首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of multispecies algal bioassays using flow cytometry   总被引:5,自引:0,他引:5  
Multispecies algal bioassays, suitable for assessing copper toxicity, were developed with three marine (Micromonas pusilla, Phaeodactylum tricornutum, and Heterocapsa niei) and three freshwater (Microcystis aeruginosa, Pseudokirchneriella subcapitata, and Trachelomonas sp.) microalgae. Flow cytometry was used to separate and count algal signals based on pigment fluorescence and cell size. Species were mixed together on the basis of equivalent surface areas to avoid the confounding effect on toxicity of increased biomass for metal binding. Under control conditions (no added copper), M. pusilla growth was inhibited in the presence of the other marine microalgae compared to single-species tests, while the opposite was true (i.e., growth stimulation) for M. aeruginosa and P. subcapitata in freshwater mixtures. Competition for nutrients, including CO2, and algal exudate production may account for these effects. Interactions between microalgal species also had a significant effect on copper toxicity to some species. In freshwater multispecies bioassays, the toxicity of copper to Trachelomonas sp. was greater in the presence of other species, with copper concentrations required to inhibit growth (cell division) rate by 50% (72-h [IC50]) decreasing from 9.8 to 2.8 microg Cu/L in single- and multispecies bioassays, respectively. In contrast, in marine multispecies bioassays, copper toxicity to the marine diatom P. tricornutum was reduced compared to single-species bioassays, with an increase in the 72-h IC50 value from 13 to 24 microg Cu/L. This reduction in copper toxicity was not explained by differences in the copper complexing capacity in solution (as a result of exudate production) because labile copper, measured by anodic stripping voltammetry, was similar for P. tricornutum alone and in the mixture. These results demonstrate that single-species bioassays may over- or underestimate metal toxicity in natural waters.  相似文献   

2.
Bulletin of Environmental Contamination and Toxicology - The complexation capacities determined for natural waters by the Davey and the biological titration methods were statistically the same....  相似文献   

3.
4.
5.
6.
Laboratory-based algal assays were developed to explore the bioavailability of copper to the marine alga Thalassiosira weissflogii. A calibration strategy was developed that avoided use of the synthetic ligand ethylenediaminetetraacetic acid (EDTA) in the Aquil growth medium, thereby allowing ambient metal speciation. In a comparison of T. weissflogii cells grown in Aquil medium with EDTA to medium containing no added copper, zinc, and less than 0.003 nM of EDTA, no significant growth differences were observed after 8 d, indicating adequate stored nutrients. A 30-h assay was selected as the optimal time frame after examination of data from concentration-response experiments. Using 65Cu stable isotope additions, parameters examined included growth, chlorophyll a, copper uptake, phytochelatin production, and dissolved organic carbon excretion. The T. weissflogii specific growth rates decreased from 1.36 d(-1)( at pCu (i.e., the negative logarithmic concentration of free Cu) = 8.8 to 0.56 d(-1) at pCu = 7.8, whereas intercellular copper concentrations increased from 13.6 to 70.1 fg/cell, respectively. Calculated values of the copper concentration that caused a 50% reduction in algal growth of pCu = 7.7 and copper per algal mass of 625 microg/g were established. Using an algal assay based on EDTA-free culture medium, along with trace-metal clean techniques, the effect of copper on T. weissflogii and the speciation of copper in marine waters can be studied.  相似文献   

