首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective directional neuron migration is crucial in development of the central nervous system and for neurogenesis. Endogenous electrical signals are present in many developing systems and crucial cellular behaviors such as neuronal cell division, cell migration, and cell differentiation are all under the influence of such endogenous electrical cues. Preclinical in vivo studies have used electric fields (EFs) to attempt to enhance regrowth of damaged spinal cord axons with some success. Recent evidence shows that small EFs not only guide axonal growth, but also direct the earlier events of neuronal migration and neuronal cell division. This raises the possibility that applied or endogenous EFs, perhaps in combination, may direct transplanted neural stem cells, or regenerating neurons, to the desired site after brain injury or neuron degeneration. The high complexity of both structure and function of the nervous system, however, poses significant challenges to techniques for applying EFs to promote neurogenesis. The evolution of functional biomaterials and nanotechnology may provide promising solutions for the application of EFs in guiding neuron migration and neurogenesis within the central nervous system.  相似文献   

2.
Spinal cord injury or diseases, such as amyotrophic lateral sclerosis, can cause the loss of motor neurons and therefore results in the paralysis of muscles. Stem cells may improve functional recovery by promoting endogenous regeneration, or by directly replacing neurons. Effective directional migration of grafted neural cells to reconstruct functional connections is crucial in the process. Steady direct current electric fields (EFs) play an important role in the development of the central nervous system. A strong biological effect of EFs is the induction of directional cell migration. In this study, we investigated the guided migration of embryonic stem cell (ESC) derived presumptive motor neurons in an applied EF. The dissociated mouse ESC derived presumptive motor neurons or embryoid bodies were subjected to EFs stimulation and the cell migration was studied. We found that the migration of neural precursors from embryoid bodies was toward cathode pole of applied EFs. Single motor neurons migrated to the cathode of the EFs and reversal of EFs poles reversed their migration direction. The directedness and displacement of cathodal migration became more significant when the field strength was increased from 50 mV/mm to 100 mV/mm. EFs stimulation did not influence the cell migration velocity. Our work suggests that EFs may serve as a guidance cue to direct grafted cell migration in vivo.  相似文献   

3.
Small direct current (DC) electric fields (EFs) guide neurite growth and migration of rodent neural stem cells (NSCs). However, this could be species dependent. Therefore, it is critical to investigate how human NSCs (hNSCs) respond to EF before any possible clinical attempt. Aiming to characterize the EF-stimulated and guided migration of hNSCs, we derived hNSCs from a well-established human embryonic stem cell line H9. Small applied DC EFs, as low as 16 mV/mm, induced significant directional migration toward the cathode. Reversal of the field polarity reversed migration of hNSCs. The galvanotactic/electrotactic response was both time and voltage dependent. The migration directedness and distance to the cathode increased with the increase of field strength. (Rho-kinase) inhibitor Y27632 is used to enhance viability of stem cells and has previously been reported to inhibit EF-guided directional migration in induced pluripotent stem cells and neurons. However, its presence did not significantly affect the directionality of hNSC migration in an EF. Cytokine receptor [C-X-C chemokine receptor type 4 (CXCR4)] is important for chemotaxis of NSCs in the brain. The blockage of CXCR4 did not affect the electrotaxis of hNSCs. We conclude that hNSCs respond to a small EF by directional migration. Applied EFs could potentially be further exploited to guide hNSCs to injured sites in the central nervous system to improve the outcome of various diseases.  相似文献   

