首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using the indirect immunofluorescence method andin situ hybridization, the localization and levels of immunoreactivities and mRNAs for several neuropeptides were studied in lumbar dorsal root ganglia and spinal cord of untreated monkeys (Macaca mulatto) and after unilateral transection of the sciatic nerve. Immunoreactive galanin, calcitonin gene-related peptide, substance P and somatostatin and their mRNAs were found in cell bodies in dorsal root ganglia of untreated monkeys and on the contralateral side of the monkeys with unilateral sciatic nerve lesion. After axotomy there was a marked decrease in the number of calcitonin gene-related peptide-, substance P- and somatostatin-positive neurons in dorsal root ganglia ipsilateral to the lesion, whereas the number of galanin positive cells strongly increased. A few neuropeptide tyrosine-positive cells were seen in after axotomy, whereas no such neurons were found in controls. No vasoactive intestinal polypeptide-, peptide histidine isoleucine-, cholecystokinin-, dynorphin-, enkephalin-, neurotensin-or thyrotrophin releasing hormone-positive cell bodies were seen in dorsal root ganglia of any of the groups studied. In the dorsal horn of the spinal cord all peptide immunoreactivities described above, except thyrotropin releasing hormone, were found in varying numbers of nerve fibres with a similar distribution in untreated monkeys and in the contralateral dorsal horn in monkey with unilateral sciatic nerve lesion. Two cholecystokinin antisera were used directed against the C- and N-terminal portions, respectively, showing a distinctly different distribution pattern in the dorsal horn. Somatostatin- and dynorphin-like immunoreactivities were also observed in small neurons in the dorsal horn. No certain effect of axotomy on these interneurons could be seen. However, marked changes were observed after this type of lesion for some peptide containing fibres in the ipsilateral dorsal horn. Thus, there was a marked increase in galanin-like immunoreactivity, whereas calcitonin gene-related peptide-, substance P-, somatostatin-, peptide histidine isoleucine neurotensin- and cholecystokinin-like immunoreactivities decreased. No changes could be observed in neuropeptide tyrosine or enkephalin-positive fibres. The present results demonstrate marked ganglionic and transganglionic changes in peptide levels after peripheral axotomy. When compared to published results on the effect of axotomy on peptides in dorsal root ganglia and spinal cord of rat, both similarities and differences were encountered. Thus, in contrast to rat there was no marked upregulation of vasoactive intestinal polypeptide/peptide histidine isoleucine or neuropeptide tyrosine after axotomy in the monkey, whereas galanin was increased in both species. Both in monkey and rat, calcitonin gene-related peptide, substance P and somatostatin decreased. The decrease in neurotensin, peptide histidine isoleucine, and genuine cholecystokinin seen in monkey after axotomy has not been reported in the rat. Experimental studies on rat suggest that galanin may be an endogenous analgesic compound, active particularly after peripheral nerve lesions. We have therefore recently proposed that galanin agonists may be used in treatment of chronic pain, and the present demonstration that galanin is regulated in a similar fashion in a primate gives further support to the proposal to test galanin as an analgesic in human.  相似文献   

2.
Summary In situ hybridization histochemistry was used to detect cell bodies expressing mRNA encoding for the phosphoprotein GAP-43 in the lumbosacral spinal cord of the adult rat, cat and monkey under normal conditions and, in the cat and rat, also after different types of lesions. In the normal spinal cord, a large number of neurons throughout the spinal cord gray matter were found to express GAP-43 mRNA. All neurons, both large and small, in the motor nucleus (Rexed's lamina IX) appeared labeled, indicating that both alpha and gamma motoneurons express GAP-43 mRNA under normal conditions. After axotomy by an incision in the ventral funiculus or a transection of ventral roots or peripheral nerves, GAP-43 mRNA was clearly upregulated in axotomized motoneurons, including both alpha and gamma motoneurons. An increase in GAP-43 mRNA expression was already detectable 24 h postoperatively in lumbar motoneurons both after a transection of the sciatic nerve at knee level and after a transection of ventral roots. At this time, a stronger response was seen in the motoneurons which had been subjected to the distal sciatic nerve transection than was apparent for the more proximal ventral root lesion. An upregulation of GAP-43 mRNA could also be found in intact motoneurons located on the side contralateral to the lesion, but only after a peripheral nerve transection, indicating that the concomitant influence of dorsal root afferents may play a role in GAP-43 mRNA regulation. However, a dorsal root transection alone did not seem to have any detectable influence on the expression of GAP-43 mRNA in spinal motoneurons, while the neurons located in the superficial laminae of the dorsal horn responded with an upregulation of GAP-43 mRNA. The presence of high levels of GAP-43 in neurons has been correlated with periods of axonal growth during both development and regeneration. The role for GAP-43 in neurons under normal conditions is not clear, but it may be linked with events underlying remodelling of synaptic relationships or transmitter release. Our findings provide an anatomical substrate to support such a hypothesis in the normal spinal cord, and indicate a potential role for GAP-43 in axon regeneration of the motoneurons, since GAP-43 mRNA levels was strongly upregulated following both peripheral axotomy and axotomy within the spinal cord. The upregulation of GAP-43 mRNA found in contralateral, presumably uninjured motoneurons after peripheral nerve transection, as well as in dorsal horn neurons after a dorsal root transection, indicates that GAP-43 levels are altered not only as a direct consequence of a lesion, but also after changes in the synaptic input to the neurons.  相似文献   

