首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gastric cancer (GC) is one of the most common malignancies, and cancer invasion and metastasis are the leading causes of cancer‐induced death in GC patients. WASP‐family verprolin‐homologous protein‐2 (WASF2), with a role controlling actin polymerization which is critical in the formation of membrane protrusions involved in cell migration and invasion, has been reported to possess cancer‐promoting effects in several cancers. However, data of WASF2's role in GC are relatively few and even contradictory. In this study, we analyzed WASF2 expression in GC tissues and their corresponding adjacent normal tissues. We found that WASF2 was upregulated in GC tissues and high level of WASF2 was associated with lymph node metastasis of GC. Through gain‐ and loss‐of‐function studies, WASF2 was shown to significantly increase GC cells migration and invasion, but had no effect on proliferation in vitro. Importantly, WASF2 was also found to enhance GC metastasis in vivo. Our previous research suggested that WASF2 was a direct target of microRNA‐146a (miR‐146a). Furthermore, we analyzed miR‐146a's level in GC tissues and their corresponding adjacent normal tissues. We found that miR‐146a was downregulated in GC tissues and low miR‐146a level was associated with advanced TNM stage and lymph node metastasis. The level of WASF2 in GC tissues was negatively correlated with miR‐146a expression and had inverse clinicopathologic features. The newly identified miR‐146a/WASF2 axis may provide a novel therapeutic target for GC.  相似文献   

2.
A microRNA usually has the ability to coordinately repress multiple target genes and therefore are associated with many pathological conditions such as human cancer. Our understanding of the biological roles of microRNAs in lung cancer, however, remains incomplete. In this study, we identified miR‐503 as a tumor‐suppressive microRNA in human non‐small cell lung carcinoma (NSCLC), whose expression level correlates inversely with overall survival in NSCLC patients. Ectopic expression of miR‐503 suppressed tumor cell proliferation and metastasis‐related traits in vitro as well as in vivo, supporting a anti‐cancer role of the microRNA in NSCLC progression. Mechanistic study revealed that oncogenic PI3K p85 and IKK‐β were direct targets of miR‐503. Overexpression of either PI3K p85 or IKK‐β partially restored the malignant properties of NSCLC cells in the presence of miR‐503. Taken together, our data demonstrate miR‐503 inhibits the malignant phenotype of NSCLC by targeting PI3K p85 and IKK‐β and might play a suppressive role in the pathogenesis of NSCLC, thus providing new insights in developing novel diagnostic and therapeutic approaches.  相似文献   

3.
Although several studies have reported that microRNA (miR)‐92b‐3p is involved in various cellular processes related to carcinogenesis, its physiological role in clear cell renal cell carcinoma (ccRCC) remains unclear. To clarify the role of miR‐92b‐3p in ccRCC, we compared miR‐92b‐3p expression levels in ccRCC tissues and adjacent normal renal tissues. Significant upregulation of miR‐92b‐3p was observed in ccRCC tissues. Overexpression of miR‐92b‐3p using a miRNA mimic promoted proliferation, migration, and invasion activities of ACHN cells. Functional inhibition of miR‐92b‐3p by a hairpin miRNA inhibitor suppressed Caki‐2 cell growth and invasion activities in vitro. Mechanistically, it was found that miR‐92b‐3p directly targeted the TSC1 gene, a known upstream regulator of mTOR. Overexpression of miR‐92b‐3p decreased the protein expression of TSC1 and enhanced the downstream phosphorylation of p70S6 kinase, suggesting that the mTOR signaling pathway was activated by miR‐92b‐3p in RCC cells. Importantly, a multivariate Cox proportion hazard model, based on TNM staging and high levels of miR‐92b‐3p, revealed that miR‐92b‐3p expression (high vs. low hazard ratio, 2.86; 95% confidence interval, 1.20‐6.83; P = .018) was a significant prognostic factor for overall survival of ccRCC patients with surgical management. Taken together, miR‐92b‐3p was found to act as an oncomiR, promoting cell proliferation by downregulating TSC1 in ccRCC.  相似文献   

