首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of nitroglycerin tolerance on relaxation and cyclic GMP accumulation by nitroglycerin, nitric oxide and S-nitroso-N-acetylpenicillamine were examined in isolated rate aortic rings. Cyclic GMP accumulation by nitroglycerin, S-nitroso-N-acetylpenicillamine and nitric oxide was diminished in nitroglycerin-tolerant aorta. In contrast, only relaxation by nitroglycerin, but not S-nitroso-N-acetylpenicillamine and nitric oxide, was attenuated. These data suggest that cyclic GMP levels might represent an inadequate index for mechanistic studies of nitroglycerin relaxation tolerance.  相似文献   

2.
Aim: To investigate the effects of pravastatin, a potent 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, on impaired endothelium-dependent relaxation induced by lysophosphatidylcholine (LPC), the major component of oxidized low-density lipoprotein, in rat thoracic aorta. Methods: Both the endothelium-dependent relaxation response to acetylcholine and the endotheliumindependent relaxation response to sodium nitroprusside of aortic rings were measured by recording isometric tension after the rings were exposed to LPC in the absence or presence of pravastatin to estimate the injury effect of LPC and the protective effect of pravastatin on the aortic endothelium, respectively. Results: Exposure of aortic rings to LPC (1-10μmol/L) for 30 min induced a significant concentration-dependent inhibition of endothelium-dependent relaxation to acetylcholine, but did not affect endothelium-independent relaxation in response to sodium nitroprusside. Pre-incubation of aortic rings with pravastatin (0.3-3mmol/L) for 15 min and then co-incubation of the rings with LPC (3 μmol/L) for another 30 min significantly attenuated the inhibition of endothelium-dependent relaxation induced by LPC. This protective effect of pravastatin (1 mmol/L) was abolished by N^G-nitro-L-arginine methyl ester (30 μmol/L), an inhibitor of nitric oxide synthase, but not by indomethacin (10 μmol/L), an inhibitor of cyclooxygenase. Moreover, protein kinase C inhibitor chelerythrine (1μmol/L) the superoxide anion scavenger superoxide dismutase (200 kU/L), and the nitric oxide precursor L-arginine (3 mmol/L) also improved the impaired endotheliumdependent relaxation induced by LPC, similar to the effects of pravastatin.C onclusion: Pravastatin can protect the endothelium against functional injury induced by LPC in rat aorta, a fact which is related to increasing nitric oxide bioavailability.  相似文献   

3.
The effect of chronic administration of sesamin was studied on aortic reactivity of streptozotocin diabetic rats. Male diabetic rats received sesamin for 7 weeks after diabetes induction. Contractile responses to KCl and phenylephrine and relaxation response to acetylcholine were obtained from aortic rings. Maximum contractile response of endothelium-intact rings to phenylephrine was significantly lower in sesamin-treated diabetic rats relative to untreated diabetics and endothelium removal abolished this difference. Meanwhile, endothelium-dependent relaxation to acetylcholine was significantly higher in sesamin-treated diabetic rats as compared to diabetic ones and pretreatment of rings with nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester significantly attenuated the observed response. Two-month diabetes also resulted in an elevation of malondialdehyde and decreased superoxide dismutase activity and sesamin treatment significantly improved these changes. Therefore, chronic treatment of diabetic rats with sesamin could prevent some abnormal changes in vascular reactivity in diabetic rats through nitric oxide and via attenuation of oxidative stress and tissue integrity of endothelium is necessary for its beneficial effect.  相似文献   

