首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronary atherothrombotic disease, including chronic stable angina and acute coronary syndromes (ACS), is associated with significant global burden. The acute clinical manifestations of atherothrombotic disease are mediated by occlusive arterial thrombi that impair tissue perfusion and are composed of a core of aggregated platelets, generated by platelet activation, and a superimposed fibrin mesh produced by the coagulation cascade. Long-term antithrombotic therapies, namely oral antiplatelet agents and anticoagulants, have demonstrated variable clinical effects. Aspirin and P2Y12 adenosine diphosphate (ADP) receptor antagonists have been shown to reduce the risk for thrombosis and ischaemic events by blocking the thromboxane (Tx) A2 and platelet P2Y12 activation pathways, respectively, whereas the benefits of oral anticoagulants have not been consistently documented. However, even in the presence of aspirin and a P2Y12 receptor antagonist, the risk for ischaemic events remains substantial because platelet activation continues via pathways independent of TxA2 and ADP, most notably the protease-activated receptor (PAR)-1 platelet activation pathway stimulated by thrombin. Emerging antithrombotic therapies include those targeting the platelet, such as the new P2Y12 antagonists and a novel class of oral PAR-1 antagonists, and those inhibiting the coagulation cascade, such as the new direct factor Xa antagonists, the direct thrombin inhibitors, and a novel class of factor IX inhibitors. The role of emerging antiplatelet agents and anticoagulants in the long-term management of patients with atherothrombotic disease will be determined by the balance of efficacy and safety in large ongoing clinical trials.  相似文献   

2.
Platelets possess two receptors for ADP, P2Y(1) and P2Y(12). ADP is released from platelet dense granules upon platelet activation by numerous agonists and thereby amplifies platelet responses regardless of the initial stimulus. The P2Y(1) receptor is one of many platelet receptors coupled to Gq and initiates ADP-induced activation. The P2Y(12) receptor on the other hand is linked to Gi and plays a special role in the amplification of platelet activation initiated by numerous other pathways. Platelet activation leads to a range of responses that play a critical role in arterial thrombosis and the inflammatory responses associated with this, including platelet aggregation, dense and alpha granule secretion and procoagulant activity. P2Y(12) receptor activation yields powerful amplification of these processes such that P2Y(12) receptor antagonists may have dramatic inhibitory effects on platelet function regardless of the activating stimuli. This phenomenon, coupled with the restricted distribution of the P2Y(12) receptor in humans, makes the receptor an ideal target for pharmaceutical therapy. This has already been established by the therapeutic success of clopidogrel, which acts, via an active metabolite, on this receptor. However, current therapeutic regimens of clopidogrel yield variable and incomplete P2Y(12) receptor blockade and more effective strategies to block P2Y(12) receptor activation offer the potential of greater clinical efficacy.  相似文献   

3.
Platelet activation is a complex mechanism of response to vascular injury and atherothrombotic disease, leading to thrombus formation. A wide variety of surface receptors -integrins, leucine-rich family receptors, G protein coupled receptors, tyrosine kinase receptors- and intraplatelet molecules support and regulate platelet activation. They are potential targets of antiplatelet therapy for the prevention and treatment of arterial thrombosis. Despite the overall clinical benefit of established antiplatelet drugs targeting cyclooxigenase-1 (COX-1), glycoprotein integrin αIIbβ3, and the purinergic P2Y(12) receptor of adenosine diphosphate, a significant proportion of treated patients continue to experience recurrent ischaemic events. This may be in partly attributed to insufficient inhibition of platelet activation. In addition, it should not be underestimated that these drugs are not immune from bleeding complications. The substantial progress in understating the regulation of platelet activation has played a key role in the development of novel antiplatelet agents. Current examples of drug under development and evaluation include: novel P2Y(12) receptor inhibitors (prasugrel, ticagrelor, cangrelor, and elinogrel), thrombin receptor PAR-1 antagonists (vorapaxar, atopaxar), new integrin glycoprotein IIb/IIIa inhibitors, and inhibitors targeting the thromboxane receptor (TP), phosphodiesterases, the collagen receptor glycoprotein VI, and intraplatelet signalling molecules. This review summarizes the mechanisms of action and current clinical evaluation of these novel antiplatelet agents.  相似文献   

