as features for statistical classification of assertions is a good way to leverage rule-based and statistical techniques. In this task, the choice of features may be more important than the choice of classifier algorithm.  相似文献   

11.
Electronic medical records are increasingly used to store patient information in hospitals and other clinical settings. There has been a corresponding proliferation of clinical natural language processing (cNLP) systems aimed at using text data in these records to improve clinical decision-making, in comparison to manual clinician search and clinical judgment alone. However, these systems have delivered marginal practical utility and are rarely deployed into healthcare settings, leading to proposals for technical and structural improvements. In this paper, we argue that this reflects a violation of Friedman’s “Fundamental Theorem of Biomedical Informatics,” and that a deeper epistemological change must occur in the cNLP field, as a parallel step alongside any technical or structural improvements. We propose that researchers shift away from designing cNLP systems independent of clinical needs, in which cNLP tasks are ends in themselves—“tasks as decisions”—and toward systems that are directly guided by the needs of clinicians in realistic decision-making contexts—“tasks as needs.” A case study example illustrates the potential benefits of developing cNLP systems that are designed to more directly support clinical needs.  相似文献   

12.
ObjectiveSocial determinants of health (SDoH) are nonclinical dispositions that impact patient health risks and clinical outcomes. Leveraging SDoH in clinical decision-making can potentially improve diagnosis, treatment planning, and patient outcomes. Despite increased interest in capturing SDoH in electronic health records (EHRs), such information is typically locked in unstructured clinical notes. Natural language processing (NLP) is the key technology to extract SDoH information from clinical text and expand its utility in patient care and research. This article presents a systematic review of the state-of-the-art NLP approaches and tools that focus on identifying and extracting SDoH data from unstructured clinical text in EHRs.Materials and MethodsA broad literature search was conducted in February 2021 using 3 scholarly databases (ACL Anthology, PubMed, and Scopus) following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 6402 publications were initially identified, and after applying the study inclusion criteria, 82 publications were selected for the final review.ResultsSmoking status (n = 27), substance use (n = 21), homelessness (n = 20), and alcohol use (n = 15) are the most frequently studied SDoH categories. Homelessness (n = 7) and other less-studied SDoH (eg, education, financial problems, social isolation and support, family problems) are mostly identified using rule-based approaches. In contrast, machine learning approaches are popular for identifying smoking status (n = 13), substance use (n = 9), and alcohol use (n = 9).ConclusionNLP offers significant potential to extract SDoH data from narrative clinical notes, which in turn can aid in the development of screening tools, risk prediction models, and clinical decision support systems.  相似文献   

13.

Objective

Patient discharge summaries provide detailed medical information about hospitalized patients and are a rich resource of data for clinical record text mining. The textual expressions of this information are highly variable. In order to acquire a precise understanding of the patient, it is important to uncover the relationship between all instances in the text. In natural language processing (NLP), this task falls under the category of coreference resolution.

Design

A key contribution of this paper is the application of contextual-dependent rules that describe relationships between coreference pairs. To resolve phrases that refer to the same entity, the authors use these rules in three representative NLP systems: one rule-based, another based on the maximum entropy model, and the last a system built on the Markov logic network (MLN) model.

Results

The experimental results show that the proposed MLN-based system outperforms the baseline system (exact match) by average F-scores of 4.3% and 5.7% on the Beth and Partners datasets, respectively. Finally, the three systems were integrated into an ensemble system, further improving performance to 87.21%, which is 4.5% more than the official i2b2 Track 1C average (82.7%).

Conclusion

In this paper, the main challenges in the resolution of coreference relations in patient discharge summaries are described. Several rules are proposed to exploit contextual information, and three approaches presented. While single systems provided promising results, an ensemble approach combining the three systems produced a better performance than even the best single system.  相似文献   

14.
Informatics for integrating biology and the bedside (i2b2) seeks to provide the instrumentation for using the informational by-products of health care and the biological materials accumulated through the delivery of health care to conduct discovery research and to study the healthcare system in vivo. This complements existing efforts such as prospective cohort studies or trials outside the delivery of routine health care. i2b2 has been used to generate genome-wide studies at less than one tenth the cost and one tenth the time of conventionally performed studies as well as to identify important risk from commonly used medications. i2b2 has been adopted by over 60 academic health centers internationally.  相似文献   

15.

