首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thalamo-cortical feedback loops play a key role in the processing and coordination of processing and integration of perceptual inputs and outputs, and disruption in this connection has long been hypothesized to contribute significantly to neuropsychological disturbances in schizophrenia. To test this hypothesis, we applied diffusion tensor tractography to 18 patients suffering schizophrenia and 20 control subjects. Fractional anisotropy (FA) was evaluated in the bilateral anterior and posterior limbs of the internal capsule, and correlated with clinical and neurocognitive measures. Patients diagnosed with schizophrenia showed significantly reduced FA bilaterally in the anterior but not the posterior limb of the internal capsule, compared with healthy control subjects. Lower FA correlated with lower scores on tests of declarative episodic memory in the patient group only. These findings suggest that disruptions, bilaterally, in thalamo-cortical connections in schizophrenia may contribute to disease-related impairment in the coordination of mnemonic processes of encoding and retrieval that are vital for efficient learning of new information.  相似文献   

2.
Diffusion tensor imaging (DTI) was used to investigate regional white matter in vivo in patients with schizophrenia. DTI is capable of providing information about the organization of white matter tracts and has only recently been used to study schizophrenia. In this study, a voxel based analysis of DTI maps in 14 patients and 19 controls did not reveal any areas of significant differences in DTI measures in white matter. The findings suggest that the structural integrity of white matter in these patients was not disrupted. These results are discussed in relation to previous studies reporting positive findings. It is concluded that further studies using DTI in larger samples, improved and standardised methods of data acquisition and analysis are needed.  相似文献   

3.
The amygdala, hippocampus, and medial prefrontal cortex are limbic brain regions connected by the uncinate fasciculus (UF) and implicated in emotion regulation. The aim of this study was to assess the connectivity characteristics of the UF in patients with psychogenic nonepileptic seizures (PNES) and matched healthy controls. We hypothesized that white matter connectivity of the UF in patients with PNES would differ from that in healthy controls. Eight patients with PNES and eight age- and sex-matched healthy controls underwent 3T MRI and 32-direction diffusion tensor imaging (DTI). Computation of DTI indices including fractional anisotropy (FA) and diffusion tensor tractography was performed. Two regions of interest were defined to manually trace the UF in each hemisphere for each subject. Fractional anisotropy and the number of reconstructed streamlines for the left and right hemispheres of the UF and the degree of asymmetry for each measure were compared between groups. Correlations between UF measures and clinical variables were also performed. Patients with PNES exhibited a significantly greater number of UF streamlines in the right hemisphere tract than in the left hemisphere (p = 0.031), with such difference not observed in controls (p = 0.81). This was reflected in a significant group difference in the asymmetry index (AI) for the number of streamlines, with more rightward asymmetry in patients with PNES (p = 0.021). Average FA of the UF was similar between groups and between hemispheres for each group (all p > 0.05). Age at illness onset was correlated with the AI for FA (r =  0.87; p = 0.0045). Previously observed differences in emotion processing between controls and patients with PNES may be related to the differences in the rightward asymmetry in the number of UF streamlines in patients with PNES. Age at PNES onset appears to also have a role in the FA asymmetry of the UF. This is the first study to investigate the structural connectivity in these regions involved in emotional regulation in patients with PNES; further research is necessary to clarify the complex relationships between clinical measures and DTI characteristics.  相似文献   

4.
The corpus callosum (CC) has emerged as one of the primary targets of autism research. To detect aberrant CC interhemispheric connectivity in autism, we performed T1-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI)-based tractography in 18 children with high functioning autism (HFA) and 16 well-matched typically developing (TD) children. We compared global and regional T1 measures (CC volume, and CC density), and the DTI measures [fractional anisotropy (FA), apparent diffusion coefficient (ADC), average fiber length (AFL), and fiber number (FN)] of transcallosal fibers, between the two groups. We also evaluated the relationships between scores on the Childhood Autism Rating Scale (CARS) and CC T1 or DTI measurements. Significantly less white matter density in the anterior third of the CC, and higher ADC and lower FN values of the anterior third transcallosal fiber tracts were found in HFA patients compared to TD children. These results suggested that the anterior third CC density and transcallosal fiber connectivity were affected in HFA children.  相似文献   

