首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To image the peripheral-type benzodiazepine receptor (PBR) in vivo, we previously developed two positron emission tomography (PET) ligands, N-(2-[11C],5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)acetamide ([11C]1a) and its [18F]fluoroethyl analogue ([18F]1b), for the investigation of PBR in the living human brain. This time, using 1a as a leading compound, we designed two novel iodinated analogues, N-(5-fluoro-2-phenoxyphenyl)-N-(2-iodo-5-methoxybenzyl)acetamide (3a) and N-(2,5-dimethoxybenzyl)-N-(5-iodo-2-phenoxyphenyl)acetamide (3b) for the PBR imaging. Ligands 3 were synthesized by the iodination of tributystannyl precursors 10. Radiolabeling for 3 with 131I was carried out by the reaction of 10 with [131I]NaI using H2O2 as an oxidizing agent. In vitro competition experiments determined that 3a exhibited both high affinity and selectivity for PBR (IC50: 7.8 nM) vs CBR (>1 microM). Biodistribution study in mice determined that [131I]3a had a high radioactivity level (1.69% dose/g) in the brain, and its distribution pattern in the brain was consistent with the known distribution of PBR in rodents. Ex vivo autoradiography of the rat brain gave visual evidence that [131I]3a was a potent and specific radioligand for PBR.  相似文献   

2.
In an attempt to simplify nucleophilic radiofluorination reactions to be amenable for automation, a series of [18F]fluoronicotinamides, [18F]fluoroisonicotinamides and [18F]fluorobenzamides were synthesized using one‐step synthetic approach involving displacement reactions on trimethylammonium‐nicotinamide, trimethylammonium‐isonicotinamide and trimethylammonium‐benzamide precursors. Based on starting [18F]‐fluoride, radiochemical yields and purities were found to be greater than 90 and 97%, respectively, within 20 min synthesis time and, without high‐performance liquid chromatography purification. This synthetic approach holds great promise as a rapid and simple method for the automated radiofluorination of [18F]fluoronicotinamides, [18F]fluoroisonicotinamides and [18F]fluorobenzamides with high radiochemical yield and very short preparation time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Tritiation of the dopamine D(4) receptor selective agonist A-369508 ([2-[4-(2-cyanophenyl)-1-piperazinyl]-N-(3-methylphenyl) acetamide) has provided a radioligand for the characterization of dopamine D(4) receptors. [(3)H] A-369508 binds with high affinity to the major human dopamine D(4) receptor variants D(4.2), D(4.4) and D(4.7) (K(d)=1.7, 4, and 1.2 nM, respectively). It also binds to the rat dopamine D(4) receptor, (K(d)=4.4 nM), implying similar binding affinity across human and rat receptors. A-369508 shows >400-fold selectivity over D(2L), >350-fold selectivity over 5-HT(1A) and >700-1,000-fold selectivity over all other receptors tested. Agonist activity determined by inhibition of forskolin-induced cAMP in Chinese hamster ovary cells transfected with the human dopamine D(4.4) receptor (EC(50)=7.5 nM, intrinsic activity=0.71) indicates that A-369508 is a potent agonist at the human dopamine D(4) receptor. Similar data was observed in other functional assays. [(3)H] A-369508 binds to a single, high affinity site on membranes containing the human dopamine D(4.4) receptor. When compared to the D(2)-like antagonist [(3)H] spiperone, competition binding for agonists like dopamine and apomorphine were 2-10-fold more potent with [(3)H] A-369508, while the antagonists clozapine, haloperidol and L-745870 bind with similar affinity to both ligands. Binding to rat brain regions demonstrated that the most abundant area was cerebral cortex (51.2 fmol/mg protein) followed by hypothalamus, hippocampus, striatum and cerebellum. [(3)H] A-369508 is a useful tool to define the localization and physiological role of dopamine D(4) receptors in central nervous system and can facilitate measuring accurate affinities (K(i)) for structure/activity relationship studies designed to identify dopamine D(4) receptor selective agonists.  相似文献   