4.
Aspirin and P2Y(12) antagonists are commonly used anti-platelet agents. Aspirin produces its effects through inhibition of thromboxane A(2) (TXA(2)) production, while P2Y(12) antagonists attenuate the secondary responses to ADP released by activated platelets. The anti-platelet effects of aspirin and a P2Y(12) antagonist are often considered to be separately additive. However, there is evidence of an overlap in effects, in that a high level of P2Y(12) receptor inhibition can blunt TXA(2) receptor signalling in platelets and reduce platelet production of TXA(2). Against this background, the addition of aspirin, particularly at higher doses, could cause significant reductions in the production of prostanoids in other tissues, e.g. prostaglandin I(2) from the blood vessel wall. This review summarizes the data from clinical studies in which dose-dependent effects of aspirin on prostanoid production have been evaluated by both plasma and urinary measures. It also addresses the biology underlying the cardiovascular effects of aspirin and its influences upon prostanoid production throughout the body. The review then considers whether, in the presence of newer, more refined P2Y(12) receptor antagonists, aspirin may offer less benefit than might have been predicted from earlier clinical trials using more variable P2Y(12) antagonists. The possibility is reflected upon, that when combined with a high level of P2Y(12) blockade the net effect of higher doses of aspirin could be removal of anti-thrombotic and vasodilating prostanoids and so a lessening of the anti-thrombotic effectiveness of the treatment.  相似文献   

5.
The Role of the Platelet in the Pathogenesis of Atherothrombosis   总被引:15,自引:0,他引:15  
Platelet adhesion, activation, and aggregation at sites of vascular endothelial disruption caused by atherosclerosis are key events in arterial thrombus formation. Platelet tethering and adhesion to the arterial wall, particularly under high shear forces, are achieved through multiple high-affinity interactions between platelet membrane receptors (integrins) and ligands within the exposed subendothelium, most notably collagen and von Willebrand factor (vWF). Platelet adhesion to collagen occurs both indirectly, via binding of the platelet glycoprotein (GP) Ib-V-IX receptor to circulating vWF, which binds to exposed collagen, and directly, via interaction with the platelet receptors GP VI and GP Ia/IIb. Platelet activation, initiated by exposed collagen and locally generated soluble platelet agonists (primarily thrombin, ADP, and thromboxane A2), provides the stimulus for the release of platelet-derived growth factors, adhesion molecules and coagulation factors, activation of adjacent platelets, and conformational changes in the platelet alpha(IIb)beta3 integrin (GP IIb/IIIa receptor). Platelet aggregation, mediated primarily by interaction between the activated platelet GP IIb/IIIa receptor and its ligands, fibrinogen and vWF, results in the formation of a platelet-rich thrombus. Currently available antiplatelet drugs (aspirin [acetylsalicylic acid], dipyridamole, clopidogrel, ticlopidine, abciximab, eptifibatide, tirofiban) act on specific targets to inhibit platelet activation and aggregation. Elucidation of the multiple mechanisms involved in platelet thrombus formation provides opportunities for selectively inhibiting the pathways most relevant to the pathophysiology of atherothrombosis.  相似文献   

6.
Thromboxane A2 (TXA2) plays a pivotal role in platelet activation and is involved in the development of thrombosis. Thromboxane synthase inhibitors suppress TXA2 formation and increase the synthesis of the antiaggregatory prostaglandins PGI2 and PGD2; however, accumulated PGH2 may interact with the platelet and vessel wall TXA2 receptor, thus reducing the antiplatelet effects of this class of drug. TXA2 receptor antagonists block the activity of both TXA2 and PGH2 on platelets and the vessel wall. Very recently, drugs possessing both thromboxane synthase-inhibitory and thromboxane receptor-antagonist properties have been developed. Paolo Gresele and colleagues explain here why these drugs can be more efficacious than traditional antiplatelet agents and review the available experimental studies involving these drugs.  相似文献   

