首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Prenatal and early-life environmental tobacco smoke (ETS) exposure can induce epigenetic alterations associated with inflammation and respiratory disease. The objective of this study was to address the long-term epigenetic consequences of perinatal ETS exposure on latent respiratory disease risk, which are still largely unknown. C57BL/6 mice were exposed to prenatal and early-life ETS; offspring lung pathology, global DNA, and gene-specific methylation were measured at two adult ages. Significant alterations in global DNA methylation and promoter methylation of IFN-γ and Thy-1 were found in ETS-exposed offspring at 10–12 and 20?weeks of age. These sustained epigenetic alterations preceded the onset of significant pulmonary pathologies observed at 20?weeks of age. This study suggests that perinatal ETS exposure induces persistent epigenetic alterations in global DNA, as well as IFN-γ and Thy-1 promoter methylation that precede the adult onset of fibrotic lung pathology. These epigenetic findings could represent potential biomarkers of latent respiratory disease risk.  相似文献   

2.
The persistence of the addiction phenotype in methamphetamine use disorder (MUD) suggests the potential presence of epigenetic changes and potential structural adaptations that may drive the manifestations of MUD in humans. In the present review, we discuss the evidence that documents the fact that methamphetamine exposure can cause changes in epigenetic modifications, including histone acetylation and methylation, as well as DNA methylation and hydroxymethylation in a complex manner that need to be fully dissected. Nevertheless, our work has demonstrated the existence of correlations between behavioral changes and epigenetic alterations during methamphetamine self-administration. We found that prolonged methamphetamine self-administration and contingent footshocks resulted in rats with compulsive drug-taking and abstinent phenotypes. In addition, rats that reduce their methamphetamine intake in the presence of punishment showed increased DNA hydroxymethylation in genes encoding potassium channels in their nucleus accumbens. Moreover, altered DNA hydroxymethylation in those genes led to an increase in their mRNA expression. Additional studies revealed decreased mRNA expression of histone deacetylases associated with increased histone acetylation and induced gene expression in the dorsal striatum. These changes were associated with a reduction in methamphetamine intake in response to contingent footshocks. More research is necessary in order to further dissect how pharmacological or genetic manipulations of identified epigenetic alterations and expression of potassium channels can impact methamphetamine-taking behaviors or relapse to methamphetamine-taking after long periods of abstinence. Investigations that use discovery approaches, such as whole-genome sequencing after chromatin immunoprecipitation, should accelerate our efforts to develop epigenetic therapeutic approaches against MUD.  相似文献   

3.
Ozone is a ubiquitous air pollutant that can cause acute pulmonary inflammation and cell injury and may contribute to the exacerbation of chronic pulmonary diseases. The molecular mechanisms of ozone-induced cell injury, as well as protective mechanisms against ozone-injury, are not well understood. Since ozone is a reactive oxidant, and heme oxygenase-1 (HO-1) is an antioxidant enzyme induced by many oxidative stimuli, we hypothesized that HO-1 is one of the protective mechanisms against ozone-induced cell injury, as well as pulmonary inflammation. In the current study, C57Bl/6 mice were pretreated with a low level of endotoxin (lipopolysaccharide, LPS) (0.5 mg/kg) to induce HO-1, and 16 h later were exposed to 1 ppm ozone for 3 h. Endotoxin pretreatment caused a significant protection against ozone-induced pulmonary inflammation and cell injury in bronchoalveolar lavage (BAL) cells. The protection by endotoxin pretreatment against ozone-induced inflammation and necrosis in BAL cells was abolished by the cotreatment with a heme oxygenase inhibitor, tin protoporphyrin IX dichloride (SnPP), suggesting that HO-1 is responsible for the protection against ozone-induced pulmonary inflammation and BAL cell necrosis. Therefore, since HO-1 is induced following ozone exposure, HO-1 may contribute to the development of cellular adaptation to chronic ozone exposure.  相似文献   