5.
6.
Structural brain changes in schizophrenia are well documented in the neuroimaging literature. The classical morphometric analyses of magnetic resonance imaging (MRI) data have recently been supplemented by diffusion tensor imaging (DTI), which mainly assesses changes in white matter (WM). DTI increasingly provides evidence for abnormal anatomical connectivity in schizophrenia, most often using fractional anisotropy (FA) as an indicator of the integrity of WM tracts. To better understand the clinical significance of such anatomical changes, we studied FA values in a whole-brain analysis comparing paranoid schizophrenic patients with a history of auditory hallucinations and matched healthy controls. The relationship of WM changes to psychopathology was assessed by correlating FA values with PANSS scores (positive symptoms and severity of auditory hallucinations) and with illness duration. Schizophrenic patients showed FA reductions indicating WM integrity disturbance in the prefrontal regions, external capsule, pyramidal tract, occipitofrontal fasciculus, superior and inferior longitudinal fasciculi, and corpus callosum. The arcuate fasciculus was the only tract which showed increased FA values in patients. Increased FA values in this region correlated with increased severity of auditory hallucinations and length of illness. Our results suggest that local changes in anatomical integrity of WM tracts in schizophrenia may be related to patients' clinical presentation.  相似文献   

7.
OBJECTIVE: To utilize diffusion tensor tractography and evaluate the integrity of the corticospinal tract in children with unilateral Sturge-Weber syndrome (SWS). METHODS: Sixteen children (age: 1.5-12.3 years) with SWS involving one hemisphere and varying degrees of motor deficit, underwent magnetic resonance imaging (MRI) as part of a prospective clinical research study. Diffusion tensor imaging (DTI) was obtained and fiber tracking of the corticospinal tract was performed yielding average FA and ADC values along the pathway. These values were compared between the two hemispheres (affected vs. unaffected) and also correlated with the degree of motor deficits, after correction for age. RESULTS: Corticospinal tract FA values on the side of the affected hemisphere were lower (p=0.008) and ADC values were higher (p=0.011) compared to the normal side. Furthermore, FA and ADC values on the side of the angioma did not show the normal age-related variations, which the contralateral corticospinal pathway values did demonstrate. Although none of the patients had severe hemiparesis, those with moderate motor deficit had increased ADC values, as compared to those with mild (p=0.009) or no motor deficit (p=0.045). CONCLUSION: MRI with DTI shows abnormalities of the corticospinal tract in children with SWS even before severe motor impairment develops. Thus, DTI can be a clinically useful method to evaluate the integrity of the corticospinal tract in young children who are at risk for progressive motor dysfunction.  相似文献   

8.
9.
Bipolar disorder has been associated with anatomical as well as functional abnormalities in a brain network that mediates normal and impaired emotion regulation. Previous brain imaging studies have highlighted the subgenual cingulate (SC) and the amygdalo-hippocampal (AH) complex as core regions of this network. Thus we investigated white matter (WM) fiber tracts between the SC and the AH region, the uncinate fasciculus, as well as between two control regions (pons and cerebellum), using diffusion tensor imaging tractography in 16 euthymic bipolar patients (BP) and 16 sex-, age- and handedness-matched controls. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the reconstructed fiber bundle and the number of virtual reconstructed fibers were compared between groups. The tractography results revealed a significantly increased number of reconstructed fibers between the left SC and left AH in BP as compared to healthy controls. FA and ADC of the reconstructed fiber tract did not differ significantly between the groups. Furthermore, no significant group differences were observed neither for reconstructed fiber tracts between the right SC and right AH nor between the control regions. The present results suggest an altered WM pathway between the left SC and AH region and thus extend previous findings of anatomical and functional modifications in these structures in BP.  相似文献   