4.
Our recent studies of microRNA (miRNA) expression signatures have indicated that the miR‐143/145 cluster is significantly downregulated in several types of cancer and represents a putative tumor‐suppressive miRNA in human cancers. The aim of this study was to investigate the functional significance of the miR‐143/145 cluster in cancer cells and to identify novel molecular targets of the miR‐143/145 cluster in renal cell carcinoma (RCC). The expression levels of miR‐143 and miR‐145 were significantly downregulated in RCC tissues compared with adjacent non‐cancerous tissues. A significant positive correlation was recognized between miR‐143 and miR‐145 expression. Restoration of mature miR‐143 or miR‐145 in 786‐O and A498 RCC cells revealed that both mature miRNAs significantly inhibited cancer cell proliferation and invasion, suggesting that the miR‐143/145 cluster functioned as a tumor suppressor in RCC. Gene expression data and in silico database analysis showed that the hexokinase‐2 (HK2) gene, which encodes a glycolytic enzyme crucial for the Warburg effect in cancer cells, was a candidate target of the miR‐143/145 cluster. Luciferase reporter assays showed that both miR‐143 and miR‐145 directly regulated HK2. In RCC clinical specimens, the expression of HK2 was significantly higher in cancer tissues than in non‐cancerous tissues. Silencing HK2 suppressed RCC cell proliferation and invasion, suggesting that HK2 has oncogenic functions in RCC. Thus, our data showed that loss of the tumor‐suppressive miR‐143/145 cluster enhanced RCC cell proliferation and invasion through targeting HK2.  相似文献   

5.
Analysis of our original microRNA (miRNA) expression signature of patients with advanced renal cell carcinoma (RCC) showed that microRNA‐10a‐5p (miR‐10a‐5p) was significantly downregulated in RCC specimens. The aims of the present study were to investigate the antitumor roles of miR‐10a‐5p and the novel cancer networks regulated by this miRNA in RCC cells. Downregulation of miR‐10a‐5p was confirmed in RCC tissues and RCC tissues from patients treated with tyrosine kinase inhibitors (TKI). Ectopic expression of miR‐10a‐5p in RCC cell lines (786‐O and A498 cells) inhibited cancer cell migration and invasion. Spindle and kinetochore‐associated protein 1 (SKA1) was identified as an antitumor miR‐10a‐5p target by genome‐based approaches, and direct regulation was validated by luciferase reporter assays. Knockdown of SKA1 inhibited cancer cell migration and invasion in RCC cells. Overexpression of SKA1 was observed in RCC tissues and TKI‐treated RCC tissues. Moreover, analysis of The Cancer Genome Atlas database demonstrated that low expression of miR‐10a‐5p and high expression of SKA1 were significantly associated with overall survival in patients with RCC. These findings showed that downregulation of miR‐10a‐5p and overexpression of the SKA1 axis were highly involved in RCC pathogenesis and resistance to TKI treatment in RCC.  相似文献   

6.
《Cancer science》2018,109(2):289-296
Accumulating evidence has suggested that the dysregulation of miRNA is an important factor in the pathogenesis of lung cancer. Here, we demonstrate that miR‐335 expression is reduced in non‐small cell lung cancer (NSCLC) tumors relative to non‐cancerous adjacent tissues, while the expression of Tra2β is increased. In addition, clinical data revealed that the increased Tra2β and decreased miR‐335 expression observed in NSCLC cells was associated with poor patient survival rates. In vitro experimentation showed that the overexpression of miR‐335 inhibited the growth, invasion and migration capabilities of A459 lung cancer cells, by targeting Tra2β. In contrast, inhibition of miR‐335 or overexpression of the Tra2β target gene stimulated the growth, invasion and migratory capabilities of A459 lung cancer cells in vitro. Furthermore, overexpression of miR‐335 or inhibition of Tra2β decreased the phosphorylation of Rb‐S780 and Rb‐AKT. Overall, these findings suggest that the downregulation of miR‐335 in A459 lung cancer cells promoted cell proliferation through upregulation of Tra2β, mediated via activation of the AKT/mTOR signaling pathway, and suggest that miR‐335 may have potential as a novel therapeutic target for NSCLC.  相似文献   

