首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The congenital disorders of glycosylation (CDG) constitute a new group of recessively inherited metabolic disorders that are characterized biochemically by defective glycosylation of proteins. Several types have been identified. CDG‐Ia, the most frequent type, is a multisystemic disorder affecting the nervous system and numerous organs including liver, kidney, heart, adipose tissue, bone, and genitalia. A phosphomannomutase (PMM) deficiency has been identified in CDG‐Ia patients and numerous mutations in the PMM2 gene have been identified in patients with a PMM deficiency. We report on a French family with 3 affected sibs, with an unusual presentation of CDG‐Ia, remarkable for 1) the neurological presentation of the disease, and 2) the dissociation between intermediate PMM activity in fibroblasts and a decreased PMM activity in leukocytes. This report shows that the diagnosis of CDG‐Ia must be considered in patients with non‐regressive early‐onset encephalopathy with cerebellar atrophy, and that intermediate values of PMM activity in fibroblasts do not exclude the diagnosis of CDG‐Ia. © 2001 Wiley‐Liss, Inc.  相似文献   

2.
Congenital disorders of glycosylation (CDG) represent an expanding group of conditions that result from defects in protein and lipid glycosylation. Different subgroups of CDG display considerable clinical and genetic heterogeneity due to the highly complex nature of cellular glycosylation. This is further complicated by ethno‐geographic differences in the mutational landscape of each of these subgroups. Ten Arab CDG patients from Latifa Hospital in Dubai, United Arab Emirates, were assessed using biochemical (glycosylation status of transferrin) and molecular approaches (next‐generation sequencing [NGS] and Sanger sequencing). In silico tools including CADD and PolyPhen‐2 were used to predict the functional consequences of uncovered mutations. In our sample of patients, five novel mutations were uncovered in the genes: MPDU1, PMM2, MAN1B1, and RFT1. In total, 9 mutations were harbored by the 10 patients in 7 genes. These are missense and nonsense mutations with deleterious functional consequences. This article integrates a single‐center experience within a list of reported CDG mutations in the Arab world, accompanied by full molecular and clinical details pertaining to the studied cases. It also sheds light on potential ethnic differences that were not noted before in regards to CDG in the Arab world.  相似文献   

3.
ALG11‐Congenital Disorder of Glycosylation (ALG11‐CDG, also known as congenital disorder of glycosylation type Ip) is an inherited inborn error of metabolism due to abnormal protein and lipid glycosylation. We describe two unrelated patients with ALG11‐CDG due to novel mutations, review the literature of previously described affected individuals, and further expand the clinical phenotype. Both affected individuals reported here had severe psychomotor disabilities and epilepsy. Their fibroblasts synthesized truncated precursor glycan structures, consistent with ALG11‐CDG, while also showing hypoglycosylation of a novel biomarker, GP130. Surprisingly, one patient presented with normal transferrin glycosylation profile, a feature that has not been reported previously in patients with ALG11‐CDG. Together, our data expand the clinical and mutational spectrum of ALG11‐CDG.  相似文献   

4.
Congenital disorders of glycosylation (CDG) are metabolic disorders that affect the glycosylation of proteins and lipids. Since glycosylation affects all organs, CDG show a wide spectrum of phenotypes. We present a patient with microcephaly, dysmorphic facies, congenital heart defect, focal epilepsy, infantile spasms, skeletal dysplasia, and a type 1 serum transferrin isoelectrofocusing due to a novel CDG caused by a homozygous variant in the oligosaccharyltransferase complex noncatalytic subunit (OSTC) gene involved in glycosylation and confirmed by serum transferrin electrophoresis.  相似文献   

5.
Congenital disorders of glycosylation (CDG) are a heterogeneous and rapidly growing group of diseases caused by abnormal glycosylation of proteins and/or lipids. Mutations in genes involved in the homeostasis of the endoplasmic reticulum (ER), the Golgi apparatus (GA), and the vesicular trafficking from the ER to the ER–Golgi intermediate compartment (ERGIC) have been found to be associated with CDG. Here, we report a patient with defects in both N‐ and O‐glycosylation combined with a delayed vesicular transport in the GA due to mutations in TRAPPC11, a subunit of the TRAPPIII complex. TRAPPIII is implicated in the anterograde transport from the ER to the ERGIC as well as in the vesicle export from the GA. This report expands the spectrum of genetic alterations associated with CDG, providing new insights for the diagnosis and the understanding of the physiopathological mechanisms underlying glycosylation disorders.  相似文献   

