首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hereditary hemorrhagic telangiectasia (HHT, Osler–Weber–Rendu disease) is an autosomal dominant inherited disease defined by the presence of epistaxis and mucocutaneous telangiectasias and arteriovenous malformations (AVMs) in internal organs. In most families (~85%), HHT is caused by mutations in the ENG (HHT1) or the ACVRL1 (HHT2) genes. Here, we report the results of genetic testing of 113 Norwegian families with suspected or definite HHT. Variants in ENG and ACVRL1 were found in 105 families (42 ENG, 63 ACVRL1), including six novel variants of uncertain pathogenic significance. Mutation types were similar to previous reports with more missense variants in ACVRL1 and more nonsense, frameshift and splice‐site mutations in ENG. Thirty‐two variants were novel in this study. The preponderance of ACVRL1 mutations was due to founder mutations, specifically, c.830C>A (p.Thr277Lys), which was found in 24 families from the same geographical area of Norway. We discuss the importance of founder mutations and present a thorough evaluation of missense and splice‐site variants.  相似文献   

2.
3.
Wooderchak W, Gedge F, McDonald M, Krautscheid P, Wang X, Malkiewicz J, Bukjiok CJ, Lewis T, Bayrak‐Toydemir P. Hereditary hemorrhagic telangiectasia: two distinct ENG deletions in one family. Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by aberrant vascular development. Mutations in endoglin (ENG) or activin A receptor type II‐like 1 (ACVRL1) account for around 90% of HHT patients, 10% of those are large deletions or duplications. We report here the first observation of two distinct, large ENG deletions segregating in one pedigree. An ENG exon 4–7 deletion was observed in a patient with HHT. This deletion was identified in several affected family members. However, some affected family members had an ENG exon 3 deletion instead. These deletions were detected by multiplex ligation‐dependent probe amplification and confirmed by mRNA sequencing and an oligo‐CGH array. Linkage analysis revealed that one individual with the exon 3 deletion inherited the same chromosome from his mother who has the exon 4–7 deletion. This finding has important clinical implications because it shows that targeted family‐specific mutation analysis for exon deletions could have led to the misdiagnosis of some affected family members.  相似文献   

4.
Mutations in the ENG gene on chromosome 9 (HHT 1) and in the ALK‐1 gene on chromosome 12 (HHT 2) have been reported as causes of hereditary hemorrhagic telangiectasia (HHT). HHT 1 has been correlated with a higher prevalence of pulmonary arteriovenous malformations than HHT 2. Other distinct phenotype–genotype correlations have not been described. The prevalence of HHT in the county of Fyn, Denmark, was 15.6 per 100,000 on January 1, 1995. All living patients and their first‐degree relatives were invited to attend a detailed clinical examination and blood was drawn for mutation analysis. In two families mutations were identified in exon 8 of the ALK‐1 gene. In family 6 we found a T1193A mutation. In this family a high prevalence of PAVM and severe GI bleeding was documented, while in family 8 with a C1120T mutation no individuals with PAVM were identified and only one patient had a history of severe GI bleeding. No mutations in the endoglin locus were found in either family. © 2001 Wiley‐Liss, Inc.  相似文献   

5.
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder causing vascular dysplasias. About 70–80% of HHT patients carries mutations in ENG or ACVRL1 genes, which code for a TGFβ receptor type III and I respectively. Molecular data on a large cohort of Italian HHT patients are presented, discussing the significance of missense and splice site mutations. Mutation analysis in ENG and ACVRL1 genes was performed using single strand conformation polymorphisms (SSCP), denaturing high performance liquid chromatography (DHPLC) and subsequent direct sequencing. Overall, 101 mutations were found, with ACVRL1 involved in 71% of cases. The highest number of mutations (28/101 subjects, 14/76 different mutations referring to both genes) was in ACVRL1, exon 3. Mutation analysis was then extended to a total of 356 family members, and 162 proven to carry the mutation. New polymorphisms were identified in both genes, and evidence that ENG P131L change is not a disease-causing mutation was also provided. An in silico analysis was performed in order to characterize splice-site mutations. These results were compared to other European national studies and data from Italy, France and Spain were consistent for an higher incidence of ACVRL1 mutations.  相似文献   