5.
From salicyclic acid, the two enantiomers of N-[(1-ethyl-2-pyrrolidinyl)methyl]-5-iodo-2-methoxybenzamide (6b) were prepared in a five-step synthesis. With use of Heindel's triazene method for introduction of the radionuclide, the iodine-125-labeled substituted benzamide was obtained with a calculated specific activity of 136 Ci/mmol and 14% radiochemical yield. For the preparation of the iodine-125-labeled benzamide with higher specific activity, this method was unsuccessful and utilization of the corresponding tri-n-butyltin derivative was required. Treatment of the latter in dilute hydrochloric acid with sodium iodide-125 and chloramine-T gave [125I](S)-6b in 56% radiochemical yield and at least 97% radiochemical purity. The displacement of [125I](S)-6b and [3H](S)-sulpiride from their respective binding sites in striatal rat brain homogenates using various neuroleptic agents showed that (S)-6b has the same binding profile but more potent binding for dopamine D-2 receptors than has sulpiride. These experiments also indicate that the S enantiomer of 6b is a specific ligand (KD = 1.2 nM) for the D-2 receptor. Further, the octanol-water partition coefficient of (S)-6b as determined by reverse-phase high-performance liquid chromatography was found to be 40 times greater than that for sulpiride. Thus (S)-6b has a lipophilicity that will allow a relatively higher uptake into the brain compared to sulpiride. In vivo experiments with rats show that [125I](S)-6b penetrates readily into the brain and is preferentially localized in the striatum as compared to the cerebellum, the ratio of uptake being 7.2 to 1, 60 min after injection. These observations of good brain penetration and high affinity and selectivity for D-2 receptors indicate that the corresponding iodine-123-labeled benzamide may be a useful ligand for the noninvasive visualization study of dopamine D-2 receptor sites in vivo by single photon emission computed tomography.  相似文献   

6.
The synthesis of N-[5-(2-phenoxyphenyl)-1, 3, 4-oxadiazole-2-yl]-N'-phenylurea derivatives is reported. The structures of these compounds are supported by their IR, (1)H-NMR and mass spectra. Conformational analysis and superimposition of energy minima conformers of these compounds on L-365, 260, a known 3-ureido-1, 4-benzodiazepine CCK-B antagonist, showed that the aromatic rings fell in the same contour. Morphine analgesia enhancement evaluation of the synthesized compounds in comparison with a control group showed that compounds 8a, 8c, 8h-8j, 8l, 8o have significant effects.  相似文献   

7.
The peripheral benzodiazepine receptor (PBR) is widely expressed in peripheral tissues, blood cells, and in glia cells in the brain. We have previously developed two positron emission tomography (PET) ligands, N-(2-[(11)C],5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)acetamide ([(11)C]2) and its [(18)F]fluoroethyl analogue ([(18)F]6), for the current investigation of PBR in the human brain. The aim of this study was to label the potent PBR agonist N-(4-chloro-2-phenoxyphenyl)-N-(isopropoxybenzyl)acetamide (3) and its ethyl (7) and methyl (8) homologues with (11)C and to evaluate them as PET ligands for PBR with mice, rats, and monkeys. Ligands [(11)C]3, [(11)C]7, and [(11)C]8 were synthesized by alkylation of phenol precursor 9 with 2-[2-(11)C]iodopropane ([(11)C]10), [1-(11)C]iodoethane ([(11)C]11), and [(11)C]iodomethane ([(11)C]12), respectively. The alkylating agent [(11)C]10 or [(11)C]11 was prepared by reacting CH(3)MgBr with [(11)C]CO(2), followed by reduction with LiAlH(4) and iodination with HI. In vitro quantitative autoradiography determined that 3, 7, and 8 had potent binding affinities (K(i) = 0.07-0.19 nM) for PBR in the rat brain. These [(11)C]ligands could pass across the blood-brain barrier and enter the rat brain (0.17-0.32% of injected dose per gram wet tissue). Ex vivo autoradiography showed that the [(11)C]ligands preferably distributed in the olfactory bulb and cerebellum, two regions with richer PBR density in the rat brain. The co-injection of PBR-selective 2 reduced the [(11)C]ligand binding in the two regions, suggesting that binding in the rat brain was specific to PBR. PET study determined that the [(11)C]ligands preferably accumulate in the occipital cortex of the monkey brain, a region with a high density of PBR in the primate brain. Moreover, in vivo binding of the methyl homologue [(11)C]8 in the monkey brain could be inhibited by PBR-selective 2 or 1, indicating that some of the [(11)C]8 binding was due to PBR. Metabolite analysis demonstrated that these [(11)C]ligands were metabolized by debenzylation to polar products mainly in the plasma.  相似文献   