6.
The congenital disorders of glycosylation (CDG) are defects in glycoprotein and glycolipid glycan synthesis and attachment. They affect multiple organ/systems, but non-specific symptoms render the diagnosis of the different CDG very challenging. Phosphomannomutase 2 (PMM2)-CDG is the most common CDG, but advances in genetic analysis have shown others to occur more commonly than previously thought. The present work reports the clinical and mutational spectrum of 25 non-PMM2 CDG patients. The most common clinical symptoms were hypotonia (80%), motor or psychomotor disability (80%) and craniofacial dysmorphism (76%). Based on their serum transferrin isoform profile, 18 were classified as CDG-I and 7 as CDG-II. Pathogenic variations were found in 16 genes (ALG1, ALG6, ATP6V0A2, B4GALT1, CCDC115, COG7, DOLK, DPAGT1, DPM1, GFPT1, MPI, PGM1, RFT1, SLC35A2, SRD5A3, and SSR4). Overall, 27 variants were identified, 12 of which are novel. The results highlight the importance of combining genetic and biochemical analyses for the early diagnosis of this heterogeneous group of disorders.  相似文献   

7.
Congenital disorders of glycosylation (CDG) are a rapidly growing family of inborn errors. Screening for CDG in suspected cases is usually performed in the first year of life by serum transferrin isoelectric focusing or mass spectrometry. Based on the transferrin analysis patients can be biochemically diagnosed with a type 1 or type 2 transferrin pattern, and labeled as CDG‐I, or CDG‐II. The diagnosis of CDG is frequently delayed due to the highly variable phenotype, some cases showing single organ involvement and others mimicking syndromes, like skeletal dysplasia, cutis laxa syndrome, or congenital muscle dystrophy. The aim of our study was to evaluate perinatal abnormalities and early discriminative symptoms in 58 patients consecutively diagnosed with diverse CDG‐subtypes. Neonatal findings and clinical features in the first months of life were studied in 36 children with CDG‐I and 22 with CDG‐II. Maternal complications were found in five, small for gestational age in nine patients. Five children had abnormal neonatal screening results for hypothyroidism. Congenital microcephaly and neonatal seizures were common in CDG‐II. Inverted nipples were uncommon with 5 out of 58 children. Dysmorphic features were mostly nonspecific, except for cutis laxa. Early complications included feeding problems, cardiomyopathy, thrombosis, and bleeding. Cases presenting in the neonatal period had the highest mortality rate. Survival in CDG patients is highly dependent on early intervention therapy. We recommend low threshold screening for glycosylation disorders in infants with neurologic symptoms, even in the absence of abnormal fat distribution. Growth retardation and neonatal bleeding increase suspicion for CDG. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion. The DNM1L (dynamin‐1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family, responsible for fission of mitochondria, and having a role in the division of peroxisomes, as well. DRP1 impairment is implicated in several neurological disorders and associated with either de novo dominant or compound heterozygous mutations. In five patients presenting with severe epileptic encephalopathy, we identified five de novo dominant DNM1L variants, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. Moreover, a very peculiar finding in our cohort of patients was the presence, in muscle biopsy, of core like areas with oxidative enzyme alterations, suggesting an abnormal distribution of mitochondria in the muscle tissue.  相似文献   

