首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADPH diaphorase colocalized with nitric oxide synthase was studied in damaged protoneurons of the nodose ganglion of rabbit vagus nerve. The number and activity of nitric oxide synthase-expressing neurons increased. Nitric oxide is involved in neuron remodeling. Translated fromByulleten' Eksperimental'noi biologii i Meditsiny, Vol. 128, No. 10, pp. 463–465, October, 1999  相似文献   

2.
Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis.   总被引:16,自引:0,他引:16  
BACKGROUND. Hypertrophic pyloric stenosis is a common infantile disorder characterized by enlarged pyloric musculature and gastric-outlet obstruction. Its physiopathologic mechanism is not known, but a defect in pyloric relaxation (pylorospasm) has been postulated. Nitric oxide is a mediator of relaxation in the mammalian digestive tract, raising the possibility that pylorospasm could be caused by a defect in nitric oxide production. Since neuronal nitric oxide synthase and NADPH diaphorase are identical, we used the NADPH diaphorase histochemical reaction to study the distribution of nitric oxide synthase in pyloric tissue from patients with infantile hypertrophic pyloric stenosis. METHODS. We studied pyloric tissue from nine infants with infantile hypertrophic pyloric stenosis and seven control infants and children. Cryostat sections were processed for NADPH diaphorase histochemical analysis. A polyclonal tau antiserum was used to identify the enteric nervous system by immunohistochemical methods. RESULTS. NADPH diaphorase activity was restricted to the enteric nervous system and blood vessels. In the pyloric tissues from the control patients, intense diaphorase activity was present in the nerve fibers of the circular musculature, in the neurons and nerve bundles of the myenteric plexus, and in some nerve fibers of the longitudinal musculature. In the pyloric tissues from patients with infantile hypertrophic pyloric stenosis, the enteric nerve fibers in the hypertrophied circular musculature were enlarged and distorted and did not contain diaphorase activity, whereas the activity in the myenteric plexus and the longitudinal musculature was preserved. CONCLUSIONS. We suggest that a lack of nitric oxide synthase in pyloric tissue is responsible for pylorospasm in infantile hypertrophic pyloric stenosis.  相似文献   

3.
Zhu XJ  Hua Y  Jiang J  Zhou QG  Luo CX  Han X  Lu YM  Zhu DY 《Neuroscience》2006,141(2):827-836
Neuronal nitric oxide synthase, the major nitric oxide synthase isoform in the mammalian brain, is implicated in some developmental processes, including neuronal survival, precursor proliferation and differentiation. However, reports about the role of neuronal nitric oxide synthase in neurogenesis in the adult dentate gyrus are conflicting. Here we show that 5-bromodeoxyuridine-labeled dividing progenitor cells in the dentate gyrus were significantly increased in mice receiving 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, and in null mutant mice lacking neuronal nitric oxide synthase gene (nNOS-/-) 6 h and 4 weeks after 5-bromodeoxyuridine incorporation. The increase in 5-bromodeoxyuridine positive cells in 7-nitroindazole-treated mice was accompanied by activation of cyclic AMP response element binding protein phosphorylation in the dentate gyrus. Pretreatment with N-methyl-D-aspartate receptor antagonist MK-801 fully abolished the effects of 7-nitroindazole on neurogenesis and cyclic AMP response element binding protein phosphorylation. Furthermore, neuronal nitric oxide synthase inhibition significantly enhanced the survival of newborn cells and the number of 5-bromodeoxyuridine positive/NeuN positive cells in the dentate gyrus. These results indicate that neuronal nitric oxide synthase-derived nitric oxide suppresses neurogenesis in the adult dentate gyrus, in which N-methyl-D-aspartate receptor functions and cyclic AMP response element binding protein phosphorylation may be involved.  相似文献   