8.
A series of new 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine derivatives, prepared by two synthetic routes, were in vitro assayed against three Trypanosoma strains, Leishmania donovani, and Plasmodium falciparum K1. Seven out of 17 compounds showed moderate to very good activity against blood stage T. b. rhodesiense, with 10 and 17 exhibiting highest potency (IC50 of 1.0 and 1.1 microM, respectively). Interestingly, the beta-diketone precursors 1-3 had good antitrypanosomal activity toward the insect stage, with IC50 values of 1.0-3.4 microM. Among different compounds with moderate activity against T. cruzi, compound 17 showed the lowest IC50 value of 9.5 microM; thus, the series seemed to act selectively toward the different Trypanosoma parasites. Eight compounds were moderately active against L. donovani, with 2, 3, and 12 being the most promising ones (IC50 values of 2.3-5.2 microM), whereas compound 14 was the only derivative with good activity against P. falciparum (IC50 of 3.7 microM).  相似文献   

9.
We have used SPECT (single photon emission computed tomography) imaging in non-human primates to examine the time course and pharmacological specificity of 123I-labeled Ro 16-0154 as an in vivo probe of the benzodiazepine receptor. Maximal brain uptake was reached approximately 70 min post i.v. administration of the radioligand and represented approximately 10% of the injected dose. The regional distribution of radioactive densities was consistent with the known distribution of benzodiazepine receptors in primate brain, with highest uptake localized over the occipital area. Washout of radioactivity was relatively slow with a rate of 3% per hour after the time of peak radioactivity. Injection of the benzodiazepine antagonist Ro 15-1788 (0.2-0.3 mg/kg i.v.) caused a rapid decrease of more than 90% of radioactivity from brain. In summary, [123I]Ro 16-0154 is a promising in vivo SPECT radioligand for the benzodiazepine receptor, with high brain uptake, a stable period of peak radioactivity, appropriate regional distribution, and ability to be displaced by other benzodiazepine receptor agents.  相似文献   

10.
Several isomers of 7-methyl-2-exo-([(18)F]fluoropyridinyl-5'-pyridinyl)-7-azabicyclo[2.2.1]heptane have been developed as radioligands with optimized brain kinetics for PET imaging of nAChR. The binding assay demonstrated that all isomers are beta-nAChR selective ligands with Ki = 0.02-0.3 nM. The experimental lipophilicity values of all isomers were in the optimal range for the cerebral radioligands (log D7.4= 0.67-0.99). The isomers with higher binding affinity manifested slow baboon brain kinetics, whereas the isomer with the lowest binding affinity (Ki = 0.3 nM) ((-)-7-methyl-2- exo-[3'-(6-[(18)F]fluoropyridin-2-yl)-5'-pyridinyl]-7-azabicyclo[2.2.1]heptane, [(18)F](-)-6c) and greatest lipophilicity (log D 7.4 = 0.99) exhibited optimal brain kinetics. [(18)F](-)-6c manifests a unique combination of the optimally rapid brain kinetics, high BP and brain uptake, and favorable metabolic profile. Pharmacological studies showed that (-)-6c is an alpha4beta2-nAChR antagonist with low side effects in mice. This combination of imaging properties suggests that [(18)F]-(-)- 6c is a potentially superior replacement for 2-[(18)F]fluoro-A-85380 and 6-[(18)F]fluoro-A-85380, the only available nAChR PET radioligands for humans.  相似文献   