3.
4.
Axotomized spinal motoneurons are able to regenerate to their peripheral targets, whereas injured rubrospinal neurons that lie completely within the CNS fail to regenerate. The differing cell body reactions to axotomy of these two neuronal populations have been implicated in their disparate regenerative ability. Recently, the lectin galectin-1 has been shown to be involved in both spinal motoneurons and primary afferent regeneration. Using in situ hybridization, we compared the endogenous galectin-1 mRNA expression in spinal motoneurons and rubrospinal neurons after axotomy. We found that 7 and 14 days after axotomy, galectin-1 mRNA increased in spinal motoneurons but decreased in rubrospinal neurons. Infusion of the brain-derived neurotrophic factor into the vicinity of the injured rubrospinal nucleus, which we have previously shown to increase the regenerative capacity of rubrospinal neurons, significantly increased galectin-1 mRNA compared with uninjured control levels. Thus, the expression of galectin-1 in neurons correlates with the regenerative propensity.  相似文献   

5.
It has been reported that both urotensin II precursor (pro UII) mRNA and androgen receptors (ARs) are highly expressed in rat brainstem motor nuclei and ventral horn of the spinal cord. In order to determine the possible involvement of androgens in regulation of pro UII mRNA expression, we have studied the co-localization of pro UII mRNA and AR immunoreactivity and the effect of castration and dihydrotestosterone (DHT) replacement therapy on pro UII mRNA in the rat facial nucleus and ventral horn of the spinal cord. By in situ hybridization, pro UII mRNA was only detected in motoneurons in both the facial nucleus and ventral horn of the spinal cord. Double-labelling studies revealed that the vast majority (over 95%) of motoneurons immunostained for AR also expressed pro UII mRNA in both areas examined. Three weeks after castration, pro UII mRNA expression, as measured by semi-quantitative in situ hybridization, was increased by 17% and 58% in the ventral horn of the spinal cord and the facial nucleus, respectively. The administration of DHT completely prevented the stimulating effect of castration. These results indicate that circulating androgens are exerting a down-regulation of pro UII expression possibly by a direct action at the level of motoneurons. The physiological relevance of these new findings remains to be fully explored.  相似文献   

6.
The expression of galanin and neuropeptide Y in rat lumbar 5 (L5) dorsal root ganglia and dorsal horn (L4-5) was studied after four types of peripheral nerve injury using immunohistochemistry and in situ hybridization. The possible correlation between these two peptides and tactile allodynia-like behaviour was analysed as well. The models employed were the Gazelius (photochemical lesion) and Seltzer and Bennett (constriction lesions) models, as well as complete sciatic nerve transection (axotomy). Two weeks after surgery, the Gazelius model rats more frequently displayed a greater tactile allodynia than the rats from the Seltzer and Bennett models. Tactile allodynia was not observed in any of the axotomized rats. A marked increase in the number of galanin-immunoreactive and galanin messenger RNA-positive neuron profiles was observed in ipsilateral dorsal root ganglia in all types of models. The increase in allodynic rats (Gazelius, Seltzer and Bennett models) was less pronounced than that after axotomy. In addition, in the Bennett model the number of galanin-immunoreactive neurons was significantly lower in allodynic rats as compared to non-allodynic rats, and the same tendency, but less obvious was found in the Seltzer model. Furthermore, an increase in galanin-immunoreactive fibres was found in the superficial laminae of the ipsilateral dorsal horn in all lesion models, especially in lamina II. A dramatic increase in the number of neuropeptide Y and neuropeptide Y messenger RNA-positive neuron profiles was also found in the ipsilateral dorsal root ganglia in all models, but no significant difference was found in peptide levels between allodynic and non-allodynic rats in any of the models. The present results suggest that the levels of endogenous galanin may play a role in whether or not allodynia develops in the Bennett model.  相似文献   