7.
The objective of this study was to assess the predictive capacity of the biotic ligand model (BLM) for acute copper toxicity to daphnids as applied to a number of freshwaters from Chile and to synthetic laboratory-prepared waters. Thirty-seven freshwater bodies were sampled, chemically characterized, and used to determine the copper concentration associated with the 50% of mortality (LC50) for Daphnia magna, Daphnia pulex, and Daphnia obtusa (native to Chile). The data were then used to run three versions of the acute copper BLM, and the predicted LC50s were compared to the observed ones. The same was done with synthetic assay media at various hardness and dissolved organic carbon (DOC) levels. The BLM versions differed in the affinity constants for some biotic ligand-ion pairs, stability constants for inorganic Cu complexes, and assumptions regarding Cu binding to DOC. All three versions showed a high degree of predictive performance, mostly within a twofold range of observed toxicity values. The D. obtusa data set was used to compare water quality criteria (WQC) derived from the observed toxicity values with those derived from either the BLM or the U.S. Environmental Protection Agency (U.S. EPA) procedure. For most low DOC waters, the three procedures generated similar WQCs. For the high-DOC waters, the EPA-derived criteria were significantly lower, that is, greatly overprotective. The results are also discussed in terms of the validation of the BLM for regulatory use.  相似文献   

8.
The objective of the present study was to assess the predictive capacity of the acute Cu biotic ligand model (BLM) as applied to chronic Cu toxicity to Daphnia magna in freshwaters from Chile and synthetic laboratory-prepared waters. Samples from 20 freshwater bodies were taken, chemically characterized, and used in the acute Cu BLM to predict the 21-d chronic Cu toxicity for D. magna. The half-maximal effective concentration (EC50) values, determined using the Organisation for Economic Co-operation and Development (OECD) 21-d reproduction test (OECD Method 211), were compared with the BLM simulated EC50 values. The same EC50 comparison was performed with the results of 19 chronic tests in synthetic media, with a wide range of hardness and alkalinity and a fixed 2 mg/L dissolved organic carbon (DOC) concentration. The acute BLM was modified only by adjustment of the accumulation associated with 50% of an effect value (EA50). The modified BLM model was able to predict, within a factor of two, 95% of the 21-d EC50 and 89% of the 21-d half-maximal lethal concentrations (LC50) in natural waters, and 100% of the 21-d EC50 and 21-d LC50 in synthetic waters. The regulatory implications of using a slightly modified version of an acute BLM to predict chronic effects are discussed.  相似文献   

9.
Algal toxicity tests based on growth inhibition over 72 h have been extensively used to assess the toxicity of contaminants in natural waters. However, these laboratory tests use high cell densities compared to those found in aquatic systems in order to obtain a measurable algal response. The high cell densities and test duration can result in changes in chemical speciation, bioavailability, and toxicity of contaminants throughout the test. With the recent application of flow cytometry to ecotoxicology, it is now possible to use lower initial cell densities to minimize chemical speciation changes. The speciation and toxicity of copper in static bioassays with the tropical freshwater alga Chlorella sp. and the temperate species Selenastrum capricornutum (Pseudokirchneriella subcapitata) were investigated at a range of initial cell densities (10(2)-10(5) cells/ml). Copper toxicity decreased with increasing initial cell density. Copper concentrations required to inhibit growth (cell division) rate by 50% (72-h median effective concentration [EC50]) increased from 4.6 to 16 microg/L for Chlorella sp. and from 6.6 to 17 microg/L for S. capricornutum as the initial cell density increased from 10(2) to 10(5) cells/ml. Measurements of anodic stripping voltammetry-labile, extracellular, and intracellular copper confirmed that at higher initial cell densities, less copper was bound to the cells, resulting in less copper uptake and lower toxicity. Chemical measurements indicated that reduced copper toxicity was due primarily to depletion of dissolved copper in solution, with solution speciation changes due to algal exudates and pH playing a minor role. These findings suggest that standard static laboratory bioassays using 10(4) to 10(5) algal cells/ml may seriously underestimate metal toxicity in natural waters.  相似文献   

10.
The toxicity of cationic surfactants in four bioassays   总被引:6,自引:0,他引:6  
The purpose of this study was to investigate the toxicity of 15 quaternary ammonium compounds (QACs) in a battery of four bioassays comprising the bacterium Vibrio fischeri, two ciliated protozoa Spirostomum ambiguum and Tetrahymena thermophia, and the anostracean crustacean Artemia franciscana. The compounds were prepared by Professor Pernak's group at Poznań University of Technology (Poland). The toxicity of the test compounds was very high, with EC(LC)(50) values varying from 0.11 to 70 micromol/L. Microtox was the most sensitive bioassay, while the crustacean test was the least sensitive. Among the protozoa T. thermophila was 5-30 times less sensitive than S. ambiguum. The toxicity of the QACs depended on their structure, but no simple correlation was found for all the bioassays applied.  相似文献   