7.
With the cloning of the P2Y12 receptor, the molecular basis for ADP-induced platelet aggregation is seemingly complete. Two platelet-bound ADP receptors, P2Y1 and P2Y12, operate through unique pathways to induce and sustain platelet aggregation via the glycoprotein (GP)IIb-IIIa integrin. P2Y1 operates via a glycoprotein q (Gq) pathway, activates phospholipase C, induces platelet shape change and is responsible for intracellular calcium mobilisation. P2Y12 inhibits adenylyl cyclase through a glycoprotein i (Gi)-dependent pathway, and is the target of the clinically used thienopyridines, ticlopidine (Ticlid, F. Hoffman-La Roche) and clopidogrel (Plavix, Bristol-Myers Squibb/Sanofi-Synthelabo). In addition, the receptor is targeted by the ADP analogue AR-C66096, which is currently in Phase IIb clinical trials, as well as other non-nucleoside-based preclinical leads.  相似文献   

8.
Platelet P2Y12 receptor inhibition plays a pivotal role in preventing thrombotic vascular events in patients with ACS and in patients undergoing percutaneous coronary intervention (PCI). Among the P2Y12 receptor inhibitors, the group of thienopyridines include ticlopidine, clopidogrel and prasugrel, all of which are orally administered prodrugs leading to irreversible P2Y12 receptor inhibition. Non-thienopyridine derivatives including ticagrelor, cangrelor and elinogrel do not require metabolic activation and lead to a reversible P2Y12 receptor inhibition in contrast to thienopyridines. The extend of platelet inhibition is subject to the administered antiplatelet agent and influenced by individual genetic and clinical factors. Insufficient platelet inhibition, termed high platelet reactivity (HPR) is associated with an increased risk for ischemic events after PCI whereas exceeding platelet inhibition results in an increased bleeding risk. Pharmacologic properties and clinical outcome data differ substantially between the existing P2Y12 receptor inhibitors. Whether individualized antiplatelet treatment incorporating different P2Y12 receptor inhibitors improves patients' clinical outcomes warrants further investigation.  相似文献   

9.
Acute coronary syndromes (ACS) remain life-threatening disorders associated with high morbidity and mortality, despite advances in treatment over the last decade. Adenosine diphosphate-induced platelet activation via P2Y(12) receptors plays a pivotal role in the pathophysiology of ACS. The current standard of treatment involves dual antiplatelet therapy with aspirin (acetylsalicylic acid) and the thienopyridine clopidogrel. Numerous studies and wide use in clinical practice have established the value of this approach in the treatment of ACS. However, clopidogrel treatment has a number of limitations, including a delayed onset of action due to the need for metabolic activation, variable and reduced antiplatelet effects in patients with certain genotypes, and prolonged recovery of platelet function due to irreversible P2Y(12) receptor binding. Prasugrel, a new thienopyridine, has demonstrated more consistent inhibition of platelet aggregation (IPA) than clopidogrel, although this thienopyridine also requires metabolic activation and treatment is associated with a significantly increased risk of life-threatening and fatal bleeding. The recently approved oral antiplatelet agent ticagrelor has the potential to overcome some of the limitations of current therapy due to its unique pharmacokinetic and pharmacodynamic profiles. It is a member of a new chemical class, the cyclopentyltriazolopyrimidines, and is a potent P2Y(12) receptor antagonist. Ticagrelor is rapidly absorbed, with a median time to maximum concentration of 1.3-2.0 hours. Ticagrelor does not require metabolic activation to an active form and binds rapidly and reversibly to the P2Y(12) receptor. As well as exerting effects via platelet P2Y(12) receptors, ticagrelor may confer additional benefits via inhibition of non-platelet P2Y(12) receptors. The pharmacokinetic profile of ticagrelor is not significantly affected by age, gender or administration with food, nor by prior treatment with, or responsiveness to, clopidogrel. Ticagrelor is primarily metabolized via the cytochrome P450 (CYP) 3A4 enzyme, rapidly produces plasma concentration-dependent IPA that is greater and more consistent than that observed with clopidogrel, and can also enhance platelet inhibition and overcome non-responsiveness in patients previously treated with clopidogrel. Importantly, the pharmacodynamic characteristics of ticagrelor are not influenced by CYP2C19 and ABCB1 genotypes. This article summarizes our current knowledge regarding the pharmacokinetic, pharmacodynamic and pharmacogenetic profile of ticagrelor.  相似文献   