4.
Preganglionic neurons in the spinal cord of the rat were labelled retrogradely with Fluoro-gold and the spinal cord stained for NADPH diaphorase. The majority of both sympathetic and sacral parasympathetic preganglionic neurons showed staining for NADPH diaphorase. NADPH diaphorase-positive neurons were located more laterally in the intermediate zone than were preganglionic neurons lacking NADPH diaphorase staining. The recent evidence that identifies NADPH diaphorase as nitric oxide synthase raises the possibility that some spinal preganglionic neurons may synthesize nitric oxide.  相似文献   

5.
Summary Induction of an interferon-gamma-like molecule, previously isolated from neurons (N-IFN-), and of the neuronal isoform I of the synthetic enzyme of the free radical nitric oxide, nitric oxide synthase I, as well as of NADPH-diaphorase, were examined in axotomized dorsal motor vagal and hypoglossal neurons. Unilateral transection of the vagal and hypoglossal nerves was performed in the same rat and an induction of N-IFN- and nitric oxide synthase I immunostaining as well as NADPH-diaphorase histochemical positivity was observed in the ipsilateral motoneurons after 2–4 days. The immuno- and enzyme- histochemical positivities were much stronger in the dorsal motor vagal neurons than in hypoglossal neurons. Two and 4 weeks after axotomy N-IFN- immunoreactivity and NADPH-diaphorase positivity persisted in the former, but started to decrease in the latter neurons. Previous data have shown that 23 weeks after nerve transection the majority of the dorsal motor vagal neurons are lost, while the majority of the hypoglossal neurons survive. The high and persistent expression of N-IFN- and nitric oxide synthase I after axotomy in the dorsal motor vagal neurons, that are largely destined to die, indicates that the co-induction of these two molecules may be implicated in the pathogenesis of neuronal degeneration.  相似文献   

6.
Nitric oxide enhances cyclooxygenase activity in articular cartilage   总被引:6,自引:0,他引:6  
Nitric oxide (NO) is a small messenger molecule synthesized by a family of enzymes, the nitric oxide synthases. Cyclooxygenases are a group of proinflammatory enzymes that release prostaglandins including prostaglandin E2 (PGE2). Both nitric oxide synthase and cyclooxygenase are involved in the inflammatory cascade of arthritis. However, the relationship between these two enzymes and their products has not been explored in articular cartilage. Here we show that in cultured bovine chondrocytes and explants of human osteoarthritic cartilage both nitric oxide synthase and cyclooxygenase activities were induced by the inflammatory mediators, lipopolysaccharide, and interleukin-1 or tumor necrosis factor-. When nitric oxide synthase activity was inhibited, PGE2, synthesis was inhibited. NO donors also induced PGE2 synthesis and NO scavengers inhibited cyclooxygenase activity. Taken together, these results support the concept that PGE2 synthesis is directly related to NO formation and that NO may modulate cyclooxygenase activity in articular cartilage.accepted by W. B. van den BergFinalist in the 1995 Westinghouse Science Talent Search, the 1995 Otto Burgdorf Competition, and the 1995 St. Johns New York Symposium.  相似文献   