4.
The differentiation and proliferation of neural stem/progenitor cells (NPCs) depend on various in vivo environmental factors or cues, which may include an endogenous electrical field (EF), as observed during nervous system development and repair. In this study, we investigate the morphologic, phenotypic, and mitotic alterations of adult hippocampal NPCs that occur when exposed to two EFs of estimated endogenous strengths. NPCs treated with a 437 mV/mm direct current (DC) EF aligned perpendicularly to the EF vector and had a greater tendency to differentiate into neurons, but not into oligodendrocytes or astrocytes, compared to controls. Furthermore, NPC process growth was promoted perpendicularly and inhibited anodally in the 437 mV/mm?DC EF. Yet fewer cells were observed in the DC EF, which in part was due to a decrease in cell viability. The other EF applied was a 46 mV/mm alternating current (AC) EF. However, the 46 mV/mm?AC EF showed no major differences in alignment or differentiation, compared to control conditions. For both EF treatments, the percent of mitotic cells during the last 14 h of the experiment were statistically similar to controls. Reported here, to our knowledge, is the first evidence of adult NPC differentiation affected in an EF in vitro. Further investigation and application of EFs on stem cells is warranted to elucidate the utility of EFs to control phenotypic behavior. With progress, the use of EFs may be engineered to control differentiation and target the growth of transplanted cells in a stem cell-based therapy to treat nervous system disorders.  相似文献   

5.
Li X  Liu X  Zhao W  Wen X  Zhang N 《Acta biomaterialia》2012,8(6):2087-2095
Neural stem-cell transplantation is a promising strategy for the treatment of neural diseases and injuries, since the central nervous system (CNS) has a very limited capacity to repopulate the lost cells. Transplantation strategies face many difficulties including low viability, lack of control of stem-cell fate, and low levels of cell engraftment after transplantation. An alternative strategy for CNS repair without transplantation is using endogenous neural stem cells (NSCs) and precursor cells. Hepatocyte growth factor (HGF), a pleiotropic cytokine of mesenchymal origin, exerts a strong chemoattractive effect on stem cells. Leukemia inhibitory factor (LIF), a key regulator for stem-cell proliferation, mobilization, and fate choices, is currently being characterized for endogenous NSC manipulation for brain regeneration. In this study, HGF and LIF have been loaded into hydrogels and degradable nanoparticles, respectively, for sustained, long-term, localized delivery. We examine the use of HGF-loaded hydrogels and LIF-loaded nanoparticles for manipulating migration and mobilization of human NSCs in vitro. The combination of LIF-loaded nanoparticles and HGF-loaded hydrogels significantly mobilized hNSCs and promoted their migration in vitro. Studies are in progress to evaluate endogenous NSC mobilization and migration in vivo with simultaneous, controlled delivery of LIF at the natural reservoir of endogenous NSCs and HGF at the injury or disease site for in situ tissue regeneration.  相似文献   

6.
Applied electric fields (static and pulsing) are widely used in orthopedic practices to treat nonunions and spine fusions and have been shown to improve ligament healing in vivo. Few studies, however, have addressed the effect of electric fields (EFs) on ligament fibroblast migration and biosynthesis. In the current study, we applied static and pulsing direct current (DC) EFs to calf anterior cruciate ligament (ACL) fibroblasts. ACL fibroblasts demonstrated enhanced migration speed and perpendicular alignment to the applied EFs. The motility of ligament fibroblasts was further modulated on type I collagen. In addition, type I collagen expression increased in ACL fibroblasts after exposure to pulsing EFs. In vitro wound-healing studies showed inhibitory effects of static EFs, which were alleviated with a pulsing EF. Our results demonstrate that applied EFs augment ACL fibroblast migration and biosynthesis and provide potential mechanisms by which EFs may be used for enhancing ligament healing and repair.  相似文献   

7.
Applied electric fields (static and pulsing) are widely used in orthopedic practices to treat nonunions and spine fusions and have been shown to improve ligament healing in vivo. Few studies, however, have addressed the effect of electric fields (EFs) on ligament fibroblast migration and biosynthesis. In the current study, we applied static and pulsing direct current (DC) EFs to calf anterior cruciate ligament (ACL) fibroblasts. ACL fibroblasts demonstrated enhanced migration speed and perpendicular alignment to the applied EFs. The motility of ligament fibroblasts was further modulated on type I collagen. In addition, type I collagen expression increased in ACL fibroblasts after exposure to pulsing EFs. In vitro wound-healing studies showed inhibitory effects of static EFs, which were alleviated with a pulsing EF. Our results demonstrate that applied EFs augment ACL fibroblast migration and biosynthesis and provide potential mechanisms by which EFs may be used for enhancing ligament healing and repair.  相似文献   