9.
10.
INTRODUCTION—Congenital disorders of glycosylation (CDG), or carbohydrate deficient glycoprotein syndromes, form a new group of multisystem disorders characterised by defective glycoprotein biosynthesis, ascribed to various biochemical mechanisms.
METHODS—We report the clinical, biological, and molecular analysis of 26 CDG I patients, including 20 CDG Ia, two CDG Ib, one CDG Ic, and three CDG Ix, detected by western blotting and isoelectric focusing of serum transferrin.
RESULTS—Based on the clinical features, CDG Ia could be split into two subtypes: a neurological form with psychomotor retardation, strabismus, cerebellar hypoplasia, and retinitis pigmentosa (n=11), and a multivisceral form with neurological and extraneurological manifestations including liver, cardiac, renal, or gastrointestinal involvement (n=9). Interestingly, dysmorphic features, inverted nipples, cerebellar hypoplasia, and abnormal subcutaneous fat distribution were not consistently observed in CDG Ia. By contrast, the two CDG Ib patients had severe liver disease, enteropathy, and hyperinsulinaemic hypoglycaemia but no neurological involvement. Finally, the CDG Ic patient and one of the CDG Ix patients had psychomotor retardation and seizures. The other CDG Ix patients had severe proximal tubulopathy, bilateral cataract, and white matter abnormalities (one patient), or multiorgan failure and multiple birth defects (one patient).
CONCLUSIONS—Owing to the remarkable clinical variability of CDG, this novel disease probably remains largely underdiagnosed. The successful treatment of CDG Ib patients with oral mannose emphasises the paramount importance of early diagnosis of PMI deficiency.


Keywords: CDG; phosphomannomutase; phosphomannose isomerase; dolichyl-phosphate glucose:mannose 9 N-acetylglycosamine 2 glucosyltransferase  相似文献   

11.
Glycosylation is a critical post/peri‐translational modification required for the appropriate development and function of the immune system. As an example, abnormalities in glycosylation can cause antibody deficiency and reduced lymphocyte signaling, although the phenotype can be complex given the diverse roles of glycosylation. Human MGAT2 encodes N‐acetylglucosaminyltransferase II, which is a critical enzyme in the processing of oligomannose to complex N‐glycans. Complex N‐glycans are essential for immune system functionality, but only one individual with MGAT2‐CDG has been described to have an abnormal immunologic evaluation. MGAT2‐CDG (CDG‐IIa) is a congenital disorder of glycosylation (CDG) associated with profound global developmental disability, hypotonia, early onset epilepsy, and other multisystem manifestations. Here, we report a 4‐year old female with MGAT2‐CDG due to a novel homozygous pathogenic variant in MGAT2, a 4‐base pair deletion, c.1006_1009delGACA. In addition to clinical features previously described in MGAT2‐CDG, she experienced episodic asystole, persistent hypogammaglobulinemia, and defective ex vivo mitogen and antigen proliferative responses, but intact specific vaccine antibody titers. Her infection history has been mild despite the testing abnormalities. We compare this patient to the 15 previously reported patients in the literature, thus expanding both the genotypic and phenotypic spectrum for MGAT2‐CDG.  相似文献   

12.
Congenital disorders of glycosylation (CDG) are an extremely rapidly growing and phenotypically versatile group of disorders. Conserved oligomeric Golgi (COG) complexes are hetero‐octameric proteins involved in retrograde trafficking within the Golgi. Seven of its eight subunits have a causal role in CDG. To date, only three cases of COG8‐CDG have been published but none in the antenatal period. We present the first case of antenatally diagnosed COG8‐CDG with facial dysmorphism and additional features such as Dandy‐Walker malformation and arthrogryposis multiplex congenita, thus expanding the phenotype of this rare disorder. Trio whole exome sequencing revealed a novel homozygous variant in COG8, which creates a new splice site in exon 5 and protein truncation after 12 amino acids downstream to the newly generated splice site. As the mutations of the previous three patients were also identified in exon 5, it is likely to be a potential mutational hotspot in COG8. An association between antenatally increased nuchal translucency and COG8‐CDG is also established, which would alert clinicians to its diagnosis early in gestation. It remains to be seen if this observation can be extended to other COG‐CDGs.  相似文献   