7.
The involvement of nitric oxide in neurodegenerative processes still remains incompletely characterized. Although nitric oxide has been reported to be an important mediator in neuronal degeneration in different models of cell death involving NMDA-receptor activation, increasing evidence for protective mechanisms has been obtained. In this study the role of nitric oxide was investigated in a model of NMDA-independent, delayed apoptotic cell death, induced by the neurotoxin ethylcholine aziridinium ethylcholine aziridinium both in vivo and in vitro. For the in vivo evaluation rats received bilateral intracerebroventricular injections of ethylcholine aziridinium (2nmol/ventricle) or vehicle. In the hippocampus a transient decrease in nitric oxide synthase activity occurred, reaching its lowest levels three days after ethylcholine aziridinium treatment (51.7+/-9.8% of controls). The decrease coincided with the maximal reduction in choline acetyltransferase activity as marker for the extent of cholinergic lesion. The effect of pharmacological inhibition of nitric oxide synthase was tested by application of various nitric oxide synthase inhibitors with different selectivity for the nitric oxide synthase-isoforms. Unspecific nitric oxide synthase inhibition resulted in a significant potentiation of the loss of choline acetyltransferase activity in the hippocampus measured seven days after ethylcholine aziridinium application, whereas the specific inhibition of neuronal or inducible nitric oxide synthase was ineffective. These pharmacological data are suggestive for a neuroprotective role of nitric oxide generated by endothelial nitric oxide synthase. In vitro experiments were performed using serum-free primary neuronal cell cultures from hippocampus, cortex and septum of E15-17 Wistar rat embryos. Ethylcholine aziridinium-application in a range of 5-80microM resulted in delayed apoptotic neurodegeneration with a maximum after three days as confirmed by morphological criteria, life-death assays and DNA laddering. Nitric oxide synthase activity in harvested cells decreased in a dose- and time-dependent manner. Nitric oxide production as determined by measurement of the accumulated metabolite nitrite in the medium was equally low in controls and in ethylcholine aziridinium treated cells (range 0.77-1.86microM nitrite). An expression of inducible nitric oxide synthase messenger RNA could not be detected by semiquantitative RT-PCR 13h after ethylcholine aziridinium application.The present data indicate that in a model of delayed apoptotic neurodegeneration as induced by ethylcholine aziridinium neuronal cell death in vitro and in vivo is independent of the cytotoxic potential of nitric oxide. This is confirmed by a decrease in nitric oxide synthase activity, absence of nitric oxide production and absence of inducible nitric oxide synthase expression. In contrast, evidence for a neuroprotective role of nitric oxide was obtained in vivo as indicated by the exaggeration of the cholinergic lesion after unspecific nitric oxide synthase inhibition by N-nitro-L-arginine methylester.  相似文献   

8.
We have investigated long-term synaptic depression in the CA1 region of rat hippocampal slices. Prolonged low-frequency stimulation (LFS; 900 stimuli delivered at 2 Hz) of the Schaffer collateral-commissural pathway in naïve slices did not induce long-term depression (LTD) of synaptic transmission. However, if long-term potentiation (LTP) was firstly induced in the pathway then LFS generated an LTD-like effect (i.e. depotentiation of LTP). Depotentiation could be induced 2 h (the longest time studied) after the induction of LTP and was stable for the duration of the experiment (followed for up to 40 min). The induction of depotentiation was not blocked by the N-methyl-d-aspartate receptor antagonist d-2-amino-5-phosphonopentanoate, the L-type voltage-gated Ca2+ channel blocker nimodipine or the nitric oxide synthase inhibitor N-nitro-l-arginine. However, the magnitude of depotentiation was reversibly reduced, in a stereoselective manner, by the specific metabotropic glutamate receptor (mGluR) antagonist (+)--methyl-4-carboxyphenylglycine. These results show that prolonged low frequency stimulation can result in an mGluR-dependent depotentiation of LTP.  相似文献   

9.
低氧诱导肺血管平滑肌细胞诱生型一氧化氮合酶基因表达   总被引:6,自引:1,他引:6  
本研究采用原位杂交、免疫组织化学、酶组织化学染色方法从三个层次分别证明低氧诱导大鼠肺血管中膜平滑肌细胞一氧化氮合酶(NitricOxideSynthase,NOS)的基因和蛋白表达,并使中膜平滑肌细胞具有NOS活性;离体培养的肺动脉平滑肌细胞实验也证明低氧使肺动脉平滑肌细胞NOS活性增加,NO生成增多。提示诱生型NOS基因可能是一种低氧诱导基因,低氧诱导NOS表达可能是细胞感受低氧的一种重要机制。  相似文献   