10.
ADP receptors--targets for developing antithrombotic agents   总被引:6,自引:0,他引:6  
Platelet P2 receptors--P2Y1, P2Y12, and P2X1--constitute the means by which adenine nucleotides can activate platelets. Coactivation of the Galphaq-coupled P2Y1 and Galphai2-coupled P2Y12 receptors is necessary for ADP-mediated platelet activation, which forms the basis of using P2 antagonists as antithrombotic drugs. P2Y1 receptor antagonists inhibit platelet activation, while P2Y1 knockout mice show longer bleeding times than normal mice but few other problems; however, its ubiquitous expression in other tissues renders P2Y1 questionable as an antithrombotic target. The P2Y12 receptor is expressed nearly exclusively in platelets and brain, making it an attractive antithrombotic target. Antagonists for the P2Y12 receptor have been developed that either require metabolic activation to covalently inhibit P2Y12 and are irreversible, or simply are competitive in nature and thus reversible. Ticlopidine and clopidogrel are irreversible P2Y12 antagonists and have been repeatedly proven as clinical antithrombotic agents. In addition, a recently reported P2Y12 antagonist, CS-747, shows promise as a future antithrombotic drug. The AR-C series of compounds represent reversible P2Y12 antagonists and have been used extensively to characterize the function of P2Y12 in platelets. Clinical studies show that AR-C69931MX is as effective as clopidogrel; furthermore, the combination of AR-C69931MX (cangrelor) and clopidogrel confers greater antagonism of P2Y12 than either antagonist alone. The P2X1 receptor is a calcium channel that functions to potentiate agonist-induced platelet shape change, and its inhibition or loss has little if any effect on hemostasis. A combination of P2Y1 and P2Y12 antagonists may represent an additional course of antithrombotic treatment.  相似文献   

11.
Platelet purinergic receptors   总被引:13,自引:0,他引:13  
Activation of P2Y(1) and P2Y(12) receptors, through secreted ADP that is stimulated by agonists such as thrombin, thromboxane and collagen, is a major mechanism of platelet activation. P2X(1) receptors also participate in platelet shape change and potentiation of calcium mobilization. The cloning of the P2Y(12) receptor and its subsequent knockout in mice promises further understanding of its downstream signaling events.  相似文献   

12.
A new peptide (TFRRRLSRATR), derived from the c-terminal of human platelet P2Y(1) receptor, was synthesized and its biological function was evaluated. This peptide activated platelets in a concentration-dependent manner, causing shape change, aggregation, secretion and calcium mobilization. Of the several receptor antagonists tested, only BMS200261, a protease activated receptor 1 (PAR-1) specific antagonist, totally abolished the peptide-induced platelet aggregation, secretion and calcium mobilization. The TFRRR-peptide-pretreated washed platelets failed to aggregate in response to SFLLRN (10 microM) but not to AYPGKF (500 microM). In addition, in mouse platelets, peptide concentrations up to 600 microM failed to cause platelet activation, indicating that the TFRRR-peptide activated platelets through the PAR-1 receptor, rather than through the PAR-4 receptor. The shape change induced by 10 microM peptide was totally abolished by Y-27632, an inhibitor of p160(ROCK) which is a downstream mediator of G12/13 pathways. The TFRRR-peptide, YFLLRNP, and the physiological agonist thrombin selectively activated G12/13 pathways at low concentrations and began to activate both Gq and G12/13 pathways with increasing concentrations. Similar to SFLLRN, the TFRRR-peptide caused phosphorylation of Akt and Erk in a P2Y(12) receptor-dependent manner, and p-38 MAP kinase activation in a P2Y(12)-independent manner. The effects of this peptide are elicited by the first six amino acids (TFRRRL) whereas the remaining peptide (LSRATR), TFERRN, or TFEERN had no effects on platelets. We conclude that TFRRRL activates human platelets through PAR-1 receptors.  相似文献   