13.
The medical significance of N‐glycosylation is underlined by a group of inherited human disorders called Congenital Disorders of Glycosylation (CDG). One key step in the biosynthesis of the Glc3Man9GlcNAc2‐PP‐dolichol precursor, essential for N‐glycosylation, is the translocation of Man5GlcNAc2‐PP‐dolichol across the endoplasmic reticulum membrane. This step is facilitated by the RFT1 protein. Recently, the first RFT1‐deficient CDG (RFT1‐CDG) patient was identified and presented a severe N‐glycosylation disorder. In the present study, we describe three novel CDG patients with an RFT1 deficiency. The first patient was homozygous for the earlier reported RFT1 missense mutation (c.199C>T; p.R67C), whereas the two other patients were homozygous for the missense mutation c.454A>G (p.K152E) and c.892G>A (p.E298 K), respectively. The pathogenic character of the novel mutations was illustrated by the accumulation of Man5GlcNAc2‐PP‐dolichol and by reduced recombinant DNase 1 secretion. Both the glycosylation pattern and recombinant DNase 1 secretion could be normalized by expression of normal RFT1 cDNA in the patients' fibroblasts. The clinical phenotype of these patients comprised typical CDG symptoms in addition to sensorineural deafness, rarely reported in CDG patients. The identification of additional RFT1‐deficient patients allowed to delineate the main clinical picture of RFT1‐CDG and confirmed the crucial role of RFT1 in Man5GlcNAc2‐PP‐dolichol translocation. Hum Mutat 30:1–7, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Congenital disorders of glycosylation (CDG) are a group of metabolic disorders with multisystemic involvement characterized by abnormalities in the synthesis of N‐linked oligosaccharides. The most common form, CDG‐Ia, resulting from mutations in the gene encoding the enzyme phosphomannomutase (PMM2), manifests with severe abnormalities in psychomotor development, dysmorphic features and visceral involvement. While this disorder is panethnic, we present the first cases of CDG‐Ia identified in an African American family with two affected sisters. The proband had failure to thrive in infancy, hypotonia, ataxia, cerebellar hypoplasia and developmental delay. On examination, she also exhibited strabismus, inverted nipples and an atypical perineal fat distribution, all features characteristic of CDG‐Ia. Direct sequencing demonstrated that the patient had a unique genotype, T237M/c.565‐571 delAGAGAT insGTGGATTTCC. The novel deletion–insertion mutation, which was confirmed by subcloning and sequencing of each allele, introduces a stop codon 11 amino acids downstream from the site of the deletion. The presence of this deletion–insertion mutation at cDNA position 565 suggests that this site in the PMM2 gene may be a hotspot for chromosomal breakage. Published 2002 Wiley‐Liss, Inc.  相似文献   

15.
Phosphomannomutase 2 deficiency (PMM2‐CDG) is an autosomal recessive congenital disorder of glycosylation, characterized by multisystem phenotypes, mostly including neurological involvement. In Turkey, due to high rates of consanguinity, many patients with autosomal recessive disorders have homozygous variants and these diseases are more common, compared to Europe. However, published reports of PMM2‐CDG from Turkey are scarce. Here, we describe clinical and molecular characteristics of PMM2‐CDG patients diagnosed in three centers in Turkey, using data obtained retrospectively from hospital records. We also analyzed an in‐house exome database of 1,313 individuals for PMM2 variants and estimated allele, carrier and disease frequencies, using the Hardy–Weinberg law. Eleven patients were identified from 10 families, displaying similar characteristics to previous publications, with the exception of the first report of epilepsia partialis continua and increased prevalence of sensorineural hearing loss. p.Val231Met was the most common variant, and was homozygous in four patients. This novel genotype results in a neurological phenotype with subclinical visceral involvement. Exome database analysis showed an estimated prevalence of 1:286,726 for PMM2‐CDG, which is much lower than expected (1:20,000 in Europe) because of the lack of predominance of the common European p.Asp141His allele, associated with a severe phenotype (allele frequency of 1:2,622 compared to 1:252 in gnomAD). These data suggest that prevalence, phenotypes and genotypes of PMM2‐CDG in Turkey differ significantly from those in Europe: Milder phenotypes may be more common, but the disease itself rarer, requiring a higher clinical suspicion for diagnosis. The association of sensorineural hearing loss with PMM2‐CDG warrants further study.  相似文献   