10.
There is a remarkable discrepancy between biochemical and cell morphological findings with regard to the presence of NADPH diaphorase/neuronal nitric oxide synthase (NOS) in the primate septal area. Whereas considerable concentrations of neuronal nitric oxide synthase and high enzyme activities have been measured in postmortem human septal nuclei, histochemical studies were either unable to detect any nitric oxide synthase immunoreactivity in primate septal neurons, or found only a very few nitrergic neurons in this region. This study aimed to investigate the possible presence of nitrergic neurons in human the septal region in greater detail. After having studied a total of 16 postmortem human brains we conclude that the immunohistochemical demonstration of nitric oxide synthase in human septal neurons is largely dependent on the mode of tissue handling: in brain specimens which were fixed en-bloc with paraffin and embedded in paraplast, nitric oxide synthase immunoreactivity is barely detectable, whereas a satisfying immunostaining is obtained on free-floating frozen sections after an immersion–fixation with 4% paraformaldehyde and 0.5% glutaraldehyde, followed by sucrose protection of the specimens. We show herein that there are indeed nitric oxide synthase-containing neurons in the human septum, thus supporting results from previous biochemical studies.  相似文献   

11.
The parasympathetic nervous system controls submandibular glands (SMG) functions in physiological and pathological conditions via muscarinic acetylcholine receptors (mAchR). We had previously demonstrated that IFN and carbachol stimulate amylase secretion in normal murine SMG by mAchR activation. While the cytokine action depended on nitric oxide synthase activation, the effect of the agonist was mediated by prostaglandin E2 (PGE2) production. Both IFN and carbachol triggered IFN secretion in SMG. We here show that during local acute inflammation (LAI) induced by intraglandular injection of bacterial endotoxin, lypopolisaccharide (LPS), amylase secretion is decreased in comparison to control glands. We also observed that the muscarinic agonist carbachol stimulates in a dose-dependent manner amylase activity by M2 and M3 mAchR activation. Moreover, cyclooxygenase-2 (COX-2) activation and subsequent PGE2 liberation, in a nitric oxide independent manner, seem to be involved in M3 and M2 receptor activation by carbachol. In contrast, the addition of exogenous IFN or carbachol inhibits the cytokine liberation in LAI glands.  相似文献   

12.
Inhibitory innervation of urethral smooth muscle is mediated partly through release of NO. We investigated the mechanisms involved in the supply of the substrate l-arginine to NO synthase by examining the relaxant response of the muscle to electrical field stimulation (EFS) and the effects of addition of amino acids to the bathing medium. Relaxant responses persisted during hours of repetitive stimulation but were enhanced rapidly by addition of l-arginine (the arginine paradox). Addition of l-lysine (competes with l-arginine for transport on the y+ carrier) and l-glutamine (competing on the y+L carrier) attenuated the enhancement. Enhancement persisted after washing but was reversed by application of l-lysine, suggesting that exogenous l-arginine fills an intracellular pool and that l-lysine can trans-stimulate its efflux from the pool. After prolonged depolarization in high-K+, Na+-free solution the relaxant response became purely nitrergic. Addition of l-arginine during the exposure continued to enhance the subsequent responses but l-glutamine added with l-arginine, could no longer reduce this enhancement. The results show the arginine paradox in inhibitory nerves and suggest the involvement of y+ and y+L carriers in the transport of l-arginine.  相似文献   

13.
Role of nitric oxide in anaphylactic shock   总被引:2,自引:0,他引:2  
Nitric oxide, synthesized from the guanidino group ofl-arginine by nitric oxide synthase, has an important role in pathophysiological changes associated with anaphylaxis. Nitric oxide production due to activation of constitutive nitric oxide synthase is detected using a nitric oxide-selective electrode in anaphylactic rabbitsin vivo. A nitric oxide synthase inhibitor attenuates hypotension and hemoconcentration and decreases venous return but does not improve cardiac depression. Nitric oxide functionally antagonizes the effects of vasoconstrictors released by anaphylaxisin vitro. In animals pretreated with a nitric oxide synthase inhibitor, the cardiac output falls significantly, although venous return is increased. Pulmonary resistance is significantly increased with a nitric oxide synthase inhibitor, andl-arginine attenuates the bronchospasm. These findings suggest that production of nitric oxide may reduce the pathophysiologic changes, except for vasodilatation, associated with anaphylaxis.  相似文献   