Objective

To evaluate the accuracy of a computerized clinical decision-support system (CDSS) designed to support assessment and management of pediatric asthma in a subspecialty clinic.

Design

Cohort study of all asthma visits to pediatric pulmonology from January to December, 2009.

Measurements

CDSS and physician assessments of asthma severity, control, and treatment step.

Results

Both the clinician and the computerized CDSS generated assessments of asthma control in 767/1032 (74.3%) return patients, assessments of asthma severity in 100/167 (59.9%) new patients, and recommendations for treatment step in 66/167 (39.5%) new patients. Clinicians agreed with the CDSS in 543/767 (70.8%) of control assessments, 37/100 (37%) of severity assessments, and 19/66 (29%) of step recommendations. External review classified 72% of control disagreements (21% of all control assessments), 56% of severity disagreements (37% of all severity assessments), and 76% of step disagreements (54% of all step recommendations) as CDSS errors. The remaining disagreements resulted from pulmonologist error or ambiguous guidelines. Many CDSS flaws, such as attributing all ‘cough’ to asthma, were easily remediable. Pediatric pulmonologists failed to follow guidelines in 8% of return visits and 18% of new visits.

Limitations

The authors relied on chart notes to determine clinical reasoning. Physicians may have changed their assessments after seeing CDSS recommendations.

Conclusions

A computerized CDSS performed relatively accurately compared to clinicians for assessment of asthma control but was inaccurate for treatment. Pediatric pulmonologists failed to follow guideline-based care in a small proportion of patients.  相似文献   

16.

Background

Due to the high cost of manual curation of key aspects from the scientific literature, automated methods for assisting this process are greatly desired. Here, we report a novel approach to facilitate MeSH indexing, a challenging task of assigning MeSH terms to MEDLINE citations for their archiving and retrieval.

Methods

Unlike previous methods for automatic MeSH term assignment, we reformulate the indexing task as a ranking problem such that relevant MeSH headings are ranked higher than those irrelevant ones. Specifically, for each document we retrieve 20 neighbor documents, obtain a list of MeSH main headings from neighbors, and rank the MeSH main headings using ListNet–a learning-to-rank algorithm. We trained our algorithm on 200 documents and tested on a previously used benchmark set of 200 documents and a larger dataset of 1000 documents.

Results

Tested on the benchmark dataset, our method achieved a precision of 0.390, recall of 0.712, and mean average precision (MAP) of 0.626. In comparison to the state of the art, we observe statistically significant improvements as large as 39% in MAP (p-value <0.001). Similar significant improvements were also obtained on the larger document set.

Conclusion

Experimental results show that our approach makes the most accurate MeSH predictions to date, which suggests its great potential in making a practical impact on MeSH indexing. Furthermore, as discussed the proposed learning framework is robust and can be adapted to many other similar tasks beyond MeSH indexing in the biomedical domain. All data sets are available at: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/indexing.  相似文献   

17.

Objective

To develop a computerized clinical decision support system (CDSS) for cervical cancer screening that can interpret free-text Papanicolaou (Pap) reports.

Materials and Methods

The CDSS was constituted by two rulebases: the free-text rulebase for interpreting Pap reports and a guideline rulebase. The free-text rulebase was developed by analyzing a corpus of 49 293 Pap reports. The guideline rulebase was constructed using national cervical cancer screening guidelines. The CDSS accesses the electronic medical record (EMR) system to generate patient-specific recommendations. For evaluation, the screening recommendations made by the CDSS for 74 patients were reviewed by a physician.

Results and Discussion

Evaluation revealed that the CDSS outputs the optimal screening recommendations for 73 out of 74 test patients and it identified two cases for gynecology referral that were missed by the physician. The CDSS aided the physician to amend recommendations in six cases. The failure case was because human papillomavirus (HPV) testing was sometimes performed separately from the Pap test and these results were reported by a laboratory system that was not queried by the CDSS. Subsequently, the CDSS was upgraded to look up the HPV results missed earlier and it generated the optimal recommendations for all 74 test cases.

Limitations

Single institution and single expert study.