10.
11.
Diffusion tensor imaging (DTI) can be used to study the organization of brain white matter noninvasively. The aim of this study was to present a proof of concept for integrating DTI with high-resolution anatomical (T1) images to map and assess inter-regional connectivity across the entire cortex in a cohort of healthy participants and compared with patients with major depressive disorder. We used MRI data of 23 patients and 23 matched controls, assessed as part of baseline testing in the International Study to Predict Optimized Treatment in Depression (iSPOT-D). Freesurfer was used to analyze the T1 images to automatically label 35 gyral-based areas for each hemisphere. DTI tractography was performed to parcellate intercortical tracts using each of these areas in seed-target combinations. We quantified fractional anisotropy, number-of-fiber connections, and fiber path length for each DTI connection, with the goal of identifying the best measure or combination of measures to characterize major depression. The best classification accuracy for the individual measures was achieved using the number-of-fibers data, whereas the combination model provided a slight improvement. The most discriminant features between the two groups were for white matter associated with the limbic, frontal, and thalamic projection fibers and as part of cortical connections between the left inferior temporal and the postcentral cortex; the left parstriangularis and the left superior frontal; the left cuneus and the corpus callosum; the left lingual and the right lateral occipital, the right superior parietal and the right superior temporal cortices; and the right inferior parietal and the right insula and postcentral cortices.  相似文献   

12.
We report on a patient with ideomotor apraxia (IMA) and limb-kinetic apraxia (LKA) following cerebral infarct, which demonstrated neural tract injuries by diffusion tensor tractography (DTT). A 67-year-old male was diagnosed as cerebral infarct in the left frontal cortex (anterior portion of the precentral gyrus and prefrontal cortex) and centrum semiovale. The patient presented with severe paralysis of the right upper extremity and mild weakness of the right lower extremity at onset. At the time of DTT scanning (5 months after onset), the patient was able to move all joint muscles of the right upper extremity against gravity, except for the finger extensors, which he could extend partially against gravity. The patient showed intact ideational plan for motor performance; however, his movements were slow, clumsy, and mutilated when executing grasp-release movements of his affected hand. The patient's score on the ideomotor apraxia test was 20 (cut-off score < 32). DTTs for premotor cortex fibers, supplementary motor area fibers, and superior longitudinal fasciculus of the left hemisphere showed partial injuries, compared with those of the right side, and these injuries appeared to be responsible for IMA and LKA in this patient.  相似文献   

13.
We investigated whether the integrity of the corticospinal tract classified by diffusion tensor tractography (DTT) can predict the motor outcome in 25 patients with pontine infarct. DTTs were obtained in the early stage of stroke (5-30 days) and were classified into two groups (type A: the integrity of corticospinal tract was preserved around the infarct; type B: corticospinal tract was interrupted). DTT type A patients showed better motor function than the type B patients at 6 months after onset. DTT obtained at the early stage of pontine infarct appears to have predictive value for motor outcome in patients with pontine infarct.  相似文献   

14.
15.
Background: Neuroimaging studies show increased diffusivity and decreased anisotropy in Alzheimer's disease (AD) patients by diffusion tensor imaging (DTI). Previous reports have analyzed a correlation with cognitive function and DTI parameters, but their results are inconsistent. A reason for this might be a region of interest (ROI) method, used to calculate parameters for DTI, because this method has various usages of how to place a ROI and includes summations of values for various neuronal fiber tracts, resulting in contamination of unintended fibers. To improve the instability with ROI placement, a tractography‐based method might be useful. Our coworker reported decreased fractional anisotropy (FA) and increased apparent diffusion coefficient (ADC) of uncinate fasciculus (UF) in patients with AD by tractography. To confirm whether DTI parameter values are related to severity of cognitive function in patients with AD, we measured mean diffusion anisotropy and diffusivity of coregistered voxels along the tracking lines (i.e. tract of interest) of UF. Methods: The subjects were 30 patients with probable AD (NINCDS‐ADRDA criteria). Assessment of cognitive function was carried out according to the Mini‐Mental State Examination (MMSE) and the Alzheimer's Disease Assessment Scale‐cognitive component‐Japanese version (ADAS‐Jcog). A 1.5‐T clinical magnetic resonance unit was used to obtain diffusion tensor images. Diffusion tensors were computed and fiber‐tract maps were created using ‘dTV II’ DTI software developed by Masutani et al. We measured mean FA and ADC values along the bilateral UF. Results: FA values were positively correlated with MMSE score (r= 0.67) and were negatively correlated with ADAS‐Jcog score (r=?0.62), while ADC values were negatively correlated with MMSE score (r=?0.58) and were positively correlated with ADAS‐Jcog score (r= 0.59). Conclusion: FA and ADC values might reflect the severity of cognitive dysfunction. The tract‐of‐interest method might be a useful tool for objectively evaluating DTI parameters in AD.  相似文献   