4.
1. This study involved the chronic administration of low or high insulin to rats with established streptozotocin (STZ)-induced diabetes. We studied the effect of such treatment on smooth muscle contractility and endothelium-dependent relaxation using aortic strips. 2. Aortae from diabetic rats, but not those from high-insulin-treated diabetic rats, showed an impaired endothelium-dependent in response to acetylcholine (ACh) by comparison with untreated controls. 3. Isotonic high K+-induced contractility was impaired in diabetic aortae. This impairment was prevented by high-insulin treatment. 4. Noradrenaline (NA)-induced contractility was enhanced in aortae from high-insulin-treated diabetic rats, but not in those from untreated diabetic or low-insulin treated diabetic rats. 5. In the combined presence of the nitric oxide inhibitor N(G)-nitro-L-arginine and the cyclo-oxygenase inhibitor indomethacin, NA-induced contractility was significantly greater in aortae from high-insulin-treated diabetic rats than in those from controls or untreated diabetic rats. 6. An increased expression of the mRNA for the alpha1D and alpha1B adrenergic receptors was found in aortae from high-insulin-treated diabetic rats. 7. These results demonstrate that in rats with established STZ-induced diabetes, high-insulin treatment prevents the development of an impaired endothelium-dependent relaxation in the aorta, and that such treatment enhances NA-induced contractility. This enhancement may be related to an upregulation in the expression of the mRNA for the alpha1B or alpha1D adrenergic receptor that is secondary to the hyperinsulinaemia.  相似文献   

5.
A comparative study was performed on the sensitivity of in-vitro vasorelaxation by nitroglycerin and cromakalim to block glibenclamide, a blocker of ATP-sensitive potassium channels, and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channels. In isolated canine coronary arteries preconstricted with 25 μM prostaglandin F, nitroglycerin (0.005–1.8 μM) and cromakalim (0.15–9.6 μM) produced dose-dependent vasodilations. Glibenclamide (30 μM) had no significant effect on relaxation of the dose-response curve to nitroglycerin and almost completely abolished the relaxation by cromakalim, a known opener of ATP-sensitive potassium channels. Iberiotoxin (90 nM) decreased the maximal response to nitroglycerin and had no effect on the vasodilation induced by cromakalim. The effect of iberiotoxin on the vasorelaxing action of nitric oxide, the active metabolite of nitroglycerin, was also examined. In a low potassium chloride (14.4–20.4 mM) medium, as a contractile stimulus, iberiotoxin inhibited relaxations by exogenous nitric oxide (100–200 nM). Enhancement of potassium concentrations to 35.4–40.4 mM significantly decreased relaxation by nitric oxide and under these conditions the inhibitory action of iberiotoxin disappeared. The present study demonstrated that in canine coronary arteries, the functional role of two potassium channels can be separated by pharmacological means. Nitroglycerin-induced vasorelaxation may be mediated, at least in part, by its enzymatic breakdown product, nitric oxide that activates large-conductance calcium-activated potassium channels.  相似文献   

6.
1. The present study evaluated the effect of diabetes, hypercholesterolaemia and their combination on the contribution of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) to relaxation of rat isolated aortic rings and the potential contribution of oxidant stress to the disturbance of endothelial function. 2. Thoracic aortic rings from control, diabetic, hypercholesterolaemic and diabetic plus hypercholesterolaemic rats were suspended in organ baths for tension recording. Generation of superoxide by the aorta was measured using lucigenin-enhanced chemiluminescence. 3. The maximal response to acetylcholine (ACh) was significantly reduced in diabetic or hypercholesterolaemic rats compared with control rats. In rats with diabetes plus hypercholesterolaemia, both the sensitivity and maximal response to ACh was impaired. In control rats, the response to ACh was abolished by the NO synthase inhibitor N(G)-nitro-L-arginine (L-NNA) or inhibition of soluble guanylate cyclase with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). In contrast, in rats with diabetes, hypercholesterolaemia or both, relaxation to ACh was resistant to inhibition by L-NNA or ODQ, but abolished by additional inhibition of K(Ca) channels with charybdotoxin plus apamin. 4. The generation of superoxide was not significantly enhanced in aortic rings from either diabetic or hypercholesterolaemic rats, but was significantly increased in aortic rings from rats with diabetes plus hypercholesterolaemia. 5. These results suggest that when diabetes and hypercholesterolaemia impair endothelium-dependent relaxation, due to a diminished contribution from NO, a compensatory contribution of EDHF to endothelium-dependent relaxation of the aorta is revealed. The attenuation of NO-mediated relaxation, at least in the presence of both diabetes and hypercholesterolaemia, is associated with enhanced superoxide generation.  相似文献   