13.
Activated platelets stimulate thrombus formation in response to rupture of an atherosclerotic plaque or endothelial cell erosion, promoting atherothrombotic disease. Multiple pathways contribute to platelet activation. Aspirin, an irreversible inhibitor of thromboxane A2 synthesis, in combination with clopidogrel, an inhibitor of P2Y(12) adenosine diphosphate platelet receptors, represent the current standard-of-care of antiplatelet therapy for patients with acute coronary syndrome and for those undergoing percutaneous coronary intervention. Although these agents have demonstrated significant clinical benefit, the increased risk of bleeding and the recurrence of thrombotic events represent substantial limitations. Thrombin is one of the most important platelet activators. The inhibition of protease-activated receptor 1 showed a good safety profile in preclinical studies. In fact, phase II studies with vorapaxar (SCH530348) and atopaxar (E5555) showed no increase of bleeding events in addition to the current standard-of-care of antiplatelet therapy. Although the results of phase III trials for both drugs are awaited, this family is a promising new addition to the current clinical practice for patients with atherothrombotic disease, not only as an alternative, but also as additional therapy.  相似文献   

14.
ADP is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors (GPCRs), P2Y1 and P2Y12. We have shown previously that the receptors are functionally desensitized, in a homologous manner, by distinct kinase-dependent mechanisms in which P2Y1 is regulated by protein kinase C (PKC) and P2Y12 by G protein-coupled receptor kinases. In this study, we addressed whether different PKC isoforms play different roles in regulating the trafficking and activity of these two GPCRs. Expression of PKCalpha and PKCdelta dominant-negative mutants in 1321N1 cells revealed that both isoforms regulated P2Y1 receptor signaling and trafficking, although only PKCdelta was capable of regulating P2Y12, in experiments in which PKC was directly activated by the phorbol ester phorbol 12-myristate 13-acetate (PMA). These results were paralleled in human platelets, in which PMA reduced subsequent ADP-induced P2Y1 and P2Y12 receptor signaling. PKC isoform-selective inhibitors revealed that novel, but not conventional, isoforms of PKC regulate P2Y12 function, whereas both novel and classic isoforms regulate P2Y1 activity. It is also noteworthy that we studied receptor internalization in platelets by a radioligand binding approach showing that both receptors internalize rapidly in these cells. ADP-induced P2Y1 receptor internalization is attenuated by PKC inhibitors, whereas that of the P2Y12 receptor is unaffected. Both P2Y1 and P2Y12 receptors can also undergo PMA-stimulated internalization, and here again, novel but not classic PKCs regulate P2Y12, whereas both novel and classic isoforms regulate P2Y1 internalization. This study therefore is the first to reveal distinct roles for PKC isoforms in the regulation of platelet P2Y receptor function and trafficking.  相似文献   