14.
Experiments were carried out in urethane-anaesthetized rats to examine the effect of nitric oxide (NO) on neuronal activity within the dorsolateral sector of the midbrain periaqueductal grey matter (PAG), an area which is rich in NO synthesizing neurones. NADPH dependent diaphorase histochemistry revealed small NO synthase containing perikarya, 15.4±3.1 m (mean±SEM) in diameter, in a longitudinal column in the dorsolateral sector of the PAG. The labelled cell bodies were surrounded by a dense meshwork of stained fibres and processes in which unlabelled neurones were embedded. In order to establish whether NO was generated when NO donors were ejected iontophoretically from micropipettes, a chemiluminescence method was used to estimate the output of NO in vitro after iontophoresis of two chemically different classes of NO donor: the sydnonimine 3 morpholino sydnonimin hydrochloride (SIN 1) and the nitrosothiol S nitroso glutathione (SNOG). Iontophoresis of both NO donors into 200 l aliquots of 165 mM NaCl using ejection currents between 6000 and 18000 nA·min produced a current related increase in the concentration of NO. Iontophoresis of SIN 1 in vivo produced a reproducible, current related inhibition of firing in 40 of 59 neurones in the dorsolateral PAG. In 8 of 10 neurones the effect of SIN 1 was significantly reduced after iontophoresis of methylene blue (10–30 nA for 2.7–5 min). The inhibition took up to 7 min to develop and lasted for up to 13 min. Inhibitory responses to GABA were not affected by methylene blue. Iontophoresis of SNOG also inhibited ongoing activity of 18 of 24 neurones tested in the PAG. The experiments demonstrate firstly that NO donors can be used in vivo to deliver NO in the vicinity of neurones by iontophoresis from micropipettes. Secondly, NO appears to inhibit neuronal activity within the PAG.  相似文献   

15.
The spatial distribution of stimulus-evoked excitation in the mouse neostriatum was investigated in vitro by using voltage-sensitive dyes and an optical multi-site recording system (laser scanning microscopy). The scanning area (880×830 m) was positioned in the center of coronal neostriatal slices and records were taken simultaneously from up to 20 detection sites. Stimulus-induced optical signals were blocked by tetrodotoxin (TTX) and disappeared following removal of Ca2+ from the extracellular medium. Furthermore, these responses were inhibited by the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) indicating that the evoked signals reflected mainly glutamatergic synaptic activity. Electrical stimulation at defined positions elicited characteristic spatial patterns of activity within the neostriatum. Stimulation of the medial subcortical white matter or stimulation at the dorsomedial corner or at the midpoint of the scanning area evoked synaptic activity at all recording sites. However, the largest response amplitudes were invariably observed in the ventrolateral part of the scanning area. In contrast, stimulation at the dorsolateral, ventrolateral or at the ventromedial corner induced synaptic reponses which remained restricted to a relatively small area in close vicinity to the site of stimulation. The GABAA receptor antagonist bicuculline did not influence the pattern of activity distribution. However, in the presence of bicuculline, a N-methyl-d-aspartate (NMDA) receptor-mediated delayed signal component was observed which again was most pronounced in the ventrolateral part of the scanning area. These results, obtained in an in vitro slice preparation, demonstrate that spatially defined afferent activation of neostriatal neuronal circuits leads to a characteristic pattern of activity distribution within the neostriatum. Thus, our data complement observations from morphological investigations as well as from electrophysiological studies in vivo that suggest a functional compartmentalization of this brain area.  相似文献   