11.
12.
A comparison of microbial bioassays for the detection of metal toxicity   总被引:1,自引:0,他引:1  
Heavy metal toxicity was studied by assaying six microbiological toxicity tests, both in solution and wastewater. Pseudomonas fluorescens and baker's yeast (Saccharomyces cerevisiae) were used; growth and respirometric determinations were performed. In addition, the Microtox® test was employed as a reference method. The Microtox® test is the most sensitive assay for detecting toxicity of zinc, copper, and mercury but not for cadmium, chromium, and nickel. Wastewater increases the sensitivity threshold (EC20) and EC50 values of the metals in most of the assays, which is correlated to the presence of organic and inorganic compounds that can reduce the bioavailability of the metals, leading to a general loss of sensitivity.All the above-mentioned assays are potentially useful in the detection of chemical toxicity of metals. However, each test shows different sensitivies to each metal, which is related to different sensitivities of the organisms used in the assays, as well as to other factors. Therefore, it would be advisable to use a battery of tests for biological evaluation of metal toxicity.  相似文献   

13.
Contamination of water bodies by saxitoxin can result in various toxic effects in aquatic organisms. Saxitoxin contamination has also been shown to be a threat to human health in several reported cases, even resulting in death. In this study, we evaluated the sensitivity of animal (Neuro-2A) and algal (Chlamydomonas reinhardtii) bioassays to saxitoxin effect. Neuro-2A cells were found to be sensitive to saxitoxin, as shown by a 24 h EC50 value of 1.5 nM, which was obtained using a cell viability assay. Conversely, no saxitoxin effect was found in any of the algal biomarkers evaluated, for the concentration range tested (2-128 nM). These results indicate that saxitoxin may induce toxic effects in animal and human populations at concentrations where phytoplankton communities are not affected. Therefore, when evaluating STX risk of toxicity, algal bioassays do not appear to be reliable indicators and should always be conducted in combination with animal bioassays.  相似文献   

14.
This study was conducted to determine the role of algal-algal interactions in a multispecies microalgal population on their sensitivities to copper based on an enzyme inhibition assay using flow cytometric measures. Autofluorescence (chlorophyll a and phycocyanin) was used to identify species and count algal signals. The effect of multispecies population on copper toxicity of Microcystis aeruginousa was detected (1) at the same initial cell density, (2) at the same surface area, and (3) in the presence and absence of Chlorella pyrenoidosa and Scenedesmus obliquus. As copper concentrations increased, esterase activity of M. aeruginosa changed in a concentration-dependent manner. The 24 h EC(50) value of M. aeruginosa in the multispecies population was significantly (P < 0.05) higher than those in the single-species population. Compared with S. obliquus, the effect of C. pyrenoidosa on M. aeruginosa was more marked (the 24 h EC(50) value of copper on fluorescin diacetate fluorescence of M. aeruginosa was 11 microg/L). At 48 h copper exposure (6 microg/L) analysis of intracellular reactive oxygen species levels also showed similar algal-algal interactions in multispecies microalgal populations. The pigment assay suggested that these algal-algal interactions occurred only at low concentrations (< 13 microg/L, 24 and 48 h copper exposure). This study demonstrates the importance of using multispecies populations to estimate metal toxicity in natural waters.  相似文献   