11.
In this work, 2-(4,5-dimethyl-1-(phenylamino)-1H-imidazol-2-ylthio)-N-(thiazol-2-yl) acetamide derivatives were synthesized by reacting 4,5-dimethyl-1-(phenylamino)-1H-imidazole-2(3H)-thione derivatives with some 2-chloro-N-(thiazol-2-yl)acetamide compounds. The structure of synthesized compounds was confirmed by IR, 1H NMR, and mass spectra. Anticancer activities of the compounds selected by the National Cancer Institute were investigated by testing against a panel of 60 different human tumor cell lines derived from nine neoplastic cancer types. Compounds 7, 13, and 23 exhibited reasonable anticancer activity against the screened cancer types with relatively low GI50 values. The compounds showed high activity against melanoma-type cell lines.  相似文献   

12.
Estrogen receptor beta (ERbeta), a less active ER subtype that appears to have a restraining effect on the more active ERalpha, could be a factor that determines the level of estrogen action in certain estrogen target tissues. ERbeta is found in breast cancer, and its levels relative to ERalpha decline with disease progression. Thus, the independent quantification of ERalpha and ERbeta levels in breast cancer by imaging might be predictive of responses to different hormone therapies. To develop an imaging agent for ERbeta, we synthesized a fluoroethyl analogue of DPN (2,3-bis(4-hydroxyphenyl)propanonitrile), a known ERbeta-selective ligand. This analogue, FEDPN (5-fluoro-(2R,3S)-2,3-bis(4-hydroxyphenyl)pentanenitrile), has an 8.3-fold absolute affinity preference for ERbeta. [18F]Fluoride-labeled FEDPN was prepared from a toluenesulfonate precursor, which provided [18F]FEDPN with a specific activity greater than 3100 Ci/mmol after HPLC purification. Biodistribution studies in immature female rats using estradiol as a blocking agent revealed specific uptake of [18F]FEDPN in the uterus and ovaries. Experiments using ERalpha- and ERbeta-knockout mice demonstrated the expected ERalpha-subtype dependence in the tissue uptake of the known 16alpha-[18F]fluoro-17beta-estradiol ([18F]FES), which has a 6.3-fold preference for ERalpha. The tissue uptake of [18F]FEDPN in the ER knockout mice showed some evidence of mediation by ERbeta, but the levels of specific uptake of this agent were relatively modest. Based on our results, imaging of ERalpha can be done effectively with [18F]FES, but imaging of ERbeta will likely require agents with more optimized ERbeta binding affinity and selectivity than [18F]FEDNP.  相似文献   