7.
The aim of the present study was to assess gender differences in diabetes-related vascular reactivity in murine aortas. Diabetes is a risk factor for ischemic heart disease, cerebral ischemia, and atherosclerosis, conditions in which endothelial dysfunction plays a pathogenetic role. We examined vascular responses in aortas isolated from streptozotocin (STZ)-induced type 1 diabetic mice and age-matched control mice, and looked for gender differences in the diabetes-induced changes in these responses. For each gender, the plasma adiponectin levels were lower in diabetic mice than in the controls, and they were significantly higher in females than in males. The acetylcholine (ACh)-induced endothelium-dependent relaxation of aortic rings was impaired (vs. that in the age-matched controls) in diabetic male mice, but not in diabetic female mice. The sodium nitroprusside-induced endothelium-independent aortic relaxation was not altered by diabetes in either male or female mice. The norepinephrine-induced aortic contraction was enhanced (vs. that in the control group) in diabetic female mice, but not in diabetic male mice, whereas in the presence of N(G)-nitro-L-arginine neither gender exhibited a significant diabetes-induced change in this contraction. The clonidine-induced and insulin-induced endothelium-dependent aortic relaxations were impaired only in the diabetic female group (vs. the age-matched controls). These results suggest that: a) in male diabetic mice, which exhibited low adiponectin levels, these were impairments of both the aortic relaxation and nitric oxide (NO) production induced by ACh, whereas b) in female diabetic mice, there were impairments of the aortic relaxations induced by both insulin and clonidine.  相似文献   

8.
糖尿病大鼠内源性ADMA升高与代谢控制的关系   总被引:2,自引:2,他引:2  
目的 以链脲佐菌素诱导的糖尿病大鼠为实验模型 ,研究内源性一氧化氮合酶 (NOS)抑制物非对称性二甲基精氨酸 (ADMA)升高与糖尿病代谢控制的关系。方法 用高效液相色谱测定大鼠血清ADMA浓度 ;用离体胸主动脉环检测乙酰胆碱诱导的内皮依赖性舒张反应 ;并检测血糖、糖基化血清蛋白和血清脂质过氧化产物丙二醛 (MDA)浓度以反映代谢控制。结果 糖尿病大鼠血清ADMA浓度比正常组大鼠明显升高 ,并伴有离体血管内皮依赖性舒张反应的显著抑制 ;经胰岛素治疗 8wk后 ,不仅阻止内源性ADMA的升高 ,也明显改善血管的内皮依赖性舒张功能。此外 ,糖尿病大鼠血糖、糖基化血清蛋白和血清MDA水平也比正常组明显升高。用胰岛素改善代谢控制后 ,血糖、糖基化血清蛋白和血清MDA水平均恢复正常 ,血中ADMA浓度也显著降低。结论 糖尿病大鼠血中内源性NOS抑制物ADMA浓度升高与代谢控制密切相关 ;胰岛素逆转糖尿病大鼠内源性ADMA升高可能与纠正代谢紊乱和降低脂质过氧化有关  相似文献   

9.
Our goals were to determine both the effects of chronic insulin treatment on the impaired endothelium-dependent relaxation present in basilar arteries from established diabetic rats and the molecular basis of these effects. Acetylcholine-induced relaxation in basilar artery rings was impaired in the streptozotocin-induced diabetic group, and this impaired response was recovered by insulin treatment. The contraction induced by a nitric oxide synthase inhibitor was decreased in the insulin-untreated diabetic group, but was increased by insulin or NAD(P)H oxidase inhibitor treatment. The manganese-superoxide dismutase (Mn-SOD) mRNA level was significantly lower in basilar arteries from insulin-untreated diabetic rats than in those from the controls, whereas the mRNA for gp91phox, an NAD(P)H oxidase subunit, was increased. In the insulin-treated group, the basilar artery p22phox mRNA level was reduced (vs. insulin-untreated diabetic). These results suggest that the presence of endothelial dysfunction in the diabetic basilar artery is related to increased oxidative stress, and that insulin preserves endothelial function by alleviating oxidative stress. Furthermore, we directly demonstrated that the expression profile for SOD and NAD(P)H oxidase was altered in the streptozotocin-induced diabetic basilar artery.  相似文献   