6.
Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominantly inherited vascular disease characterized by the presence of mucocutaneous telangiectasia and visceral arteriovenous malformations (AVM). The clinical diagnosis of HHT is based on the Curaçao criteria. About 85% of HHT patients carry mutations in the ENG, ACVRL1 or SMAD4 genes. Here, we report on the genetic heterogeneity in the Danish national HHT population and address the prevalence of pulmonary arteriovenous malformations (PAVM). Probands of 107 apparently unrelated families received genetic testing, including sequencing and multiplex ligation‐dependent probe amplification (MLPA) analyses of ENG, ACVRL1 and SMAD4. These 107 families included 320 patients confirmed to have HHT either clinically or genetically. In 89% of the probands (n = 95), a mutation was identified. We detected 64 unique mutations of which 27 (41%) were novel. Large deletions were identified in ENG and ACVRL1. The prevalence of PAVM was 52.3% in patients with an ENG mutation and 12.9% in the ACVRL1 mutation carriers. We diagnosed 80% of the patients clinically, fulfilling the Curaçao criteria, and those remaining were diagnosed by genetic testing. It is discussed when to assign pathogenicity to missense and splice site mutations. The adding of an extra criterion to the Curaçao criteria is suggested.  相似文献   

7.
Missense, iso‐semantic, and intronic mutations are challenging for interpretation, in particular for their impact in mRNA. Various tools such as the Human Splicing Finder (HSF) system could be used to predict the impact on splicing; however, no diagnosis result could rely on predictions alone, but requires functional testing. Here, we report an in vitro approach to study the impact of DYSF mutations on splicing. It was evaluated on a series of 45 DYSF mutations, both intronic and exonic. We confirmed splicing alterations for all intronic mutations localized in 5′ or 3′ splice sites. Then, we showed that DYSF missense mutations could also result in splicing defects: mutations c.463G>A and c.2641A>C abolished ESEs and led to exon skipping; mutations c.565C>G and c.1555G>A disrupted Exonic Splicing Enhancer (ESE), while concomitantly creating new 5′ or 3′ splice site leading to exonic out of frame deletions. We demonstrated that 20% of DYSF missense mutations have a strong impact on splicing. This minigene strategy is an efficient tool for the detection of splicing defects in dysferlinopathies, which could allow for a better comprehension of splicing defects due to mutations and could improve prediction tools evaluating splicing defects.  相似文献   

8.
Carmona‐Rivera C, Hess RA, O’Brien K, Golas G, Tsilou E, White JG, Gahl WA, Huizing M. Novel mutations in the HPS1 gene among Puerto Rican patients. Hermansky‐Pudlak syndrome (HPS) is a disorder of oculocutaneous albinism (OCA) and platelet storage pool deficiency. Eight different disease‐causing genes have been identified, whose gene products are thought to be involved in the biogenesis of lysosome‐related organelles. HPS type 1 (HPS‐1) is the most common HPS subtype in Puerto Rico, with a frequency of 1:1800 in the northwest of the island due to a founder mutation, i.e. a 16‐bp duplication in exon 15 of the HPS1 gene (c.1472_1487dup16; p.H497QfsX90). We identified three Puerto Rican HPS‐1 patients who carried compound heterozygous HPS1 mutations. One patient was heterozygous for c.937G>A, causing a missense mutation (p.G313S) at the 3′ splice junction of exon 10. This mutation resulted in activation of a cryptic intronic splice site causing an aberrantly spliced HPS1 mRNA that included 144‐bp of intronic sequence, producing 11 novel amino acids followed by a stop codon. The other two patients were heterozygous for the previously reported c.972delC in HPS1, resulting in a frameshift and a premature stop codon (p.M325WfsX6). These findings indicate that, among Puerto Ricans, other HPS1 mutations apart from the 16‐bp duplication should be considered in the analysis of this population.  相似文献   