7.
Progesterone (PROG) provides neuroprotection to the injured central and peripheral nervous system. These effects may be due to regulation of myelin synthesis in glial cells and also to direct actions on neuronal function. Recent studies point to neurotrophins as possible mediators of hormone action. Here, we show that the expression of brain-derived neurotrophic factor (BDNF) at both the mRNA and protein levels was increased by PROG treatment in ventral horn motoneurons from rats with spinal cord injury (SCI). Semiquantitative in situ hybridization revealed that SCI reduced BDNF mRNA levels by 50% in spinal motoneurons (control: 53.5+/-7.5 grains/mm(2) vs. SCI: 27.5+/-1.2, P<0.05), while PROG administration to injured rats (4 mg/kg/day during 3 days, s.c.) elicited a three-fold increase in grain density (SCI+PROG: 77.8+/-8.3 grains/mm(2), P<0.001 vs. SCI). In addition, PROG enhanced BDNF immunoreactivity in motoneurons of the lesioned spinal cord. Analysis of the frequency distribution of immunoreactive densities (chi(2): 812.73, P<0.0001) showed that 70% of SCI+PROG motoneurons scored as dark stained whereas only 6% of neurons in the SCI group belonged to this density score category (P<0.001). PROG also prevented the lesion-induced chromatolytic degeneration of spinal cord motoneurons as determined by Nissl staining. In the normal intact spinal cord, PROG significantly increased BDNF inmunoreactivity in ventral horn neurons, without changes in mRNA levels. Our findings suggest that PROG enhancement of endogenous neuronal BDNF could provide a trophic environment within the lesioned spinal cord and might be part of the PROG activated-pathways to provide neuroprotection.  相似文献   

8.
We had previously shown that in rat spinal cord motoneurons urotensin II (UII) precursor mRNA was down-regulated by androgens. Very recently, a gene encoding the precursor of a UII analog, termed UII-related peptide (URP), has been identified. Using in situ hybridization, we studied the localization of UII and URP precursor as well as androgen receptor (AR) mRNA in the male mouse thoracic spinal cord. We also evaluated the androgenic regulation of the two peptide precursor and AR mRNA expression in the ventral horn of the mouse thoracic spinal cord. The results revealed that URP precursor mRNA was localized in motoneurons and that the vast majority of the motoneurons expressed both peptide precursor as well as AR mRNA. Seven-day castration induced an increase in UII and URP precursor and AR mRNA levels. Short term (3-24 h) administration of dihydrotestosterone to castrated animals restored the three protein mRNA levels to the levels observed in intact animals. These results suggest that in the ventral horn of the mouse spinal cord both UII and URP precursor and AR mRNA are expressed by the same neurons and that circulating androgens are exerting a down-regulation of the three protein mRNA expression, possibly by a direct action on motoneurons.  相似文献   

9.
Urotensin-II (UII), a 12 amino acid peptide, was discovered in the teleost fish neurosecretory cells located in the caudal portion of the spinal cord and which project to a neurohemal gland called the urophysis. The distribution of UII and of its prepro-UII mRNA is not limited to fish and was found for example in the rat spinal cord. In view of the potential interest of obtaining transgenic mice, we have therefore characterized the distribution of mouse pro-UII mRNA and UII immunoreactivity, by in situ hybridization and immunohistochemistry, respectively, in the mouse spinal cord. A population of UII-like immunoreactive cell bodies was located in the ventral horn of the different segments. These cells displayed all the features of motoneurons, as confirmed by a double immunohistochemical labelling showing the co-occurrence of UII and vesicular acetylcholine transporter, and by electron microscope immunocytochemistry. Retrograde labelling of motoneurons innervating the bulbocavernosus penile muscle showed that some of them contained UII. In situ hybridization histochemistry revealed that pro-UII mRNA was located in some ventral horn neuronal perikarya. The pro-UII mRNA-containing cell bodies possessed the same motoneuron characteristics, confirming the results of the immunohistochemical studies and showing that the gene of mouse UII is expressed in a subpopulation of motoneurons in the spinal cord. Our results support the assumption that UII peptide characterized as endocrine in fish is also expressed within mammalian motoneurons.  相似文献   