Conclusion

An accurate CDSS system could be constructed for cervical cancer screening given the standardized reporting of Pap tests and the availability of explicit guidelines. Overall, the study demonstrates that free text in the EMR can be effectively utilized through natural language processing to develop clinical decision support tools.  相似文献   

18.

Objective

The long-term goal of this work is the automated discovery of anaphoric relations from the clinical narrative. The creation of a gold standard set from a cross-institutional corpus of clinical notes and high-level characteristics of that gold standard are described.

Methods

A standard methodology for annotation guideline development, gold standard annotations, and inter-annotator agreement (IAA) was used.

Results

The gold standard annotations resulted in 7214 markables, 5992 pairs, and 1304 chains. Each report averaged 40 anaphoric markables, 33 pairs, and seven chains. The overall IAA is high on the Mayo dataset (0.6607), and moderate on the University of Pittsburgh Medical Center (UPMC) dataset (0.4072). The IAA between each annotator and the gold standard is high (Mayo: 0.7669, 0.7697, and 0.9021; UPMC: 0.6753 and 0.7138). These results imply a quality corpus feasible for system development. They also suggest the complementary nature of the annotations performed by the experts and the importance of an annotator team with diverse knowledge backgrounds.

Limitations

Only one of the annotators had the linguistic background necessary for annotation of the linguistic attributes. The overall generalizability of the guidelines will be further strengthened by annotations of data from additional sites. This will increase the overall corpus size and the representation of each relation type.

Conclusion

The first step toward the development of an anaphoric relation resolver as part of a comprehensive natural language processing system geared specifically for the clinical narrative in the electronic medical record is described. The deidentified annotated corpus will be available to researchers.  相似文献   

19.
ObjectiveThis systematic review aims to assess how information from unstructured text is used to develop and validate clinical prognostic prediction models. We summarize the prediction problems and methodological landscape and determine whether using text data in addition to more commonly used structured data improves the prediction performance.Materials and MethodsWe searched Embase, MEDLINE, Web of Science, and Google Scholar to identify studies that developed prognostic prediction models using information extracted from unstructured text in a data-driven manner, published in the period from January 2005 to March 2021. Data items were extracted, analyzed, and a meta-analysis of the model performance was carried out to assess the added value of text to structured-data models.ResultsWe identified 126 studies that described 145 clinical prediction problems. Combining text and structured data improved model performance, compared with using only text or only structured data. In these studies, a wide variety of dense and sparse numeric text representations were combined with both deep learning and more traditional machine learning methods. External validation, public availability, and attention for the explainability of the developed models were limited.ConclusionThe use of unstructured text in the development of prognostic prediction models has been found beneficial in addition to structured data in most studies. The text data are source of valuable information for prediction model development and should not be neglected. We suggest a future focus on explainability and external validation of the developed models, promoting robust and trustworthy prediction models in clinical practice.  相似文献   

20.
ObjectiveLike most real-world data, electronic health record (EHR)–derived data from oncology patients typically exhibits wide interpatient variability in terms of available data elements. This interpatient variability leads to missing data and can present critical challenges in developing and implementing predictive models to underlie clinical decision support for patient-specific oncology care. Here, we sought to develop a novel ensemble approach to addressing missing data that we term the “meta-model” and apply the meta-model to patient-specific cancer prognosis.Materials and MethodsUsing real-world data, we developed a suite of individual random survival forest models to predict survival in patients with advanced lung cancer, colorectal cancer, and breast cancer. Individual models varied by the predictor data used. We combined models for each cancer type into a meta-model that predicted survival for each patient using a weighted mean of the individual models for which the patient had all requisite predictors.ResultsThe meta-model significantly outperformed many of the individual models and performed similarly to the best performing individual models. Comparisons of the meta-model to a more traditional imputation-based method of addressing missing data supported the meta-model’s utility.ConclusionsWe developed a novel machine learning–based strategy to underlie clinical decision support and predict survival in cancer patients, despite missing data. The meta-model may more generally provide a tool for addressing missing data across a variety of clinical prediction problems. Moreover, the meta-model may address other challenges in clinical predictive modeling including model extensibility and integration of predictive algorithms trained across different institutions and datasets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号