7.
The onset of breast cancer among young patients is a major issue in cancer etiology. Our previous study has shown that poor prognosis in young women with breast cancer is associated with lower expression of the microRNA miR‐1285‐5p. In this study, we showed that the expression of miR‐1285‐5p is lower in tumor tissues than in normal tissues. Accumulating evidence suggests that miR‐1285‐5p plays critical roles in various types of cancers. However, the functional role of miR‐1285‐5p in breast cancer remains to be elucidated. Here, we showed the tumor‐suppressive role of miR‐1285‐5p and detailed its mechanism of action in breast cancer. Overexpression of miR‐1285‐5p significantly inhibited cell proliferation in breast cancer cells regardless of the tumor subtype. Among the target genes of miR‐1285‐5p, we found that transmembrane protein 194A (TMEM194A) was directly regulated by miR‐1285‐5p. Notably, separation of centrosomes from the nuclear envelope was observed upon knockdown of TMEM194A or overexpression of miR‐1285‐5p. In conclusion, our findings show that miR‐1285‐5p is a tumor suppressor via TMEM194A inhibition in breast cancer.  相似文献   

8.
9.
10.
The present investigation was intended to elucidate whether long noncoding RNA small nuclear RNA host gene 16 (SNHG16) could regulate the epithelial‐mesenchymal transition process of bladder cancer cells by directing expressions of miR‐17‐5p and metalloproteinases 3 (TIMP3). To elucidate the point, we collected 275 pairs of bladder cancer tissues and corresponding adjacent normal tissues, as well as four bladder cancer cell lines and the normal human bladder epithelial cell line. Moreover, pcDNA3.1‐SNHG16, si‐SNHG16, miR‐17‐5p mimic, miR‐17‐5p inhibitor, pcDNA3.1‐TIMP3, and si‐TIMP3 were prepared for transfection, and CCK‐8 assay, colony formation assay, flow cytometry, wound healing assay, and transwell assay were carried out. Finally, the dual luciferase reporter gene assay was performed to figure out whether targeted regulations were present among SNHG16, miR‐17‐5p, and TIMP3. The laboratory findings demonstrated that the bladder cancer patients carrying under‐expressed SNHG16 or miR‐17‐5p were associated with extended survival time when compared with those possessing overexpressed SNHG16 and miR‐17‐5p (P < 0.05). Furthermore, overexpression of SNHG16 and miR‐17‐5p both enhanced the viability, proliferation, migration, and invasion (P < 0.05), and simultaneously suppressed their apoptosis (P < 0.05). Transfections of pcDNA3.1‐SNHG16 and si‐SNHG16, respectively, resulted in overexpression and under‐expression of miR‐17‐5p, and the dual luciferase reporter gene assay demonstrated a targeted relationship between SNHG16 and miR‐17‐5p (P < 0.05). Besides, the expression of TIMP3 was subjected to targeted regulation of miR‐17‐5p (P < 0.05), and its overexpression could reverse the effects of miR‐17‐5p on proliferation and metastasis (P < 0.05). Conclusively, purposeful modification of SNHG16/miR‐17‐5p/TIMP3 signaling might be conducive to postpone the aggravation of bladder cancer.  相似文献   

11.
12.
Our recent studies of microRNA (miRNA) expression signatures demonstrated that microRNA‐1291 (miR‐1291) was significantly downregulated in renal cell carcinoma (RCC) clinical specimens and was a putative tumor‐suppressive miRNA in RCC. The aim of the present study was to investigate the functional significance of miR‐1291 in cancer cells and to identify novel miR‐1291‐mediated cancer pathways and target genes in RCC. Expression of miR‐1291 was significantly downregulated in RCC tissues compared with adjacent non‐cancerous tissues. Restoration of mature miR‐1291 in RCC cell lines (A498 and 786‐O) revealed significant inhibition of cell proliferation, migration and invasion, suggesting that miR‐1291 functioned as a tumor suppressor. To identify miR‐1291‐mediated molecular pathways and targets, we used gene expression analysis (expression of RCC clinical specimens and miR‐1291‐transfected A498 cells) and in silico database analysis. Our data demonstrated that 79 signaling pathways were significantly regulated by tumor‐suppressive miR‐1291 in RCC cells. Moreover, solute career family 2 member 1 (SLC2A1) was a candidate target of miR‐1291 regulation. The SLC2A1 gene provides instructions for producing glucose transporter protein type 1 (GLUT1). Luciferase reporter assays showed that miR‐1291 directly regulated SLC2A1/GLUT1. In RCC clinical specimens, the expression of SLC2A1/GLUT1 mRNA was significantly higher in cancer tissues than in non‐cancerous tissues. A significant inverse correlation was recognized between SLC2A1/GLUT1 and miR‐1291 expression (r = ?0.55, P < 0.0001). Loss of tumor‐suppressive miR‐1291 enhanced RCC cell proliferation, migration and invasion through targeting SLC2A1/GLUT1. The identification of novel tumor‐suppressive miR‐1291‐mediated molecular pathways and targets has provided new insights into RCC oncogenesis and metastasis.  相似文献   