10.
11.
12.
Following axotomy several processes involving cell-cell interaction occur, such as loss of synapses, axon guidance, and remyelination. Two recently discovered families of cell-cell adhesion molecules, nectins and nectin-like molecules (necls) are involved in such processes in vitro and during development, but their roles in nerve injury have been largely unknown until recently. We have previously shown that axotomized motoneurons increase their expression of nectin-1 and nectin-3 and maintain a high expression of necl-1. We here investigate the expression of potential binding partners for motoneuron nectins and necls in the injured peripheral nerve. In situ hybridization (ISH) revealed a decreased signal for necl-1 mRNA in the injured nerve, whereas no signal for necl-2 was detected before or after injury. The signals for necl-4 and necl-5 mRNA both increased in the injured nerve and necl immunoreactivity displayed a close relation to axon and Schwann cell markers. Finally, signal for mRNA encoding necl-5 increased in axotomized spinal motoneurons. We conclude that peripheral axotomy results in altered expression of several necls in motoneurons and Schwann cells, suggesting involvement of the molecules in regeneration.  相似文献   

13.
14.
Semaphorins are a family of axonal guidance molecules that, by virtue of their chemorepulsive or chemoattractive actions, may be the important factors in determining the success or failure of axonal regeneration in the mature nervous system after injury. Here, we have used two adult mouse models of nervous system injury to evaluate the neuronal expression of Semaphorin3C (Sema3C) in regenerating (facial motoneurons) and non-regenerating (rubrospinal) neurons following axonal injury. Using in situ hybridization (ISH), we observed that uninjured facial motoneurons express Sema3C mRNA and, following axonal injury, there is a transient up-regulation in Sema3C mRNA expression in injured motoneurons. In contrast, Sema3C mRNA was not detected in uninjured rubrospinal neurons; however, following axotomy, injured rubrospinal neurons significantly up-regulate Sema3C mRNA expression. The increase in Sema3C mRNA expression in axotomized rubrospinal neurons was not limited to the mouse nervous system: serial dilution RT-PCR analysis revealed a similar increase in Sema3C mRNA expression in the axotomized rat rubrospinal nucleus, 3 days following a rubrospinal tract lesion. This demonstrates that increased Sema3C mRNA levels in axotomized rubrospinal neurons is common to both mouse and rat injury models.  相似文献   

15.
Using immunohistochemistry and in situ hybridization, the expression of galanin (GAL)/galanin message associated peptide (GMAP)-, neuropeptide Y (NPY)-, vasoactive intestinal polypeptide (VIP)/peptide histidine isoleucine (PHI)- and nitric oxide synthase (NOS)-like immunoreactivities and mRNAs, and NPY receptor mRNA was studied in normal trigeminal and nodose ganglia and 14 and 42 days after peripheral axotomy. In normal trigeminal ganglia about 11% of the counted neuron profiles contained GAL mRNA, 4% NOS mRNA, 5% NPY mRNA, 7% VIP mRNA, and 19% NPY receptor mRNA. Peptide mRNA- and NPY receptor mRNA-positive neuron profiles were small in size. Fourteen days after axotomy a marked increase in the number of GAL mRNA- (34% of counted neuron profiles), NPY mRNA- (54%) and VIP mRNA- (31%) positive neuron profiles, and a moderate increase in the number of NOS mRNA- (22%) positive neuron profiles were observed in the ipsilateral trigeminal ganglia. The GAL/GMAP, VIP- and NOS-positive profiles were mainly small, the NPY-positive ones mostly large. NPY receptor mRNA was expressed in some large neurons. In normal nodose ganglia, about 3% of the counted neuron profiles contained GAL mRNA, 3% NPY mRNA, 17% NOS mRNA and less than 1% VIP mRNA. Fourteen days after peripheral axotomy, a marked increase in the number of GAL mRNA- (78% of counted neuron profiles), NOS mRNA- (37%) and VIP- (46%) mRNA-positive neuron profiles was seen in the ipsilateral nodose ganglia. The number of NPY-positive (23%) neurons was moderately increased, mainly in small neuron profiles. There were no NPY receptor mRNA-positive neurons, either in normal nodose ganglia or in nodose ganglia ipsilateral to the axotomy. In contralateral nodose ganglia the number of GAL- and NPY-positive neuron profiles was slightly increased, and VIP cells showed a moderate increase. Immunohistochemical analysis revealed parallel changes in expression of peptides and NOS in both trigeminal and nodose ganglia, demonstrating that the changes in mRNA levels are translated into protein. Finally, although not quantified, similar upregulations of peptide and NOS mRNA levels were observed in both ganglia 42 days after nerve injury provided that regeneration was not allowed, suggesting that the changes are long lasting. The present results show that the effect of axotomy on peptide and NOS expression in the trigeminal and nodose ganglia is similar to that previously shown for lumbar dorsal root ganglia. However, no mRNA for the NPY Y1 receptor could be detected in the vagal system. In general the mechanism(s) for and the purpose(s) of the messenger regulation in response to axotomy may be similar in these different sensory systems (dorsal root, trigeminal and nodose ganglia).During the final part of this study Dr. Jan Arvidsson tragically died from a cerebral insult.  相似文献   