4.
d-Limonene is an unsaturated volatile organic chemical found in cleaning products, air fresheners and soaps. It is oxidized by ozone to secondary organic aerosols consisting of aldehydes, acids, oxidants and fine and ultra fine particles. The lung irritant effects of these limonene ozone reaction products (LOP) were investigated. Female F344 rats (2- and 18-month-old) were exposed for 3 h to air or LOP formed by reacting 6 ppm d-limonene and 0.8 ppm ozone. BAL fluid, lung tissue and cells were analyzed 0 h and 20 h later. Inhalation of LOP increased TNF-alpha, cyclooxygenase-2, and superoxide dismutase in alveolar macrophages (AM) and Type II cells. Responses of older animals were attenuated when compared to younger animals. LOP also decreased p38 MAP kinase in AM from both younger and older animals. In contrast, while LOP increased p44/42 MAP kinase in AM from younger rats, expression decreased in AM and Type II cells from older animals. NF-kappaB and C/EBP activity also increased in AM from younger animals following LOP exposure but decreased or was unaffected in Type II cells. Whereas in younger animals LOP caused endothelial cell hypertrophy, perivascular and pleural edema and thickening of alveolar septal walls, in lungs from older animals, patchy accumulation of fluid within septal walls in alveolar sacs and subtle pleural edema were noted. LOP are pulmonary irritants inducing distinct inflammatory responses in younger and older animals. This may contribute to the differential sensitivity of these populations to pulmonary irritants.  相似文献   

5.
Ozone is a ubiquitous air pollutant that can cause acute pulmonary inflammation and cell injury and may contribute to the exacerbation of chronic pulmonary diseases. The molecular mechanisms of ozone-induced cell injury, as well as protective mechanisms against ozone-injury, are not well understood. Since ozone is a reactive oxidant, and heme oxygenase-1 (HO-1) is an antioxidant enzyme induced by many oxidative stimuli, we hypothesized that HO-1 is one of the protective mechanisms against ozoneinduced cell injury, as well as pulmonary inflammation. In the current study, C57Bl/6 mice were pretreated with a low level of endotoxin (lipopolysaccharide, LPS) (0.5 mg/kg) to induce HO-1, and 16 h later were exposed to 1 ppm ozone for 3 h. Endotoxin pretreatment caused a significant protection against ozone-induced pulmonary inflammation and cell injury in bronchoalveolar lavage (BAL) cells. The protection by endotoxin pretreatment against ozone-induced inflammation and necrosis in BAL cells was abolished by the cotreatment with a heme oxygenase inhibitor, tin protoporphyrin IX dichloride (SnPP), suggesting that HO-1 is responsible for the protection against ozone-induced pulmonary inflammation and BAL cell necrosis. Therefore, since HO-1 is induced following ozone exposure, HO-1 may contribute to the development of cellular adaptation to chronic ozone exposure.  相似文献   

6.
Periodontitis is a common chronic inflammatory condition that results in increased levels of inflammatory cytokines and inflammatory mediators. In addition to oral disease and tooth loss, it also causes low-grade systemic inflammation that contributes to development of systemic conditions including cardiovascular disease, pre-term birth, diabetes and cancer. Chronic inflammation is associated with epigenetic change, and it has been suggested that such changes can alter cell phenotypes in ways that contribute to both ongoing inflammation and development of associated pathologies. Here we show that exposure of human gingival fibroblasts to IL-1β increases expression of maintenance methyltransferase DNMT1 but decreases expression of de novo methyltransferase DNMT3a and the demethylating enzyme TET1, while exposure to PGE2 decreases expression of all three enzymes. IL-1β and PGE2 both affect global levels of DNA methylation and hydroxymethylation, as well as methylation of some specific CpG in inflammation-associated genes. The effects of IL-1β are independent of its ability to induce production of PGE2, and the effects of PGE2 on DNMT3a expression are mediated by the EP4 receptor. The finding that exposure of fibroblasts to IL-1β and PGE2 can result in altered expression of DNA methylating/demethylating enzymes and in changing patterns of DNA methylation suggests a mechanism through which inflammatory mediators might contribute to the increased risk of carcinogenesis associated with inflammation.  相似文献   