13.
PBR111 (2‐(6‐chloro‐2‐(4‐(3‐fluoropropoxy)phenyl)imidazo[1,2‐a]pyridin‐3‐yl)‐N,N‐diethylacetamide) is a novel, reported, high‐affinity and selective ligand for the translocator protein (18 kDa). PBR111 has been labelled with fluorine‐18 (half‐life: 109.8 min) using our Zymate‐XP robotic system. The process involves (A) a simple one‐step tosyloxy‐for‐fluorine nucleophilic aliphatic substitution (performed at 165°C for 5 min in DMSO using K[18F]F‐Kryptofix®222 and 6.8–7.6 µmol of the corresponding tosylate as precursor for labelling) followed by (B) C‐18 PrepSep cartridge pre‐purification and (C) semi‐preparative HPLC purification on a Waters Symmetry® C‐18. Up to 4.8 GBq (130 mCi) of [18F]PBR111 could be obtained with specific radioactivities ranging from 74 to 148 GBq/µmol (2–4 Ci/µmol) in 75–80 min (HPLC purification and SepPak®‐based formulation included), starting from a 37.0 GBq (1.0 Ci) [18F]fluoride batch. Overall non‐decay‐corrected isolated yields were 8–13% (13–21% decay‐corrected). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A method for synthesizing 18F-labelled 2-amino-2′-fluorobenzhydrols under nocarrier-added conditions for use as radiolabelled intermediates in the synthesis of[2′-18F]-1,4-benzodiazepine-2-ones is presented. Anilinodichloroborane reagents were formed by the reaction of boron trichloride with 4-chloro-N-methylaniline, 6a , 4-nitro-N-methylaniline, 6b , 4-nitro-N-ethylaniline, 6c , and 4-chloro-N-(2,2,2-trifluoroethyl)aniline, 6d . 2-[18F]Fluorobenzaldehyde, 5 , synthesized in 55–70% yields by the nucleophilic aromatic substitution of 2-nitrobenzaldehyde with the Kryptofix/K+ complex of [18F]F, was subsequently reacted with the anilinodichloroborane coupling reagents with aromatic substitution occurring ortho to the amino group. The resulting 2-amino-2′-[18F]fluorobenzhydrols, 7a - 7d , were produced in conversions of 60–95% with reaction time ⩽ 10 min at room temperature or 60°C, depending on the aniline used. The total synthesis time, including evaporation of the target water, was 60–65 min. The total radiochemical conversions were of the order of 50–65% for 7a - 7c and 35–45% for 7d , decay-corrected and based on [18F]F.  相似文献   

15.
A series of N-fluoroalkyl (1-5) and N-alkyl (6-8) analogues of the high-affinity opioid receptor antagonist diprenorphine (9) has been synthesized and evaluated with in vitro binding assays. Three of the N-fluoroalkyl compounds were prepared with the positron-emitting radionuclide 18F (1a, 2a, 5a), and their biodistribution was determined in rats. Compounds 2a and 5a were made by using a two-step labeling procedure, [18F]fluoride displacement of an iodoalkyl triflate followed by N-alkylation, that required 2 h and proceeded in 4-6% overall radiochemical yield at the end of synthesis. The effective specific activity of compounds 2a and 5a, determined by competitive receptor binding assay, was 840-1820 Ci/mmol. Compound 1a was made by the same two-step procedure, with the bromoalkyl triflate, in 0.3-0.6% radiochemical yield at an effective specific activity of 106-264 Ci/mmol. Specificity of binding in vivo was measured as the percent injected dose/gram of striatal tissue divided by the percent injected dose/gram of cerebellar tissue. The best striatum to cerebellum ratio (3.32 +/- 0.74 at 30 min) was achieved with N-(3-[18F]-fluoropropyl)-N-nordiprenorphine (2a, [18F]FPND). The high specific binding demonstrated by this compound indicates that it may be useful for in vivo imaging of opioid receptors with positron emission tomography.  相似文献   

16.
(RS)-2-Amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), which is a potent and selective agonist at (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptors, has previously been shown to desensitize AMPA receptors to a much lower degree than AMPA itself. We now report the synthesis of [3H]ACPA (32.5 Ci/mmol), the neurochemical and pharmacological characterization of [3H]ACPA binding, and a comparison of the distribution of [3H]ACPA, [3H]AMPA, and [3H](S)-5-fluorowillardiine binding sites in rat brain. Under equilibrium conditions, [3H]ACPA was shown to bind to a single population of receptor sites on rat brain membranes. [3H]ACPA was shown to bind with single and similar affinities (15-45 nM) to cloned AMPA receptor subunits (GluR1-4), expressed in insect cells, whereas a K(D) value of 330 nM was determined for the binding of [3H]ACPA to cloned kainic acid preferring GluR5 subunits. Whereas Bmax and K(D) values for [3H]ACPA binding, determined using filtration techniques, were different from such obtained in centrifugation assays, Bmax and K(D) values as well as association and dissociation constants were not significantly affected by the addition of the chaotropic agent KSCN. K(D) values, determined under equilibrium conditions, were, however, markedly different from K(D) values derived from kinetic data. Furthermore, the results of analyses of these kinetic data were consistent with the existence of two different populations of [3H]ACPA binding sites. The pharmacology of [3H]ACPA binding sites was characterized using a series of AMPA receptor agonists and antagonists. Whereas addition of KSCN had little effect on the affinities of AMPA receptor agonists for [3H]ACPA binding, this chaotropic agent reduced the affinities of AMPA receptor antagonists structurally related to AMPA. Based on these and previously reported data, the AMPA receptor agonists, ACPA, AMPA and (S)-5-fluorowillardiine, seem to bind to and activate AMPA receptors in a nonidentical fashion, and these three agonists together may be useful tools for studies of AMPA receptor mechanisms.  相似文献   