16.
The high-affinity choline transporter CHT1 works for choline uptake in the presynaptic terminals of cholinergic neurons. We examined its expression in the hypoglossal nucleus after unilateral hypoglossal nerve transection in mice by fluorescent in situ hybridization. One week after axotomy, CHT1 mRNA expression was lost in all hypoglossal motoneurons in the lesioned side. Two weeks after axotomy, CHT1 mRNA started to be re-expressed in a few motoneurons that recovered connections to tongue muscles as revealed by retrograde labeling with Fast Blue. After 4 weeks, most of axotomized hypoglossal motoneurons were reconnected and re-expressed CHT1 mRNA as strongly as control neurons, and the regenerating cholinergic axons established mature neuromuscular junctions. These results suggest that the establishment of motor innervation is critical for CHT1 mRNA expression in hypoglossal neurons after axotomy.  相似文献   

17.
Summary The cellular localization of neurons expressing cholecystokinin (CCK) and tyrosine hydroxylase (TH) mRNAs was analysed in rat ventral mesencephalon using in situ hybridization techniques with both complementary DNA and synthetic oligonucleotide probes. Cell bodies distributed throughout the substantia nigra, ventral tegmental area, interfascicular nucleus, midline raphe nuclei, and central and ventral periaqueductal grey matter were found to contain CCK mRNA or TH mRNA as indicated by high densities of grains overlying the perikarya. The in situ hybridization technique was combined with immunocytochemistry on the same tissue section to localize the peptide or enzyme within its respective mRNA-containing somata. In addition, the presence of TH immunoreactivity was demonstrated within cell bodies labeled for CCK mRNA and immunostaining for CCK was detected within TH mRNA-containing neurons. In the medial geniculate nucleus a strong labeling for CCKmRNA was observed, in spite of the fact that so far no CCK-like immunoreactivity has been demonstrated in perikarya in this nucleus. The specificity of the probes was verified by RNA blot hybridization. These results confirm recent double-labeling immunocytochemical studies and further characterize the coexistence of CCK and TH at the level of their mRNAs as well as their post-translational products in a large population of mesencephalic dopamine neurons known to project to forebrain areas.  相似文献   