16.
Congenital disorder of glycosylation (CDG) type Ia (PMM2 mutations) is the most common genetic disorder of protein N-glycosylation. The wide clinical spectrum with mild to severe impairment of neurological function and extensive allelic heterogeneity hamper phenotype-genotype comparison. We report on two male adult siblings with the PMM2 mutations c. 385G > A (p.V129M) and c. 422G > A (p.R141H) and partially different clinical phenotype. Patient 2 has a more severe degree of neurological and systemic involvement and a more pronounced decrease in levels of serum glycoproteins. MALDI-TOF mass spectrometry of serum transferrin and alpha-1-antitrypsin shows more pronounced glycosylation defects in the more severely affected patient. Glycoproteomic analysis may reveal differences in CDG-Ia patients with different disease severity and might endorse clinical characterization of CDG-Ia patients.  相似文献   

17.
Early‐onset epileptic encephalopathies (EOEE) are severe neurological disorders characterized by frequent seizures accompanied by developmental regression or retardation. Whole‐exome sequencing of 12 patients together with five pairs of parents and subsequent Sanger sequencing in additional 328 EOEE patients identified two de novo frameshift and one missense mutations in SLC35A2 at Xp11.23, respectively. The three patients are all females. X‐inactivation analysis of blood leukocyte DNA and mRNA analysis using lymphoblastoid cells derived from two patients with a frameshift mutation indicated that only the wild‐type SLC35A2 allele was expressed in these cell types, at least in part likely as a consequence of skewed X‐inactivation. SLC35A2 encodes a UDP‐galactose transporter (UGT), which selectively supplies UDP‐galactose from the cytosol to the Golgi lumen. Transient expression experiments revealed that the missense mutant protein was correctly localized in the Golgi apparatus. In contrast, the two frameshift mutant proteins were not properly expressed, suggesting that their function is severely impaired. Defects in the UGT can cause congenital disorders of glycosylation. Of note, no abnormalities of glycosylation were observed in three serum glycoproteins, which is consistent with favorably skewed X‐inactivation. We hypothesize that a substantial number of neurons might express the mutant SLC35A2 allele and suffer from defective galactosylation, resulting in EOEE.  相似文献   

18.
Variants in the neuronal sodium channel gene SCN8A have been implicated in several neurological disorders. Early infantile epileptic encephalopathy type 13 results from de novo gain‐of‐function mutations that alter the biophysical properties of the channel. Complete loss‐of‐function variants of SCN8A have been identified in cases of isolated intellectual disability. We now report a novel heterozygous SCN8A variant, p.Pro1719Arg, in a small pedigree with five family members affected with autosomal dominant upper limb isolated myoclonus without seizures or cognitive impairment. Functional analysis of the p.Pro1719Arg variant in transfected neuron‐derived cells demonstrated greatly reduced Nav1.6 channel activity without altered gating properties. Hypomorphic alleles of Scn8a in the mouse are known to result in similar movement disorders. This study expands the phenotypic and functional spectrum of SCN8A variants to include inherited nonepileptic isolated myoclonus. SCN8A can be considered as a candidate gene for isolated movement disorders without seizures.  相似文献   

19.
DDX3X (Xp11.4) encodes a DEAD‐box RNA helicase that escapes X chromosome inactivation. Pathogenic variants in DDX3X have been shown to cause X‐linked intellectual disability (ID) (MRX102, MIM: 300958). The phenotypes associated with DDX3X variants are heterogeneous and include brain and behavioral abnormalities, microcephaly, hypotonia, and movement disorders and/or spasticity. The majority of DDX3X variants described are de novo mutations in females with ID. In contrast, most male DDX3X variants are inherited from an unaffected mother, with one documented exception being a recently identified de novo splice site variant. It has been suggested, therefore, that DDX3X exerts its effects through haploinsufficiency in females, and that affected males carry hypomorphic alleles that retain partial function. Given the lack of male de novo DDX3X variants, loss‐of‐function variants in this gene are suspected to be male lethal. Through whole‐exome sequencing, we identified three unrelated males with hemizygous missense DDX3X variants and ID. All three variants were confirmed by Sanger sequencing, with two established as de novo. In silico analyses were supportive of pathogenicity. We report the male phenotypes and compare them to phenotypes observed in previously reported male and female patients. In conclusion, we propose that de novo DDX3X variants are not necessarily male lethal and should be considered as a cause of syndromic ID in both males and females.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号