10.
The effect of genistein, a tyrosine kinase inhibitor, on nitroglycerin-induced relaxation was examined in rat aortic rings contracted by phenylephrine. In rat aortic rings, genistein (10(-5) M and 3x10(-5) M), a tyrosine kinase inhibitor, but not daidzein, an analogue of genistein, increased relaxation induced by nitroglycerin in a concentration-dependent manner. Iberiotoxin, an inhibitor of Ca2+ -activated K+ channels, inhibited the relaxation induced by nitroglycerin, but it did not affect the effect of genistein. Glibenclamide, an inhibitor of ATP-sensitive K+ channels, did not affect the relaxation induced by nitroglycerin. Theophylline, an inhibitor of cyclic AMP-dependent phosphodiesterase, increased the relaxation induced by nitroglycerin, and genistein (10(-5) M) failed to affect the relaxation induced by nitroglycerin in the presence of theophylline. Genistein also inhibited the activity of cyclic AMP-dependent phosphodiesterase. In addition, 6-[4-(4'-pyridyl)amino phenyl]-4,5-dihydro-3(2H)-pyridazinone hydrochloride, an inhibitor of cyclic GMP-inhibitable cyclic AMP phosphodiesterase, inhibited the relaxation induced by nitroglycerin. These results suggest that, in the rat aortic rings, genistein inhibits cyclic AMP-dependent phosphodiesterase activities, resulting in the increase of the relaxation induced by nitroglycerin.  相似文献   

11.
The aim of this study was to determine if the decrease in aortic total glutathione (GSH) levels in hypercholesterolaemia is related to the impairment of relaxation to acetylcholine (ACh) and exogenous nitric oxide (NO). Isometric tension and vascular GSH levels were measured in thoracic aortic rings from rabbits fed for 12 weeks with 0.5% cholesterol diet. Hypercholesterolaemia decreased aortic GSH levels and impaired relaxation to ACh and NO. To determine if GSH depletion impaired the response to NO, normal rabbit thoracic aorta was incubated with 1,3-bis [2-chloroethyl]-1-nitrosourea (BCNU; 0.2 mmol L(-1)), a GSH reductase inhibitor, or diazine-dicarboxylic acid bis [N, N dimethylamide] (diamide; 1 mmol L(-1)), a thiol oxidizing agent. BCNU or diamide decreased aortic GSH levels and impaired ACh and NO-induced relaxation. The effects of diamide on GSH levels and relaxation were partially prevented by co-incubation with GSH ester (GSE; 2 mmol L(-1)). Increasing GSH with GSE significantly enhanced NO-induced relaxation in aorta from both hypercholesterolaemic and normal rabbits, however relaxation of hypercholesterolaemic rabbit aorta was not restored to normal. These data suggest that other factors, perhaps related to the long-term decrease in GSH levels, are responsible for reduced NO bioactivity in hypercholesterolaemia.  相似文献   

12.
A normal response to nitric oxide donors has been cited as evidence that impaired endothelium-dependent vasodilation during hypercholesterolemia is due to decreased synthesis of nitric oxide. This tenet was examined by determining responses to nitric oxide gas as well as to acetylcholine and sodium nitroprusside in the isolated aorta of apolipoprotein E-deficient mice fed normal or Western-type cholesterol-rich diet until 21 or 35 weeks of age. In mice fed normal chow, relaxation to all agents remained comparable to that obtained in wild-type mice. In mice fed Western diet, the relaxation to acetylcholine as well as to nitric oxide was decreased at 35 weeks of age. At 21 weeks of age, decreased sensitivity to nitric oxide was observed despite a normal response to acetylcholine. The response to sodium nitroprusside was normal in all groups. A decrease in aortic superoxide dismutase activity as well as an increase in aortic superoxide anion generated in the presence of NADH as measured by lucigenin chemiluminescence was observed in the group fed Western diet at 35 weeks. This provides evidence that altered superoxide anion could contribute to the deterioration in nitric oxide sensitivity that underlies the impaired endothelium-dependent relaxation. These data indicate that decreased sensitivity to nitric oxide may contribute to the development of impaired endothelium-dependent relaxation in hypercholesterolemia. The response to sodium nitroprusside appears not to reflect the decreased sensitivity of vascular smooth muscle to authentic nitric oxide.  相似文献   