15.
16.
Assessing the hazard posed by sediments contaminated with hydrophobic organic compounds is difficult, because measuring the freely dissolved porewater concentrations of such low-solubility chemicals can be challenging, and estimating their sediment-water partition coefficients remains quite uncertain. We suggest that more accurate site assessments can be achieved by employing sampling devices in which polymers, with known polymer-water partition coefficients, are used to absorb the contaminants from the sediment. To demonstrate the current accuracy and limitations of this approach, we compared use of three polymers, polydimethylsiloxane, polyoxymethylene, and polyethylene, exposed to a single sediment in two modes, one in which they were exhaustively mixed (tumbled) with the sediment and the other in which they were simply inserted into a static bed (passive). Comparing porewater concentrations of specific polychlorinated biphenyl (PCB) congeners with results obtained using air bridges, we found the results for tumbled polymers agreed within 20%, and the passive sampling agreed within a factor of 2. In contrast, porewater estimates based on sediment concentrations normalized to f(OC)K(OC), the weight fraction of organic carbon times the organic-carbon normalized partition coefficient, averaged a factor of 7 too high. We also found good correlations of each polymer's uptake of the PCBs with bioaccumulation by the polychaete, Neanthes arenaceodentata. Future improvements of the passive sampling mode will require devices that equilibrate faster and/or have some means such as performance reference compounds to estimate mass transfer limitations for individual deployments.  相似文献   

17.
We have developed a method to concentrate aqueous samples for toxicity testing. This method relies on the phenomenon of freezing exclusion, whereby solutes are rejected from the interstices of a growing ice crystal. Tenfold freeze concentration gave excellent recoveries of inorganic and organic analytes, phenol and ZnSO4 toxicity from spiked natural waters, and toxicity of both pre- and postdischarge municipal wastewater. Simultaneous 10-fold concentration of strong mineral or humic ambient matrices did not substantially modify the expressed toxicity of phenol or ZnSO4, and it did not seem to generate spurious toxicity to the marine bioassay organism used (Vibrio fischeri). Hundredfold freeze concentration permitted the quantification of low levels of ambient toxicity in a wide variety of natural waters using a rapid, inexpensive microbioassay. Precipitation of matrix elements may limit the degree of concentration that can be achieved with highly mineralized or strongly humic waters. This approach is well suited to ambient toxicity testing, because it is nonspecific and has low potential for solvent contamination. Furthermore, the low temperatures involved minimize volatilization and degradation of organic contaminants.  相似文献   

18.
The no-observed-effect concentrations (NOEC) and EC10 values for 108 organic compounds were estimated, using multiple endpoints (i.e., biopopulation, growth rate, and dissolved oxygen production), from previous data obtained by a closed-system algal toxicity test (test alga: Pseudokirchneriella subcapitata). These low-toxic-effect concentrations are valuable to risk assessment of chemicals and protection of the aquatic environment as such information is quite scarce in existing toxicological databases. Furthermore, based on limited amount of available data, we found that the risk of organic toxicants to phytoplankton may be severely underestimated by existing databases, which are primarily derived by the conventional batch technique. Good correlation relationships between NOEC (or EC10) and EC50 values were established. For polar and nonpolar narcotics, quantitative structure–activity relationships (QSARs) based on hydrophobicity, and/or the lowest unoccupied molecular orbital energy (Elumo) were developed with satisfactory predictive powers. The above statistical relationships can be applied to derive a preliminary estimation for the low-toxic-effect levels for other (or new) organic compounds that has no toxicological data available.  相似文献   

19.
This study evaluates the potential for the use of cladocerans in biomonitoring of cyanobacterial toxins. Two zooplankton species (Daphnia gessneri and Moina micrura) were cultivated in the laboratory for use in acute (48 h) and chronic (10 days) bioassays. Water samples were collected from two reservoirs and diluted in mineral water at four concentrations. Survivorship in the acute bioassays was used to calculate LC50, and survivorship and fecundity in chronic bioassays were used to calculate the intrinsic population growth rate (r) and the EC50. Analysis of phytoplankton in the water samples from one reservoir revealed that cyanobacteria were the dominant group, represented by the genera Anabaena, Cylindrospermopsis, and Microcystis. Results of bioassays showed adverse effects including death, paralysis, and reduced population growth rate, generally proportional to the reservoir water concentration. These effects may be related to the presence of cyanobacteria toxins (microcystins or saxitoxins) in the water.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号