7.
8.
9.
10.
Epidemiological studies have observed statistical associations between short-term exposure to increased ambient particulate air pollution and increased hospital admissions, medication use, pulmonary morbidity, and mortality. To examine the effects of particle air pollution in animals, rats with a preexisting pulmonary inflammation (induced by 1600 microg/m(3) ozone) or hypertension (induced by monocrotaline, MCT) were nose-only exposed to concentrated freshly generated diesel exhaust particles (DEP) mixed with ambient air (CDP). It was hypothesized that a single 6-h exposure to PM exacerbates respiratory inflammatory processes, which affects health parameters in the blood. Histopathology of lung and nose, bronchiolar lavage (BAL), and blood analyses were performed at 1, 2, and 4 days after of the CDP exposure. Morphometry of BrdU-labeled cells in lung and nose was performed at 4 days postexposure. One day after ozone exposure, a mild inflammatory reaction in the centriacinar area was present, consisting of an increase in cellularity of septa and in the number of alveolar macrophages, decreasing in time. Additional CDP exposure did not influence this pattern, except for alveolar macrophages that were loaded with CDP. The only effect seen in the nose after ozone exposure was a slight hypertrophy of the septal mucous cells. Additional exposure to CDP did not change this appearance. MCT-treated rats showed hypertrophy of the media of the pulmonary muscular arteries that was not effected by CDP. BrdU labeling of predominantly Clara cells in the terminal bronchioles was significantly increased after ozone exposure as well as after MCT treatment, whereas this labeling index was markedly enhanced after an additional exposure to CDP. However, no increases in Clara cell protein (CC16) levels were measured of Clara cell protein (CC16) in either BAL or blood. BrdU labeling in the nasal epithelium was not influenced by exposure to ozone or ozone + CDP. CDP exposures did not induce significant toxic effects in the lungs. CDP exposures clearly induced an oxidative stress that was indicated by increasing glutathione levels in BAL with time. In addition, blood fibrinogen levels were enhanced in pulmonary hypertensive rats exposed to CDP. The present study demonstrates that very high CDP concentrations are needed to result in pulmonary changes in animal models with a preexisting pulmonary inflammation or hypertension that continue for days after a single exposure. In addition, CDP has the potential to induce changes in blood. It has not yet been determined how the effects seen with CDP would compare to similar levels of ambient particles.  相似文献   

11.
Epidemiological studies have observed statistical associations between short-term exposure to increased ambient particulate air pollution and increased hospital admissions, medication use, pulmonary morbidity, and mortality. To examine the effects of particle air pollution in animals, rats with a preexisting pulmonary inflammation (induced by 1600 µg/m 3 ozone) or hypertension (induced by monocrotaline, MCT) were nose-only exposed to concentrated freshly generated diesel exhaust particles (DEP) mixed with ambient air (CDP). It was hypothesized that a single 6-h exposure to PM exacerbates respiratory inflammatory processes, which affects health parameters in the blood. Histopathology of lung and nose, bronchiolar lavage (BAL), and blood analyses were performed at 1, 2, and 4 days after of the CDP exposure. Morphometry of BrdU-labeled cells in lung and nose was performed at 4 days postexposure. One day after ozone exposure, a mild inflammatory reaction in the centriacinar area was present, consisting of an increase in cellularity of septa and in the number of alveolar macrophages, decreasing in time. Additional CDP exposure did not influence this pattern, except for alveolar macrophages that were loaded with CDP. The only effect seen in the nose after ozone exposure was a slight hypertrophy of the septal mucous cells. Additional exposure to CDP did not change this appearance. MCT-treated rats showed hypertrophy of the media of the pulmonary muscular arteries that was not effected by CDP. BrdU labeling of predominantly Clara cells in the terminal bronchioles was significantly increased after ozone exposure as well as after MCT treatment, whereas this labeling index was markedly enhanced after an additional exposure to CDP. However, no increases in Clara cell protein (CC16) levels were measured of Clara cell protein (CC16) in either BAL or blood. BrdU labeling in the nasal epithelium was not influenced by exposure to ozone or ozone + CDP. CDP exposures did not induce significant toxic effects in the lungs. CDP exposures clearly induced an oxidative stress that was indicated by increasing glutathione levels in BAL with time. In addition, blood fibrinogen levels were enhanced in pulmonary hypertensive rats exposed to CDP. The present study demonstrates that very high CDP concentrations are needed to result in pulmonary changes in animal models with a preexisting pulmonary inflammation or hypertension that continue for days after a single exposure. In addition, CDP has the potential to induce changes in blood. It has not yet been determined how the effects seen with CDP would compare to similar levels of ambient particles.  相似文献   