9.
Hereditary angioedema (HAE) is a disease caused by defects in the C1 inhibitor gene (SERPING1/C1NH). We screened the entire C1NH gene for mutations in a large series of 87 Spanish families (77 with type I, and 10 with type II HAE) by SSCP, sequencing, Southern blotting, and quantitative multiplex PCR of short fluorescent fragments (QMPSF), and we characterized several defects at the mRNA level. We found large rearrangements in 13 families, and point mutations or microdeletions/insertions in 74 families. The 13 large rearrangements included nine exon deletions, of which at least eight were distinct, two were distinct exon duplications, and two were rearrangements whose precise nature could not be determined. We confirmed that exon 4 is particularly prone to rearrangements. Thirty-six mutations were unreported, and included 10 microdeletions/insertions, 10 missense, five nonsense, eight splicing, and three splicing or missense mutations. Moreover, we detected six novel uncharacterized sequence variants (USV). RT-PCR studies showed that in addition to several intronic splice site mutations tested, the exonic mutations c.882C>G and c.884T>G, located near the 3' end of exon 5, also produced exon skipping. This is the first evidence of SERPING1/C1NH mutations in coding regions that differ from the canonical splice sites that affect splicing, which suggests the presence of an exonic splicing enhancer (ESE) in exon 5.  相似文献   

10.
11.
We report a new Japanese family with tricho‐rhino‐phalangeal syndrome type III (TRPS III) who have a missense mutation (Arg908Gln) of theTRPS1 gene (TRPS1) in affected individuals of the family. This study supports the notion that TRPS III results from missense mutations in exon 6 of TRPS1. © 2001 Wiley‐Liss, Inc.  相似文献   

12.
Variants in ABCA4 are responsible for autosomal‐recessive Stargardt disease and cone‐rod dystrophy. Sequence analysis of ABCA4 exons previously revealed one causative variant in each of 45 probands. To identify the “missing” variants in these cases, we performed multiplex ligation‐dependent probe amplification‐based deletion scanning of ABCA4. In addition, we sequenced the promoter region, fragments containing five deep‐intronic splice variants, and 15 deep‐intronic regions containing weak splice sites. Heterozygous deletions spanning ABCA4 exon 5 or exons 20–22 were found in two probands, heterozygous deep‐intronic variants were identified in six probands, and a deep‐intronic variant was found together with an exon 20–22 deletion in one proband. Based on ophthalmologic findings and characteristics of the identified exonic variants present in trans, the deep‐intronic variants V1 and V4 were predicted to be relatively mild and severe, respectively. These findings are important for proper genetic counseling and for the development of variant‐specific therapies.  相似文献   

13.
Hereditary hemorrhagic telangiectasia type 1 (HHT1) is a vascular dysplasia caused by mutations in the endoglin (ENG) gene and associated with epistaxis, telangiectases, and a high incidence of pulmonary arteriovenous malformations. To efficiently detect deletions and insertions, we optimized a quantitative multiplex polymerase chain reaction (QMPCR) analysis. We report 17 novel mutations, of which six were detected by QMPCR. Three deletions occurring in intronic sequences were associated with a single copy of exons 9a-14, exon 5, and exons 7-8, respectively. A transient 70kDa monomeric mutant protein resulted from the in-frame deletion of exons 7 and 8 but no mutant protein was present in the other cases. Deletion (in exon 10) or insertion (in exon 7) of two nucleotides, as well as a 1-bp deletion in the small exon 9a were found by QMPCR. Sequencing was required to detect single nucleotide deletions/insertions in exons 2, 5, 6, and 8. No mutant proteins were associated with these frame shift mutations. Two novel splice site mutations resulted in skipping of exons 2 and 4, respectively, while a previously reported intron 3 splice mutant was observed as a de novo mutation. We also report five novel nonsense and missense mutations, including one de novo. Review of the 80 HHT1 families reported to date indicates that 10% would not be resolved by sequencing and that an additional 25% could be revealed by QMPCR performed prior to sequencing. Thus the use of QMPCR accelerates genetic screening for HHT1 and resolves mutations affecting whole exons.  相似文献   