16.
We presently investigated the time-course of neuronal nitric oxide synthase and inducible nitric oxide synthase expression and content in the rat striatum up to 6 days after ischemia induced by transient middle cerebral artery occlusion, a condition that potentially allows functional recovery, with the aim to identify the cell types expressing these two enzymes and to correlate neuronal nitric oxide synthase and inducible nitric oxide synthase changes in order to verify whether and how these changes are related to tissue damage, motor-sensory performances and survival. Before and after surgery, the animals underwent neurological evaluation. The results demonstrated that the rats with a score > or = 12 at the neurological evaluation 24 h after ischemia showed a significant increase in neuronal nitric oxide synthase-immunoreactive neurones and absence of inducible nitric oxide synthase-immunoreactive cells and survived up to the sixth day; conversely, the rats with a score < 12 at the neurological evaluation 24 h after ischemia showed a progressive significant decrease in neuronal nitric oxide synthase-immunoreactive neurones and appearance of inducible nitric oxide synthase-immunoreactive cells and none of the rats survived up to the sixth day. Microglia cells were activated in both groups but only in the latter did these cells express inducible nitric oxide synthase. Measurement of the infarct area demonstrated that it occupied a similar territory in both groups of rats but in those with a score < 12 the edema was more extended. In conclusion, we demonstrated that a neurotoxic insult such as ischemia can induce neuronal nitric oxide synthase expression in the neurones and that when neuronal nitric oxide synthase-immunoreactive neurones increase in number, microglia activation is less extended, inducible nitric oxide synthase-immunoreactive cells are absent, tissue damage reduced and the rats survive longer. Conversely, when there is a significant decrease of neuronal nitric oxide synthase-immunoreactive neurones, microglia cells are intensely activated, inducible nitric oxide synthase-immunoreactive cells appear and the animal survival is shortened.  相似文献   

17.
Summary This is the first report on the ultra structural distribution of nicotinamide adenine dinucleotide phosphate-diaphorase activity and neuronal isoform (Type I) of nitric oxide synthase immunoreactivity in perivascular nerves (axons) and vascular endothelial cells. In the Sprague-Dawley rat cerebral basilar artery, positive labelling for nicotinamide adenine dinucleotide phosphate-diaphorase and nitric oxide synthase was localized in axons and the endothelium. Over half ( 53%) of the axon profiles examined were positive for nicotinamide adenine dinucleotide phosphate-diaphorase. Labelling of nicotinamide adenine dinucleotide phosphate-diaphorase activity in the axons and endothelial cells was mostly distributed in patches within the cytoplasm. In endothelial cells, a relation between the nicotinamide adenine dinucleotide phosphate-diaphorase-labelling and cytoplasmic vesicle-like structures was seen. In both axons and the endothelium, nitric oxide synthase immunoreactivity was seen throughout the cell cytoplasm and in association with the membranes of mitochondria, endoplasmic reticulum and cytoplasmic/synaptic vesicles (the lumen/content of the vesicles was negative for nitric oxide synthase). Also, microtubules were labelled in nitric oxide synthase positive axon profiles. The nitric oxide synthase-positive axon varicosities were characterized by the presence of spherical agranular vesicles with a diameter of 40–50 nm. Approximately 30% of the axon profiles examined were positive for nitric oxide synthase. The nicotinamide adenine dinucleotide phosphate-diaphorase-positive endothelial cells (approximately 20% of all observed endothelial cell profiles) were more frequently seen than those positive for nitric oxide synthase (approximately 7%). It is suggested that nitric oxide released from both perivascular nerves and endothelial cells may be involved in vasomotor control of cerebral circulation.  相似文献   

18.
NADPH diaphorase histochemical protocols were optimized for the histochemical labeling of olfactory receptor neurons (ORNs) in the nasal cavity and their axon terminals in glomeruli of the main olfactory bulb (MOB) in the Syrian hamster. This labeling was then used to map and quantify the spatial distribution of ORNs and their central projections. Diaphorase-positive ORNs were found to be rhinotopically restricted to dorsal–medially situated segments of sensory mucosa associated with central air channels in the nose, together constituting about 25% of the total receptor sheet. This topography closely resembles the zonal expression patterns of putative odorant receptor genes and cell surface glycoconjugates in the nose. Moreover, the projections of ORNs in the diaphorase-positive dorsal/central zone were found to expand onto the entire dorsal half of the MOB, consistent with spatial patterns discerned in retrograde tract-tracing studies. These boundaries indicate that dorsal/central zone ORNs project to a disproportionately larger region of the MOB than do those in the more ventral/peripheral zones. The demonstration of NADPH diaphorase activity in ORNs is inconsistent with the expression of the best-known NADPH-dependent enzymes, such as nitric oxide synthase (neuronal and endothelial isoforms) and NADPH cytochrome P450 oxidoreductase. Understanding the spatial patterning of histochemical labeling in ORNs should facilitate the biochemical identification of this diaphorase.  相似文献   