12.
This study was designed to examine the role of the cytokine interleukin-6 (IL-6) in environmental air pollutant-induced pulmonary inflammation, injury, and repair. IL-6 knockout (KO) mice and wild-type (WT) mice were exposed to filtered air; aged and diluted cigarette smoke (ADSS), a surrogate for environmental tobacco smoke; ozone; or ADSS followed by ozone (ADSS/ozone). The proportion of monocytes and neutrophils recovered by bronchoalveolar lavage (BAL) as well as the level of total protein in BAL fluid were significantly increased in both IL-6 KO and WT mice following exposure to ozone or to ADSS/ozone. However, bromodeoxyuridine (BrdU) labeling within terminal bronchiolar epithelium and proximal alveolar regions in IL-6 KO mice exposed to ozone or to ADSS/ozone was significantly reduced compared with IL-6 sufficient mice (WT). WT mice treated with IL-6 antibodies also demonstrated a reduction in BrdU cell labeling similar to that observed in IL-6 KO mice following exposure to ozone or ADSS/ozone. Clara cell secretory protein (CCSP) abundance, a marker of Clara cell maturation and function, was markedly reduced in the terminal bronchiolar epithelium of WT mice following exposure to ADSS and/or ozone, whereas CCSP abundance was unchanged in IL-6 KO mice. We conclude that endogenous IL-6 in mice plays a critical role in the progress of lung inflammation/injury, but CCSP may also play a role to protect the lungs of mice exposed to toxic air pollutants. Data from this study further suggest that IL-6 antibody treatment modalities may be a means to attenuate pulmonary inflammation and injury.  相似文献   

13.
14.
Evidence continues to grow on potential environmental health hazards associated with engineered nanomaterials (ENMs). While the geno- and cytotoxic effects of ENMs have been investigated, their potential to target the epigenome remains largely unknown. The aim of this study is two-fold: 1) determining whether or not industry relevant ENMs can affect the epigenome in vivo and 2) validating a recently developed in vitro epigenetic screening platform for inhaled ENMs. Laser printer-emitted engineered nanoparticles (PEPs) released from nano-enabled toners during consumer use and copper oxide (CuO) were chosen since these particles induced significant epigenetic changes in a recent in vitro companion study. In this study, the epigenetic alterations in lung tissue, alveolar macrophages and peripheral blood from intratracheally instilled mice were evaluated. The methylation of global DNA and transposable elements (TEs), the expression of the DNA methylation machinery and TEs, in addition to general toxicological effects in the lung were assessed. CuO exhibited higher cell-damaging potential to the lung, while PEPs showed a greater ability to target the epigenome. Alterations in the methylation status of global DNA and TEs, and expression of TEs and DNA machinery in mouse lung were observed after exposure to CuO and PEPs. Additionally, epigenetic changes were detected in the peripheral blood after PEPs exposure. Altogether, CuO and PEPs can induce epigenetic alterations in a mouse experimental model, which in turn confirms that the recently developed in vitro epigenetic platform using macrophage and epithelial cell lines can be successfully utilized in the epigenetic screening of ENMs.  相似文献   

15.
Parental care influences development across mammals. In humans such influences include effects on phenotypes, such as stress reactivity, which determine individual differences in the vulnerability for affective disorders. Thus, the adult offspring of rat mothers that show an increased frequency of pup licking/grooming (ie, high LG mothers) show increased hippocampal glucocorticoid receptor (GR) expression and more modest hypothalamic–pituitary–adrenal responses to stress compared with the offspring of low LG mothers. In humans, childhood maltreatment associates decreased hippocampal GR expression and increased stress responses in adulthood. We review the evidence suggesting that such effects are mediated by epigenetic mechanisms, including DNA methylation and hydroxymethylation across GR promoter regions. We also present new findings revealing associated histone post-translational modifications of a critical GR promoter in rat hippocampus. Taken together these existing evidences are consistent with the idea that parental influences establish stable phenotypic variation in the offspring through effects on intracellular signaling pathways that regulate the epigenetic state and function of specific regions of the genome.  相似文献   

16.
Alcohol dependence is a common public health problem and epigenetics may offer new aspects in understanding the biological and genetic underpinnings and improve treatment of this complex disease. Supposedly, methylation and hydroxymethylation are altered in brain tissues and in synapse-related genes due to chronic alcohol intake and during withdrawal. To assess potential epigenetic changes after cessation of chronic alcohol intake, we compared 23 alcohol-dependent individuals during inpatient alcohol detoxification with 13 carefully matched controls. Blood samples were taken on the day of admission, after one and after two weeks at the end of inpatient treatment. Genome-wide global methylation and global DNA hydroxymethylation were compared across groups. There were significant differences in global methylation across time from admission to one and two weeks of inpatient withdrawal (p < 0.001). These findings were paralleled to changes in global DNA hydroxymethylation across time when age was employed as a cofactor (p < 0.001). Several potentially influencing variables like severity of withdrawal, dose of withdrawal medication and alcohol intake before admission did not yield significant influence on epigenetic changes. The results confirm previous findings of significant alterations of epigenetic patterns during alcohol intoxication and present for the first time hydroxymethylation changes in these individuals.  相似文献   