13.
To explore whether advanced oxidation protein products (AOPP) can cause endothelial dysfunction in vitro, and whether captopril exerts beneficial effect on impaired endothelium-dependent relaxation induced by exogenous advanced oxidation protein products and to investigate the potential mechanisms. Both the Acetylcholine (ACh)-induced endothelium-dependent relaxation (EDR), sodium nitroprusside-induced endothelium-independent relaxation of aortic rings were measured by recording isometric tension after the rings were exposed to AOPP-BSA in the absence or presence of captopril to assess the injury effect of AOPP-BSA and the protective effect of captopril on the aortic endothelium, respectively. Co-incubation of aortic rings with AOPP-BSA (3 mmol/L) for 90 minutes resulted in a significant inhibition of EDR to ACh, but had no effects on endothelium-independent relaxation to SNP. After incubation of the rings in the co-presence of captopril (3 to 30 micromol/L) or enalaprilat (30 micromol/L) with AOPP-BSA (3 mmol/L) for 90 minutes, captopril significantly and enalaprilat only partly attenuated the inhibition of EDR induced by AOPP-BSA. This protective effect of captopril (30 micromol/L) was abolished by N-nitro-L-arginine methyl ester (10 micromol/L), an inhibitor of nitric oxide synthase. Furthermore, the superoxide anion scavenger superoxide dismutase (SOD, 200 U/mL), and the nitric oxide precursor L-arginine (3 mmol/L) also ameliorated the impaired EDR caused by AOPP-BSA. But D-arginine had no effect on the impaired EDR caused by AOPP-BSA. AOPP-BSA can trigger endothelial dysfunction and captopril can protect the endothelium against functional damage induced by AOPP-BSA in rat aorta, increase nitric oxide bioavailability. The mechanisms of endothelial dysfunction induced by AOPP-BSA may include the decrease of NO and the generation of oxygen-free radicals.  相似文献   

14.
《General pharmacology》1994,25(7):1361-1371
  • 1.1. The relaxation by nitroglycerin (GTN) and nitric oxide (NO) of aortic smooth muscles from rabbit and rat contracted by phenylephrine was inhibited by LY 83583 (LY) and methylene blue (MB) (the same applied to guinea-pig aorta), while the relaxation by SNP was not inhibited in rabbit. The relaxation by ANP was not inhibited.
  • 2.2. All these agents produced concentration-dependent increases in cyclic GMP. While the increases by GTN and NO were inhibited by LY and MB, the increases by SNP were inhibited only in rat and those by ANP were not inhibited.
  • 3.3. Thus, LY behaved essentially similar to MB, indicating that the substance is an inhibitor of activation of soluble guanylate cyclase by NO and NO-related vasodilators. It was assumed that, like MB, LY facilitated intracellular release of NO from SNP in rabbit.
  相似文献   

15.
It is not completely understood whether nitric oxide donors and beta-adrenoceptor antagonists have anti-atherosclerotic effects. The anti-atherosclerotic effects of beta-adrenergic receptor antagonists and nitric oxide donors on severe atherosclerosis induced by cholesterol and inhibition of nitric oxide synthesis were determined. Six groups of New Zealand white male rabbits were treated for 10 weeks, under the following regimens: group I: high-cholesterol diet (HCD) (standard diet plus 0.5% cholesterol); group II: HCD plus N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase; group III: HCD plus L-NAME and isosorbide dinitrate; group IV: HCD plus L-NAME and nitroglycerin; group V: HCD plus L-NAME and nipradilol (beta-blocker with nitric oxide-releasing action); and group VI: HCD plus L-NAME and atenolol (beta-blocker). Serum lipid levels did not differ among the six groups. Blood pressure and heart rates were slightly decreased in groups V and VI. The atherosclerotic area and aortic cholesterol increased in L-NAME-treated animals but not in animals in group V. The endothelium-dependent relaxations and basal nitric oxide release were impaired in the L-NAME treatment group, though not in group V, in comparison with those in group I. cGMP in the aorta was increased in groups III, IV, and V as compared with that in group II. Endothelial nitric oxide synthase mRNA was decreased in the aortae of L-NAME-treated rabbits and increased in aortae in group V, in comparison with that in group I. Conclusively, nipradilol, beta-blocker with nitric oxide-releasing action, in contrast to the other beta-blockers and nitric oxide donors, showed a successful anti-atherosclerotic effect through the restoration of nitric oxide bioavailability and possible interaction with oxygen radicals.  相似文献   