14.
Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder caused by mutations in Endoglin (ENG) or activin receptor-like kinase-1 (ALK1, ACVRL1) genes. We performed molecular characterization in clinically affected probands of 31 HHT families and detected a total of 28 different mutations in the two genes, including four shared by more than one family. Twelve mutations were identified in the ENG gene, six of which were novel and comprised two nonsense mutations in exons 6 and 8, deletions in exons 5 and 11, and splice site mutations in exon 12 and intron 8. Eleven of sixteen mutations identified in the ALK1 gene were novel single base pair substitutions in exons 4, 7, 8, and 9. We also describe the first de novo ALK1 mutation that causes a previously unreported c.1133C>A substitution of a highly conserved residue (p.P378H). The proband and his two daughters, who also carried the familial mutation, all suffered from gastrointestinal (GI) bleeding. In addition, we report seven newly identified polymorphisms and summarize all known ones in both genes.  相似文献   

15.
Mutations in the OPN1LW (L‐) and OPN1MW (M‐)cone opsin genes underlie a spectrum of cone photoreceptor defects from stationary loss of color vision to progressive retinal degeneration. Genotypes of 22 families with a range of cone disorders were grouped into three classes: deletions of the locus control region (LCR); missense mutation (p.Cys203Arg) in an L‐/M‐hybrid gene; and exon 3 single‐nucleotide polymorphism (SNP) interchange haplotypes in an otherwise normal gene array. Moderate‐to‐high myopia was observed in all mutation categories. Individuals with LCR deletions or p.Cys203Arg mutations were more likely to have nystagmus and poor vision, with disease progression in some p.Cys203Arg patients. Three disease‐associated exon 3 SNP haplotypes encoding LIAVA, LVAVA, or MIAVA were identified in our cohort. These patients were less likely to have nystagmus but more likely to show progression, with all patients over the age of 40 years having marked macular abnormalities. Previously, the haplotype LIAVA has been shown to result in exon 3 skipping. Here, we show that haplotypes LVAVA and MIAVA also result in aberrant splicing, with a residual low level of correctly spliced cone opsin. The OPN1LW/OPN1MW:c.532A>G SNP, common to all three disease‐associated haplotypes, appears to be principally responsible for this mutational mechanism.  相似文献   

16.
De novo missense mutations and in‐frame coding deletions in the X‐linked gene SMC1A (structural maintenance of chromosomes 1A), encoding part of the cohesin complex, are known to cause Cornelia de Lange syndrome in both males and females. For a long time, loss‐of‐function (LoF) mutations in SMC1A were considered incompatible with life, as such mutations had not been reported in neither male nor female patients. However, recently, the authors and others reported LoF mutations in females with intellectual disability (ID) and epilepsy. Here we present the detailed phenotype of two females with de novo LoF mutations in SMC1A, including a de novo mutation of single base deletion [c.2364del, p.(Asn788Lysfs*10)], predicted to result in a frameshift, and a de novo deletion of exon 16, resulting in an out‐of‐frame mRNA splice product [p.(Leu808Argfs*6)]. By combining our patients with the other recently reported females carrying SMC1A LoF mutations, we ascertained a phenotypic spectrum of (severe) ID, therapy‐resistant epilepsy, absence/delay of speech, hypotonia and small hands and feet. Our data show the existence of a novel phenotypic entity – distinct from CdLS – and caused by de novo SMC1A LoF mutations.  相似文献   