15.
Atherothrombosis is the major cause of mortality and morbidity in Western countries. Several clinical conditions are characterized by increased incidence of cardiovascular events and enhanced thromboxane (TX)-dependent platelet activation. Enhanced TX generation may be explained by mechanisms relatively insensitive to aspirin. More potent drugs possibly overcoming aspirin efficacy may be desirable. Thromboxane synthase inhibitors (TXSI) and thromboxane receptor antagonists (TXRA) have the potential to prove more effective than aspirin due to their different mechanism of action along the pathway of TXA(2). TXSI prevent the conversion of PGH(2) to TXA(2), reducing TXA(2) synthesis mainly in platelets, whereas TXRA block the downstream consequences of TXA(2) receptors (TP) activation.TXA(2) is a potent inducer of platelet activation through its interaction with TP on platelets. TP are activated not only by TXA(2), but also by prostaglandin (PG) D(2), PGE(2), PGF(2α), PGH(2), PG endoperoxides (i.e., 20-HETE), and isoprostanes, all representing aspirin-insensitive mechanisms of TP activation. Moreover, TP are also expressed on several cell types such as macrophages or monocytes, and vascular endothelial cells, and exert antiatherosclerotic, antivasoconstrictive, and antithrombotic effects, depending on the cellular target.Thus, targeting TP receptor, a common downstream pathway for both platelet and extraplatelet TXA(2) as well as for endoperoxides and isoprostanes, may be a useful antiatherosclerotic and a more powerful antithrombotic intervention in clinical settings, such as diabetes mellitus, characterized by persistently enhanced thromboxane (TX)-dependent platelet activation through isoprostane formation and low-grade inflammation, leading to extraplatelet sources of TXA(2). Among TXRA, terutroban is an orally active drug in clinical development for use in secondary prevention of thrombotic events in cardiovascular disease. Despite great expectations on this drug supported by a large body of preclinical and clinical evidence and pathophysiological rationale, the PERFORM trial failed to demonstrate the superiority of terutroban over aspirin in secondary prevention of cerebrovascular and cardiovascular events among ~20,000 patients with stroke. However, the clinical setting and the design of the study in which the drug has been challenged may explain, at least in part, this unexpected finding.Drugs with dual action, such as dual TXS inhibitors/TP antagonist and dual COXIB/TP antagonists are currently in clinical development. The theoretical rationale for their benefit and the ongoing clinical studies are herein discussed.  相似文献   

16.
ADP is one of the most important mediators of both physiologic hemostasis and thrombosis. Development and utilization of agents that block ADP receptors on the platelet membrane, namely thienopyridines, has represented a major advancement for treatment of patients undergoing percutaneous coronary interventions and those with acute coronary syndromes. Currently, clopidogrel, a second-generation thienopyridine that inhibits the ADP P2Y(12) receptor, represents the treatment of choice, in addition to aspirin, for the prevention of stent thrombosis. Further, long-term adjunctive use of this ADP P2Y(12) receptor antagonist is also associated with improved clinical outcomes in high-risk patients, and represents the standard of care for these patients. Despite the unambiguous clinical benefit associated with clopidogrel, accumulating experience with this drug has also led to identification of some of its drawbacks, which are related to inadequate platelet inhibition with standard dosage regimens as well as to its irreversible antiplatelet effects. This has led to the questioning of currently recommended clopidogrel dosage regimens as well as to the development of novel and more potent ADP P2Y(12) receptor antagonists, some of which are also reversible agents. Numerous studies are currently ongoing with the objective of demonstrating how more potent platelet inhibition using higher loading and maintenance dose regimens of clopidogrel or novel ADP P2Y(12) receptor antagonists - such as prasugrel, ticagrelor (AZD 6140) and cangrelor - will affect clinical outcomes. This article reviews the current knowledge of platelet ADP P2Y(12) receptor antagonism and the projected developments in this field.  相似文献   

17.
Adenine nucleotides, ADP and ATP, are coreleased from dense granules during platelet activation, as well as from endothelial cells and damaged red blood cells following vascular injury. Through autocrine and paracrine mechanisms, these extracellular signaling molecules interact with the platelet P2 receptors to amplify ongoing platelet activation. Two receptors for ADP, the G(q)-protein-coupled P2Y1 and G(i)-protein-coupled P2Y12 and one receptor for ATP, the P2X1 ion channel, have been identified on platelets. Due to distinct pharmacological properties and differential regulation, the P2Y and P2X receptors essentially operate on different scales of time and distance and trigger selective intracellular signaling cascades. Recent advances in the understanding of the P2Y receptor physiology have reinforced the concept of these receptors as useful targets for antithrombotic therapy. The function of P2X1 in platelet activation only recently started to be unraveled. This review focuses on recent findings on the physiology of these platelet ADP and ATP receptors, their distinct downstream intracellular signaling pathways as well as on the available agonists, antagonists and inhibitors that allow their pharmacological discrimination.  相似文献   