13.
MicroRNAs (miRNAs) are frequently deregulated in human tumors, and play important roles in tumor development and progression. The pathological roles of miRNAs in neurofibromatosis type 1 (NF1) tumorigenesis are largely unknown. We demonstrated that miR‐10b was up‐regulated in primary Schwann cells isolated from NF1 neurofibromas and in cell lines and tumor tissues from malignant peripheral nerve sheath tumors (MPNSTs). Intriguingly, a significantly high level of miR‐10b correlated with low neurofibromin expression was found in a neuroectodermal cell line: Ewing’s sarcoma SK‐ES‐1 cells. Antisense inhibiting miR‐10b in NF1 MPNST cells reduced cell proliferation, migration and invasion. Furthermore, we showed that NF1 mRNA was the target for miR‐10b. Overexpression of miR‐10b in 293T cells suppressed neurofibromin expression and activated RAS signaling. Antisense inhibition of miR‐10b restored neurofibromin expression in SK‐ES‐1 cells, and decreased RAS signaling independent of neurofibromin in NF1 MPNST cells. These results suggest that miR‐10b may play an important role in NF1 tumorigenesis through targeting neurofibromin and RAS signaling. (Cancer Sci 2010)  相似文献   

14.
Accumulating evidence indicates that ectopic expression of non‐coding RNAs are responsible for breast cancer progression. Increased non‐coding RNA PVT1, the host gene of microRNA‐1207‐5p (miR‐1207‐5p), has been associated with breast cancer proliferation. However, how PVT1 functions in breast cancer is still not clear. In this study, we show a PVT1‐derived microRNA, miR‐1207‐5p, that promotes the proliferation of breast cancer cells by directly regulating STAT6. We first confirm the positive correlated expression pattern between PVT1 and miR‐1207‐5p by observing consistent induced expression by estrogen, and overexpression in breast cancer cell lines and breast cancer patient specimens. Moreover, silence of PVT1 also decreased miR‐1207‐5p expression. Furthermore, increased miR‐1207‐5p expression promoted, while decreased miR‐1207‐5p expression suppressed, cell proliferation, colony formation, and cell cycle progression in breast cancer cell lines. Mechanistically, a novel target of miR‐1207‐5p, STAT6, was identified by a luciferase reporter assay. Overexpression of miR‐1207‐5p decreased the levels of STAT6, which activated CDKN1A and CDKN1B to regulate the cell cycle. We also confirmed the reverse correlation of miR‐1207‐5p and STAT6 expression levels in breast cancer samples. Therefore, our findings reveal that PVT1‐derived miR‐1207‐5p promotes the proliferation of breast cancer cells by targeting STAT6, which in turn controls CDKN1A and CDKN1B expression. These findings suggest miR‐1207‐5p might be a potential target for breast cancer therapy.  相似文献   

15.
Our recent study of the microRNA (miRNA) expression signature of bladder cancer (BC) by deep‐sequencing revealed that two miRNA, microRNA‐139‐5p/microRNA‐139‐3p were significantly downregulated in BC tissues. The aim of this study was to investigate the functional roles of these miRNA and their modulation of cancer networks in BC cells. Functional assays of BC cells were performed using transfection of mature miRNA or small interfering RNA (siRNA). Genome‐wide gene expression analysis, in silico analysis and dual‐luciferase reporter assays were applied to identify miRNA targets. The associations between the expression of miRNA and its targets and overall survival were estimated by the Kaplan–Meier method. Gain‐of‐function studies showed that miR‐139‐5p and miR‐139‐3p significantly inhibited cell migration and invasion by BC cells. The matrix metalloprotease 11 gene (MMP11) was identified as a direct target of miR‐139‐5p and miR‐139‐3p. Kaplan–Meier survival curves showed that higher expression of MMP11 predicted shorter survival of BC patients (P = 0.029). Downregulated miR‐139‐5p or miR‐139‐3p enhanced BC cell migration and invasion in BC cells. MMP11 was directly regulated by these miRNA and might be a good prognostic marker for survival of BC patients.  相似文献   