16.
《中国神经再生研究》2016,(6):1013-1014
正Optic radiation(OR)injury can occur following various brain injuries and it is usually accompanied by visual field defects(Zhang et al.,2006).OR is very important for performing activities of daily living and providing safety.However,the OR cannot be clearly demarcated from adjacent neural structures and thereby conventional brain MRI has limited specificity in diagnosis of OR injury.Diffusion tensor tractography(DTT),  相似文献   

17.
Most portions of the Papez circuit have been identified by diffusion tensor tractography (DTT). However, no DTT study on the proportion of the Papez circuit between the anterior thalamic nuclei and cingulate gyrus has been reported. We attempted to reconstruct the thalamocortical tract between the anterior thalamic nuclei and cingulate gyrus using DTT. All the reconstructed thalamocortical tracts originated from the anterior thalamic nuclei, ascended through the genu of the internal capsule, the anterior limb of the internal capsule, and the white matter around the anterior horn of the lateral ventricle in the anterior and lateral direction, and then terminated at the anterior cingulate gyrus. In terms of FA, MD, and tract volume, no significant differences were observed between hemispheres (p?>?0.05). We reconstructed the thalamocortical tract between the anterior thalamic nucleus and cingulate gyrus in the human brain using DTT. We believe that the methodology and results of this study will be helpful to researchers investigating the Papez circuit.  相似文献   

18.
Motor deficits associated with developmental coordination disorder are not attributable to macrostructural brain abnormalities, but differences in brain microstructure may exist. Using diffusion tensor imaging, we explored the integrity of motor, sensory, and cerebellar pathways in children with and without developmental coordination disorder. In seven children with the disorder and nine typically developing children (aged 8-12 years), we measured diffusivity and fractional anisotropy of the corticospinal tract, posterior thalamic radiation, and superior and middle cerebellar peduncles. Fractional anisotropy of motor and sensory tracts and diffusion parameters in cerebellar peduncles did not differ between groups. Mean diffusivity of the corticospinal tract and posterior thalamic radiation was lower in children with developmental coordination disorder compared with control children (P < 0.04 and P < 0.06, respectively). Results were driven by lower axial diffusivity, which was significantly correlated with motor impairment scores on the Movement Assessment Battery for Children-2 for both the corticospinal tract (r = 0.56, P = 0.03) and posterior thalamic radiation (r = 0.70, P = 0.003). Reduced axial diffusivity in motor and sensory tracts may be implicated in developmental coordination disorder, but replication in a larger study is needed to confirm these findings.  相似文献   

19.
目的 常规的影像手段对视放射纤维束的成像、分析缺乏特异性,为了弥补常规影像检查的不足,应用弥散张量成像(DTI)和弥散张量纤维束示踪成像(DTT)研究成人视放射的各向异性程度和视放射纤维束的构象特征.方法 对20例正常视放射和24例视放射区域病变的患者进行MR常规及DTI序列检查,分别测量双侧视放射区的部分各向异性(F...  相似文献   

20.
Diffusion tensor imaging (DTI) color mapping and fiber tractography was used to study the white matter within the cerebellum along with the afferent and efferent tracts associated with the cerebellum in 24 normal human subjects. The most prominent structures that can be readily identified using these DTI techniques are the middle, inferior and superior cerebellar peduncles. Furthermore DTI shows transverse white matter fiber that cross between the two cerebellar hemispheres at the level of the vermis. At the hemispheric level fibers to the dentate, to the emboliform nuclei are clearly visible on DTI as is the afferent pathway represented by the middle cerebellar peduncle. Selective DTI fiber tractography provides very exquisite images of the cerebellar peduncles and of the fibers projecting to and from the cerebellar cortex. This study demonstrates that DTI is complementary to conventional MRI in that DTI elucidates the orientation of white matter fiber bundles that are associated with the cerebellum. Therefore we anticipate that DTI will become an important adjunct to conventional MRI for clinical and basic studies of cerebellar ataxias and congenital disorders involving the cerebellum and brain stem. This work provides a summary of the normal DTI appearance of the cerebellar white matter which will be useful for interpreting DTI results in clinical populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号