16.
The aim of this study was to investigate the location of photodegradable nitric oxide (NO) store using a pharmacological approach in mouse gastric fundus. The ultraviolet light irradiation (UV; 360 nm, 60 s), electrical field stimulation (EFS; 4 Hz, 25 V, 1 ms, 15s-train), exogenous nitric oxide (NO; 10 microM), nitroglycerin (100 microM) and isoproterenol (5 nM) induced relaxation in mouse gastric fundus preparations in the absence or presence of an intact mucosa. The NO scavenger, haemoglobin (20 microM), significantly inhibited the relaxation of intact and denuded mucosa stomach fundus to UV light irradiation, EFS and NO, but not to nitroglycerin and isoproterenol. The superoxide anion generator, pyrogallol (50 microM), inhibited relaxation of intact and denuded mucosa stomach fundus induced by UV light irradiation, EFS, NO, but not to nitroglycerin and isoproterenol. The inhibition observed with pyrogallol was prevented by exogenous Cu/Zn superoxide dismutase (SOD; 100 U/ml), a membrane impermeable antioxidant. The Cu/Zn SOD inhibitor, diethyldithiocarbamic acid (DETCA; 8 mM), inhibited the relaxation of intact and denuded mucosa stomach fundus to UV light irradiation, EFS, NO and nitroglycerin but not those to isoproterenol. Exogenous SOD (100 U/ml) partially prevented the inhibitory effect of DETCA on relaxation to UV light irradiation, EFS, NO but not to nitroglycerin. DETCA-induced inhibition of the nitroglycerin-induced relaxation was partially prevented by the cell-permeable polyethylene-glycol-superoxide dismutase (100 U/ml). These results indicate that photodegradable NO store is, at least in part, unlikely to be within smooth muscle cells, and furthermore, that UV light-induced relaxation is not dependent on gastric mucosal layer.  相似文献   

17.
Nitrovasodilators cause endothelium-independent relaxation of blood vessels by generating nitric oxide (NO). We examined the relaxation and depressor effects of two organotransition-metal nitrosyl complexes, CpCr(NO)2Cl and CpMo(NO)2Cl, relative to those of the prototypal nitrovasodilators, nitroglycerin, and sodium nitroprusside (SNP), in phenylephrine-preconstricted aortic rings and conscious, unrestrained rats. CpCr(NO)2Cl, CpMo(NO)2Cl, nitroglycerin and SNP caused dose-dependent relaxation of aortic rings at maximal responses (Emax) of -118+/-4, -113+/-4, -104+/-1, and -128+/-5% and EC50 of 0.14+/-0.04, 22+/-4, 1.23+/-0.65, and 0.063+/-0.013 microM, respectively. The dose-response curve of CpCr(NO)2Cl was displaced to the right by hemoglobin, as well as methylene blue, showing involvement of the NO/cGMP pathway. Unlike nitroglycerin, preexposure for 1 h to CpCr(NO)2Cl did not alter subsequent relaxation response to the compound. Intravenous bolus injections of CpCr(NO)2Cl, CpMo(NO)2Cl, nitroglycerin, and SNP caused dose-dependent decreases in MAP with Emax of -42+/-2, -51+/-8, -56+/-6, and -58+/-2 mm Hg and EC50 of 0.041+/-0.010, 13+/-4, 1.6+/-0.4, and 0.037+/-0.004 micromol/kg, respectively. These results show that CpCr(NO)2Cl and CpMo(NO)2Cl are efficacious nitrovasodilators in vitro and in vivo.  相似文献   