17.
Classical lissencephaly (LIS) and subcortical band heterotopia (SBH) are related cortical malformations secondary to abnormal migration of neurons during early brain development. Approximately 60% of patients with classical LIS, and one patient with atypical SBH have been found to have deletions or mutations of the LIS1 gene, located on 17p13.3. This gene encodes the LIS1 or PAFAH1B1 protein with a coiled‐coil domain at the N‐terminus and seven WD40 repeats at the C‐terminus. It is highly conserved between species and has been shown to interact with multiple proteins involved with cytoskeletal dynamics, playing a role in both cellular division and motility, as well as the regulation of brain levels of platelet activating factor. Here we report 65 large deletions of the LIS1 gene detected by FISH and 41 intragenic mutations, including four not previously reported, the majority of which have been found as a consequence of the investigation of 220 children with LIS or SBH by our group. All intragenic mutations are de novo, and there have been no familial recurrences. Eight‐eight percent (36/41) of the mutations result in a truncated or internally deleted protein—with missense mutations found in only 12% (5/41) thus far. Mutations occurred throughout the gene except for exon 7, with clustering of three of the five missense mutations in exon 6. Only five intragenic mutations were recurrent. In general, the most severe LIS phenotype was seen in patients with large deletions of 17p13.3, with milder phenotypes seen with intragenic mutations. Of these, the mildest phenotypes were seen in patients with missense mutations. Hum Mutat 19:4–15, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

18.
19.
Hereditary haemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome) is an autosomal dominant disorder characterized by localized angiodysplasia due to mutations in endoglin, ALK-1 gene, and a still unidentified locus. The lack of highly recurrent mutations, locus heterogeneity, and the presence of mutations in almost all coding exons of the two genes makes the screening for mutations time-consuming and costly. In the present study, we developed a DHPLC-based protocol for mutation detection in ALK1 and ENG genes through retrospective analysis of known sequence variants, 20 causative mutations and 11 polymorphisms, and a prospective analysis on 47 probands with unknown mutation. Overall DHPLC analysis identified the causative mutation in 61 out 66 DNA samples (92.4%). We found 31 different mutations in the ALK1 gene, of which 15 are novel, and 20, of which 12 are novel, in the ENG gene, thus providing for the first time the mutational spectrum in a cohort of Italian HHT patients. In addition, we characterized the splicing pattern of ALK1 gene in lymphoblastoid cells, both in normal controls and in two individuals carrying a mutation in the non-invariant -3 position of the acceptor splice site upstream exon 6 (c.626-3C>G). Functional essay demonstrated the existence, also in normal individuals, of a small proportion of ALK1 alternative splicing, due to exon 5 skipping, and the presence of further aberrant splicing isoforms in the individuals carrying the c.626-3C>G mutation.  相似文献   

20.
Molecular diagnosis in Usher syndrome type 1 and 2 patients led to the identification of 21 sequence variations located in noncanonical positions of splice sites in MYO7A, CDH23, USH1C, and USH2A genes. To establish experimentally the splicing pattern of these substitutions, whose impact on splicing is not always predictable by available softwares, ex vivo splicing assays were performed. The branch‐point mapping strategy was also used to investigate further a putative branch‐point mutation in USH2A intron 43. Aberrant splicing was demonstrated for 16 of the 21 (76.2%) tested sequence variations. The mutations resulted more frequently in activation of a nearby cryptic splice site or use of a de novo splice site than exon skipping (37.5%). This study allowed the reclassification as splicing mutations of one silent (c.7872G>A (p.Glu2624Glu) in CDH23) and four missense mutations (c.2993G>A (p.Arg998Lys) in USH2A, c.592G>A (p.Ala198Thr), c.3503G>C [p.Arg1168Pro], c.5944G>A (p.Gly1982Arg) in MYO7A), whereas it provided clues about a role in structure/function in four other cases: c.802G>A (p.Gly268Arg), c.653T>A (p.Val218Glu) (USH2A), and c.397C>T (p.His133Tyr), c.3502C>T (p.Arg1168Trp) (MYO7A). Our data provide insights into the contribution of splicing mutations in Usher genes and illustrate the need to define accurately their splicing outcome for diagnostic purposes. Hum Mutat 31:1–9, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号