18.
The temporal course of changes in peptide expression in the dorsal root ganglia L4 and L5 and in the dorsal horn of the spinal cord has been studied in rats subjected to a sciatic nerve transection at a mid-thigh level following different survival times. Galanin-, substance P-, vasoactive intestinal polypeptide-, peptide histidine-isoleucine- and calcitonin gene-related peptide-like immunoreactivities have been studied both by immunohistochemistry and radioimmunoassay. Galanin messenger ribonucleic acid has also been studied by in situ hybridization in the dorsal root ganglia of normal and lesioned animals. In addition, a group of animals with a sciatic nerve crush was studied to compare possible differences in peptide expression after both types of lesions. The results show that the transection induces an increase in the number of cell bodies expressing galanin-like immunoreactivity in the ganglia, and that the galanin levels rise about 120-fold after three and 14 days of survival. This increase reflected increased synthesis of the peptide, since there was a rise in the galanin messenger ribonucleic acid already at 24 h post-lesion, which was maintained for at least 60 days. In the spinal cord there was an increase of staining in the midportion of the outer layers of the dorsal horn that corresponded to fibers thought to arise from cells of the dorsal root ganglia affected by the transection. Also a depletion of substance P-like and an increase in vasoactive intestinal polypeptide- and peptide histidine-isoleucine-like immunoreactivities in the dorsal root ganglia were confirmed. These changes were shown to be rapidly detectable and were paralleled by similar changes in the dorsal horn of the spinal cord. For calcitonin gene-related peptide the immunohistochemistry was inconclusive, and the radioimmunoassay showed no detectable changes. After nerve crush a transient increase in the number of galanin immunoreactive neurons was observed, as well as a decrease in the number of neurons showing substance P-like immunoreactivity. These changes were most noticeable between six and 14 days of survival. After this, peptide expression seemed to return slowly to normal, that is by day 45 post-crush only a few cells showed galanin-like, and many sensory neurons expressed substance P-like immunoreactivity. The results demonstrate that when primary sensory neurons are peripherally lesioned they respond in a complex manner, altering their normal production of peptides by increasing or decreasing their synthesis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
W Ma  M A Bisby 《Neuroscience》1999,93(1):335-348
Neuropeptide plasticity in the gracile nucleus is thought to play a role in the development of neuropathic pain following nerve injury. Two weeks after chronic constriction injury of adult rat sciatic nerve, galanin, neuropeptide Y and calcitonin gene-related peptide immunoreactivities were increased in fibers and cells in the gracile nucleus ipsilateral to injury. At the electron microscopic level, this increased neuropeptide immunoreactivity was localized in myelinated axons, boutons, dendrites, neurons and glial cells. Galanin-, neuropeptide Y- and calcitonin gene-related peptide-immunoreactive boutons were frequently presynaptic to dendrites of both immunoreactive and non-immunoreactive neurons. However, no neuropeptide Y, galanin and calcitonin gene-related peptide messenger RNA was detected in the injured side gracile nuclei by in situ hybridization. These results show that partial nerve injury to the sciatic nerve induces increases in the content of galanin, neuropeptide Y and calcitonin gene-related peptide immunoreactivities in synaptic terminals within the gracile nucleus, which suggests that there may be increased release of these neuropeptides following sensory or spontaneous stimulation of large-diameter primary afferents following partial nerve injury, perhaps one mechanism involved in neuropathic pain. We also show an apparent transfer of these neuropeptides to the cells of the gracile nucleus, both neurons and glial cells, an intriguing phenomenon of unknown functional significance.  相似文献   

20.
The immunohistochemical distribution of calcitonin gene-related peptide and somatostatin in rat lumbar spinal laminae VII-X was investigated using the peroxidase-antiperoxidase technique. Within L1,2 laminae VII and X, calcitonin gene-related peptide and somatostatin fibers demarcate the location of preganglionic sympathetic neurons in a similar fashion in either sex but somatostatin is distributed in a sexually dimorphic manner in the lumbosacral (L5-S2) spinal cord with the male rat containing more somatostatin fibers and neurons than females. Within the ventral horn (lamina IX), calcitonin gene-related peptide has a sexually dimorphic distribution. Calcitonin gene-related peptide varicose fibers are found within the sexually dimorphic male cremaster nucleus but are virtually absent in the female cremaster nucleus. Calcitonin gene-related peptide varicose fibers are nearly absent in the remainder of the male and female lamina IX: this area includes the other two known sexually dimorphic spinal motonuclei: the dorsomedial and dorsolateral nuclei. Virtually all motoneurons in the lumbosacral spinal cord which are not sexually dimorphic contain calcitonin gene-related peptide. However, calcitonin gene-related peptide containing motoneurons have a heterogeneous distribution within sexually dimorphic nuclei. Calcitonin gene-related peptide containing motoneurons within the male and female cremaster nucleus are extremely rare. Some motoneurons within the male and female dorsomedial and dorsolateral nuclei contain calcitonin gene-related peptide with the female dorsomedial and dorsolateral nuclei containing a greater percentage of calcitonin gene-related peptide-containing motoneurons (c. 50%) than males (c. 20%). Somatostatin fibers are preferentially located in sexually dimorphic nuclei of either sex and are distributed in a sexually dimorphic manner within these nuclei with males containing a greater amount of somatostatin fibers than females. The amount of somatostatin immunoreactivity is most dense in the medial aspect of the dorsolateral nucleus, dense in the dorsomedial nucleus, moderate in the cremaster nucleus, and sparse in the lateral portion of the dorsolateral nucleus. In addition, a small column of motoneurons, between the dorsomedial and dorsolateral nuclei at the L5 level, is outlined by somatostatin fibers in females but is absent in males. Somatostatin containing motoneurons were not observed within the lumbar sexually dimorphic nuclei of either sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号