16.
Increasing evidence has revealed that miR‐199a‐5p is actively involved in tumor invasion and metastasis as well as in the decline of breast cancer tissues. In this research, overexpression of miR‐199a‐5p weakened motility and invasion of breast cancer cells MCF‐7 and MDA‐MB‐231. Upregulation of Ets‐1 increased breast cancer cell invasion, but the mechanism by which miR‐199a‐5p modulates activation of Ets‐1 in breast cancer was not clarified. We investigated the relationship between miR‐199a‐5p and Ets‐1 on the basis of 158 primary breast cancer case specimens, and the results showed that Ets‐1 expression was inversely correlated with endogenous miR‐199a‐5p. Overexpression of miR‐199a‐5p reduced the mRNA and protein levels of Ets‐1 in MCF‐7 and MDA‐MB‐231 cells, whereas anti‐miR‐199a‐5p elevated Ets‐1. siRNA‐mediated Ets‐1 knockdown phenocopied the inhibition invasion of miR‐199a‐5p in vitro. Moreover, luciferase reporter assay revealed that miR‐199a‐5p directly targeted 3′‐UTR of Ets‐1 mRNA. This research revealed that miR‐199a‐5p could descend the levels of β1 integrin by targeting 3′‐UTR of Ets‐1 to alleviate the invasion of breast cancer via FAK/Src/Akt/mTOR signaling pathway. Our results provide insight into the regulation of β1 integrin through miR‐199a‐5p‐mediated Ets‐1 silence and will help in designing new therapeutic strategies to inhibit signal pathways induced by miR‐199a‐5p in breast cancer invasion.  相似文献   

17.
Gastric cancer (GC) is among the most fatal cancers in China. MicroRNAs (miRNAs) are versatile regulators during GC development and progression. miR‐491‐5p has been demonstrated to act as a tumor suppressor in several types of cancer. However, the role of miR‐491‐5p in GC metastasis remains unknown. Here, we found that miR‐491‐5p was significantly decreased in GC tissues compared with adjacent non‐cancerous tissues, and low miR‐491‐5p level was associated with large tumor size. Overexpression of miR‐491‐5p significantly suppressed GC cell epithelial‐to‐mesenchymal transition (EMT) and tumor metastasis in vitro and in vivo. Mechanistically, SNAIL was identified as a direct target of miR‐491‐5p. The silencing of SNAIL phenocopied the tumor suppressive function of miR‐491‐5p, whereas re‐expression of SNAIL in GC cells rescued the EMT markers and cell migratory ability that were inhibited by miR‐491‐5p. In addition, miR‐491‐5p inhibited FGFR4 indirectly. Inhibition of FGFR4 also decreased the SNAIL level and impaired EMT and cell migration. Taken together, these findings indicate that downregulation of miR‐491‐5p promoted GC metastasis by inducing EMT via regulation of SNAIL and FGFR4.  相似文献   

18.
19.
Tumor stem cells with self‐renewal and multipotent capacity play critical roles in the initiation and progression of cancer. Recently, a new 3‐D culture system known as organoid culture has been developed, allowing Lgr5‐positive stem cells to form organoids that resemble the properties of original tissues. Here we established organoids derived from intestinal tumors of Apcmin/+ mice and normal intestinal epithelia of C57BL/6J mice and investigated the roles of microRNA (miRNA) in intestinal tumor organoids. The results of microarray analyses revealed that expression of the cluster miRNAs, miR‐194 and miR‐215 was markedly suppressed in intestinal tumor organoids in comparison with organoids derived from normal intestinal epithelia. Enforced expression of miR‐194 resulted in inhibition of E2f3, a positive regulator of the cell cycle and growth suppression of intestinal tumor organoids. In addition, enforced expression of miR‐215 suppressed the cancer stem cell signature through downregulation of intestinal stem cell markers including Lgr5. These findings indicate that the miRNA cluster including miR‐194 and miR‐215 plays important roles in suppressing the growth and attenuating the stemness of intestinal tumor organoids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号