19.
The study was aimed at investigating the expression and the activity of neuronal nitric oxide synthase, and of soluble guanylyl cyclase and phosphodiesterase activities that regulate guanosine 3',5'-cyclic monophosphate level in the midbrain, in a mouse model of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injections. Adult male mice of the C57/BL strain were given three i.p. injections of physiological saline or three i.p. injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine solution in physiological saline at 2 h intervals (summary 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine dose: 40 mg/kg), and were killed 3, 7, or 14 days later. mRNA, protein level, and/or activities of neuronal nitric oxide synthase, soluble guanylyl cyclase, phosphodiesterase and guanosine 3',5'-cyclic monophosphate were determined. Immunohistochemistry showed about 75% decrease in the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine showed increased midbrain guanylyl cyclase and total nitric oxide synthase activities at 3, 7, and 14 days post-treatment. The specific neuronal nitric oxide synthase inhibitor 7-nitroindazole (10 microM) and the specific inducible nitric oxide synthase inhibitor 1400W (10 microM) inhibited the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced excess in nitric oxide synthase activity by 63-70 and 13-25%, respectively. The increases in total midbrain nitric oxide synthase activity were accompanied by elevated guanosine 3',5'-cyclic monophosphate, enhanced expression of neuronal nitric oxide synthase and of the beta1 subunit of guanylyl cyclase at both mRNA and protein levels that persisted up to the end of the observation period, and by enhanced neuronal nitric oxide synthase and guanylyl cyclase beta1 immunoreactivities in substantia nigra pars compacta 7 and 14 days after the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. The increases in guanylyl cyclase activity were found to occur exclusively due to increased maximal enzyme activity. No 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced change in phosphodiesterase activity has been detected in any brain region studied. 7-Nitroindazole prevented a significant increase in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced midbrain guanosine 3',5'-cyclic monophosphate level and neurodegeneration of dopaminergic neurons. These results raise the possibility that the nitric oxide/guanylyl cyclase/guanosine 3',5'-cyclic monophosphate signaling pathway may play a role in maintaining dopaminergic neurons function in substantia nigra pars compacta.  相似文献   

20.
The semi-essential amino acid, l-arginine (l-Arg), is the substrate for endogenous synthesis of nitric oxide, a molecule that is involved in myoblast proliferation and fusion. Since l-Arg supply may limit nitric oxide synthase (NOS) activity in endothelial cells, we examined l-Arg supplementation in differentiating mouse myoblasts and tested the hypothesis that l-Arg exerts direct effects on myoblast fusion via augmentation of endogenous nitric oxide production. C2C12 myoblasts in differentiation media received one of␣the␣following treatments for 120 h: 1 mM l-Arg, 0.1 mM N-nitro-l-arginine methyl ester (l-NAME), l-Arg + l-NAME, 10 mM l-Lysine, or no supplement (Control). Cultures were fixed and stained with hematoxylin and eosin for microphotometric image analysis of myotube density, nuclear density, and fusion index (% of total nuclei in myotubes). Endogenous production of nitric oxide during the treatment period peaked between 24 and 48 h. l-Arg amplified nitric oxide production between 0 and 24 h and increased myotube density, total nuclei number, and nuclear fusion index. These l-Arg effects were prevented by the NOS inhibitor, l-NAME. Further, l-Lysine, a competitive inhibitor of l-Arg uptake, repressed nitric oxide production and reduced myotube density and fusion index. In summary, l-Arg augments myotube formation and increases nitric oxide production in a process limited by cellular l-Arg uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号