18.
Patients after an acute coronary syndrome (ACS) are at increased risk of recurrent thrombotic events, justifying the search for additional antithrombotic treatments. The pathophysiology of ACS involves arterial thrombus formation, in turn occurring because of a combination of platelet activation and fibrin formation, with thrombin playing a key role in both. Antiplatelet therapy, targeting the thromboxane pathway and the ADP P2Y12 receptor has been widely accepted for secondary prevention after an ACS. Now, data from recent clinical trials in such patients also encourage the pursuit of inhibiting thrombin formation or thrombin-mediated platelet activation in addition to antiplatelet therapy. This “triple pathway inhibition”, including inhibition of thrombin activity or thrombin receptor(s), is currently an option in pure ACS, but already a must in the setting of ACS accompanied by atrial fibrillation (AF), where anticoagulants have been shown to be much more effective than antiplatelet agents in preventing stroke. We here discuss the challenges of managing combined thrombin activity or receptor inhibition and antiplatelet therapy in all such patients. Translating this into practice still requires further studies and patient tailoring to fully exploit its potential.  相似文献   

19.
P2Y receptor antagonists in thrombosis   总被引:1,自引:0,他引:1  
The dual role of P2Y1 and P2Y12 receptors in platelet aggregation by ADP has been firmly established, based on the action of selective inhibitors, gene targeting in mice and human genetic evidence. Both of these receptor subtypes constitute targets for antithrombotic agents, and compounds with a dual action might also be of interest. However, the agents currently on the market (ticlopidine and clopidogrel), or known to be in development (cangrelor, AZD-6140 and prasugrel), all target the P2Y12 receptor. The thienopyridines (ticlopidine, clopidogrel and prasugrel) irreversibly inactivate the P2Y12 receptor via the covalent binding of an active metabolite generated in the liver, while the other compounds are competitive antagonists. Cangrelor, an ATP derivative, is suitable for intravenous perfusion, whereas AZD-6140 is in clinical development as an orally active agent.  相似文献   

20.
The interaction of adenosine-5'-diphosphate (ADP) with its platelet receptors (P2Y(1) and P2Y(12)) plays a very important role in thrombogenesis. The thienopyridine ticlopidine was the first specific antagonist of the platelet P2Y(12) ADP receptor to be tested in randomized clinical trials for the prevention of arterial thrombotic events. Although ticlopidine reduces the incidence of vascular events in patients at risk, it also unfortunately has some significant drawbacks: a relatively high incidence of toxic effects, which may be fatal in some cases; delayed onset of action; and a high interindividual variability in response. A second thienopyridine, clopidogrel, has superseded ticlopidine, because it is also an efficacious antithrombotic drug and is less toxic than ticlopidine. However, clopidogrel is not completely free from faults: severe toxic effects, albeit occurring much less frequently than with ticlopidine, may still complicate its administration to patients; the onset of pharmacologic action can be accelerated by the use of large loading doses, but may still not be optimal; the high interpatient variability in response remains an important issue. These concerns justify the continued search for agents that can further improve the clinical outcome of patients with atherosclerosis through greater efficacy and/or safety. A new thienopyridyl compound, prasugrel, which is characterized by higher potency and faster onset of action compared with clopidogrel, is currently under clinical evaluation. Two direct and reversible P2Y(12) antagonists, cangrelor and AZD6140, feature very rapid onset and reversal of platelet inhibition, which make them attractive alternatives to thienopyridines, especially when rapid inhibition of platelet aggregation or its quick reversal are required. Along with new the P2Y(12) antagonists, inhibitors of the other platelet receptor for ADP, the antagonists P2Y(1), are under development and may prove to be effective antithrombotic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号