18.
This study was designed to elucidate the effects of hypertension and aging on nitric oxide (NO)-mediated relaxation response to acetylcholine in the rat aorta. NO-mediated relaxation response was assessed as the relaxation response to acetylcholine after treatment with cyclooxygenase inhibitor in KCl-precontracted aortic rings. The endothelium-dependent relaxation responses to acetylcholine were lower in aortic rings isolated from spontaneously hypertensive rats (SHRs) at ages 16-20 and 55-60 weeks compared with those seen in age-matched Wistar-Kyoto (WKY) rats. Aging induced a reduction of the relaxation response to acetylcholine in aortic rings from WKY rats but not from SHRs. Pretreatment with indomethacin enhanced the relaxation response to acetylcholine in only SHRs at ages 16-20 and 55-60 weeks, thereby cancelling the difference in the relaxation response between WKY rats and SHRs. Simultaneous administration of indomethacin and NG-nitro-L-arginine methyl ester abolished the relaxation response to acetylcholine in both strains. Thus NO-mediated relaxation response to acetylcholine was similar between WKY rats and SHRs at ages 16-20 and 55-60 weeks, respectively, and was attenuated with aging to the same degree in both strains. In conclusion, NO-mediated relaxation response to acetylcholine in the aorta is attenuated with aging but not impaired by hypertension.  相似文献   

19.
It has been demonstrated previously that endothelium-dependent vasodilatation is impaired in myometrial arteries from women with gestational diabetes, which may play a role in mediating complications observed in diabetic pregnancies. It is not known which aspects of endothelium-dependent vasodilatation are impaired, thus a mouse model of pregnancy complicated by streptozotocin-induced diabetes was established to investigate underlying mechanisms. Uterine arteries from term-pregnant, diabetic and control C57Bl6/J mice were assessed using acetylcholine (ACh; 10(-10)-10(-5)M) in the presence or absence of a nitric oxide (NO) synthase inhibitor (L-NNA; 10(-5)M), a cyclooxygenase (COX) inhibitor (indomethacin; 10(-5)M) or the two in combination. Sensitivity to ACh was comparable between diabetic and control mice. However, the contribution of endothelium-dependent vasodilators was significantly altered. L-NNA significantly inhibited the relaxation of arteries from diabetic compared to control mice (65+/-11% vs 18+/-6%; p<.05). L-NNA and indomethacin significantly inhibited the relaxation of arteries from diabetic mice compared to control (87+/-5% vs 33+/-14%; p<0.05). These data indicate that endothelium-dependent relaxation of the uterine artery of control, pregnant mice was largely mediated by the non-NO/non-COX component. Surprisingly, arteries from diabetic mice were primarily dependent on NO, which may affect compensatory capacity as the disease progresses.  相似文献   

20.
We utilized the nitric oxide (NO) scavenger N-methyl-D-glucamine dithiocarbamate-Fe2+ (MGD-Fe) to characterize the role of NO in basal and acetylcholine (ACh)-stimulated relaxation arising from the endothelium of control vs diabetic rat aortic rings. In phenylephrine-contracted rings, MGD-Fe produced an additional increment in tension that was indomethacin-insensitive (i.e., excluding a role of prostanoids in this action). This MGD-Fe-sensitive component was more pronounced in control rings than diabetic rings and of the same magnitude achieved in rings without MGD-Fe treatment after removal of endothelium or treatment with the NO synthase inhibitor L-nitroarginine (L-NA). This suggests complete scavenging of basal NO by MGD-Fe and supports reduced basal NO in diabetic rings. ACh fully relaxed both control and diabetic rings. This relaxation was abolished by removal of the endothelium and was inhibited by L-NA (by 100% and 90% in control and diabetic rings, respectively). In contrast, MGD-Fe only partially inhibited ACh-induced relaxation in control (65+/-5% inhibition) and diabetic (41+/-11% inhibition) rings. The MGD-Fe-resistant component was not further modified by indomethacin. Addition of L-arginine (L-ARG) (but not D-arginine (D-ARG) enhanced the ACh-induced relaxation of MGD-Fe-treated diabetic (but not control) rings. These data provide evidence about endothelium-dependent relaxation in control and diabetic rings which cannot be discerned by use of L-NA alone. This study suggests that ACh produces a NO synthase-dependent vasodilation, a portion of which is due to free NO radical (*NO) or due to NO in a form or location that is unavailable for scavenging by MGD-Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号