17.
18.
The fluoroethoxy and fluoropropoxy substituted 2-(6-chloro-2-phenyl)imidazo[1,2- a]pyridin-3-yl)- N, N-diethylacetamides 8 (PBR102) and 12 (PBR111) and 2-phenyl-5,7-dimethylpyrazolo[1,5- a]pyrimidin-3-yl)- N, N-diethylacetamides 15 (PBR099) and 18 (PBR146) were synthesized and found to have high in vitro affinity and selectivity for the peripheral benzodiazepine receptors (PBRs) when compared with the central benzodiazepine receptors (CBRs). The corresponding radiolabeled compounds [ (18)F] 8 [ (18)F] 12, [ (18)F] 15, and [ (18)F] 18 were prepared from their p-toluenesulfonyl precursors in 50-85% radiochemical yield. In biodistribution studies in rats, the distribution of radioactivity of the [ (18)F]PBR compounds paralleled the known localization of PBRs. In the olfactory bulbs, where the uptake of radioactivity was higher than in the rest of the brain, PK11195 and Ro 5-4864 were able to significantly inhibit [ (18)F] 12, while little or no pharmacological action of these established PBR drugs were observed on the uptake of [ (18)F] 8, [ (18)F] 15, and [ (18)F] 18 compared to control animals. Hence, [ (18)F] 12 appeared to be the best candidate for evaluation as an imaging agent for PBR expression in neurodegenerative disorders.  相似文献   

19.
20.
Recently, a new 2-(iodophenyl)imidazo[1,2-a]pyridineacetamide series has been developed as iodine-123-labelled radioligands for imaging the peripheral benzodiazepine receptors using single photon emission tomography. Within this series, 2-[6-chloro-2-(4-iodophenyl)-imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-methyl-acetamide (CLINME) was considered as an appropriate candidate for positron emission tomography imaging and was isotopically labelled with carbon-11 (T1/2: 20.38 min) at the methylacetamide side chain from the corresponding nor-analogue using [11C]methyl iodide and the following experimental conditions: (1) trapping at −10°C of [11C]methyl iodide in a 1/2 (v:v) mixture of DMSO/DMF (300 µl) containing 0.7–1.0 mg of the precursor for labelling and 3–5 mg of powdered potassium hydroxide (excess); (2) heating the reaction mixture at 110°C for 3 min under a nitrogen stream; (3) diluting the residue with 0.6 ml of the HPLC mobile phase; and (4) purification using semi-preparative HPLC (Zorbax® SB18, Hewlett Packard, 250 × 9.4 mm). Typically, starting from a 1.5 Ci (55.5 GBq) [11C]CO2 production batch, 120−150 mCi (4.44–5.55 GBq) of [11C]CLINME were obtained (16–23% decay-corrected radiochemical yield, n=12) within a total synthesis time of 24–27 min (Sep-pak®Plus-based formulation included). Specific radioactivities ranged from 0.9 to 2.7 Ci/µmol (33.3–99.9 GBq/µmol) at the end of radiosynthesis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号