17.
Ozone is the most toxic component of photochemical oxidant air pollution. Exposure to high concentrations of ozone produces a variety of toxic effects in the lung, but it is not known to what extent prolonged exposure to low concentrations of ozone may contribute to the development of chronic lung disease. Phospholipids, important components of cellular membranes and surfactant, are necessary for the maintenance of normal lung structure and function. In order to test the effects of chronic exposure to environmentally relevant concentrations of ozone on phospholipid metabolism in the lung, rats were exposed to clean air or to 0.12, 0.25 or 0.50 ppm ozone for up to 18 months. The content and biosynthesis of phospholipids in both lung tissue and bronchopulmonary lavage fluid (surfactant) were measured. Incorporation of [14C]acetate into lung tissue phospholipids, an estimate of overall biosynthesis, decreased significantly at some time points in the study, while tissue phospholipid content tended to increase with both ozone concentration and with age. No changes were detected in phospholipid content of bronchopulmonary lavage fluid. These findings did not support the hypothesis that prolonged exposure of rats to environmentally relevant concentrations of ozone results in either qualitative or quantitative deficits in the pulmonary surfactant system.  相似文献   

18.
Pulmonary hypertension is a fatal disease characterized by a progressive increase in pulmonary artery pressure accompanied by pulmonary vascular remodeling and increased vasomotor tone. Although some biological pathways have been identified in neonatal hypoxia-induced pulmonary hypertension (PH), little is known regarding the role of growth factors in the pathogenesis of PH in neonates. In this study, using a model of hypoxia-induced PH in neonatal mice, we demonstrate that the growth factor insulin-like growth factor-1 (IGF-1), a potent activator of the AKT signaling pathway, is involved in neonatal PH. After exposure to hypoxia, IGF-1 signaling is activated in pulmonary endothelial and smooth muscle cells in vitro, and the IGF-1 downstream signal pAKTS473 is upregulated in lungs of neonatal mice. We found that IGF-1 regulates ET-1 expression in pulmonary endothelial cells and that IGF-1 expression is regulated by histone deacetylases (HDACs). In addition, there is a differential cytosine methylation site in the IGF-1 promoter region in response to neonatal hypoxia. Moreover, inhibition of HDACs with apicidin decreases neonatal hypoxia-induced global DNA methylation levels in lungs and specific cytosine methylation levels around the pulmonary IGF-1 promoter region. Finally, HDAC inhibition with apicidin reduces chronic hypoxia-induced activation of IGF-1/pAKT signaling in lungs and attenuates right ventricular hypertrophy and pulmonary vascular remodeling. Taken together, we conclude that IGF-1, which is epigenetically regulated, is involved in the pathogenesis of pulmonary hypertension in neonatal mice. This study implicates a novel HDAC/IGF-1 epigenetic pathway in the regulation of hypoxia-induced PH and warrants further study of the role of IGF-1 in neonatal pulmonary hypertensive disease.  相似文献   

19.
Inorganic arsenic is methylated in the body by arsenic (III) methyltransferase (AS3MT). Arsenic methylation is thought to play a role in arsenic-related epigenetic phenomena, including aberrant DNA and histone methylation. However, it is unclear whether the promoter of the AS3MT gene, which codes for AS3MT, is differentially methylated as a function of arsenic exposure. In this study, we evaluated AS3MT promoter methylation according to exposure, assessed by urinary arsenic excretion in a stratified random sample of 48 participants from the Strong Heart Study who had urine arsenic measured at baseline and DNA available from 1989 to 1991 and 1998–1999. For this study, all data are from the 1989–1991 visit. We measured AS3MT promoter methylation at its 48 CpG loci by bisulphite sequencing. We compared mean  % methylation at each CpG locus by arsenic exposure group using linear regression adjusted for study centre, age and sex. A hypomethylated region in the AS3MT promoter was associated with higher arsenic exposure. In vitro, arsenic induced AS3MT promoter hypomethylation, and it increased AS3MT expression in human peripheral blood mononuclear cells. These findings may suggest that arsenic exposure influences the epigenetic regulation of a major arsenic metabolism gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号