8.
Multiple sclerosis (MS) is a chronic immune-mediated, central nervous system (CNS) demyelinating disease. Clinical and histopathological features suggest an inflammatory etiology involving resident CNS innate cells as well as invading adaptive immune cells. Encephalitogenic myelin-reactive T cells have been implicated in the initiation of an inflammatory cascade, eventually resulting in demyelination and axonal damage (the histological hallmarks of MS). Dendritic cells (DC) have recently emerged as key modulators of this immunopathological cascade, as supported by studies in humans and experimental disease models. In one such model, experimental autoimmune encephalomyelitis (EAE), CNS microvessel-associated DC have been shown to be essential for local antigen recognition by myelin-reactive T cells. Moreover, the functional state and compartmental distribution of DC derived from CNS and associated lymphatics seem to be limiting factors in both the induction and effector phases of EAE. Moreover, DC modulate and balance the recruitment of encephalitogenic and regulatory T cells into CNS tissue. This capacity is critically influenced by DC surface expression of co-stimulatory or co-inhibitory molecules. The fact that DC accumulate in the CNS before T cells and can direct T-cell responses suggests that they are key determinants of CNS autoimmune outcomes. Here we provide a comprehensive review of recent advances in our understanding of CNS-derived DC and their relevance to neuroinflammation.  相似文献   

9.
The factors inhibiting regeneration in the central nervous system (CNS) have been elaborated, debated, and studied for the past 70 years. Recent work has pointed to the fine balance that exists between repair and regeneration following CNS injury. Growth factors have featured prominently in this debate. In attempts to tip the scales toward regeneration and functional reconnection to damaged neurons, pharmacological intervention has come to the fore. However, a perennial concern has been that much of regeneration may be aberrant, although there is now evidence to suggest that this fear may have been exaggerated. In searching for additional avenues for achieving therapeutic reconstruction of damaged neural pathways, transplantation studies occupy a prominent place in the literature. Various principles have become established, and these have proved relevant for all approaches utilizing grafts. Xenotransplantation and stem cell transplantation are approaches with exciting potential. Circuitry can be effectively restored by xenotransplantation, including early indications of integration of pig dopaminergic neurons in Parkinson's disease. The considerable possibilities offered by the differentiation of neural stem cells into progenitor cells and then into neurons and glia are explored. Clin. Anat. 11:263–270, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
The inability of the central nervous system (CNS) to efficiently repair damages results in severe functional impairment after trauma or neurodegenerative/demyelinating diseases. Regeneration failure is attributed to inhibitory molecules creating a nonpermissive environment for axonal regrowth, and dictates the necessity for the development of novel therapeutic strategies. An emerging approach for improving regeneration is the use of gene therapy to manipulate cell adhesion molecule expression in experimental animal models of degeneration. Alternatively, cell transplantation to replace lost neurons and the grafting of myelinating cells to repair demyelinating lesions are promising approaches for treating CNS injuries and demyelination. Schwann cells (SCs), oligodendrocyte progenitors, olfactory ensheathing cells and embryonic and neural stem cells have been shown to form myelin after transplantation into the demyelinated CNS. The repair capacity of the peripheral nervous system (PNS) is much higher, but there is still a limit to the amount of nerve loss that can be bridged after injury, and longer nerve gaps call for the use of conduits populated with living cells. In both cases, the interaction of grafted cells with the host environment is of paramount importance for the incorporation and functional integration of these cells and the manipulation of cell adhesion molecules is an attractive approach towards achieving this goal. In this review we summarize data from the recent literature regarding the manipulation of cell adhesion molecule expression towards CNS and PNS repair and discuss the prospects for future therapeutic applications.  相似文献   

11.
Investigating radial glia in vitro   总被引:2,自引:0,他引:2  
During mammalian neurogenesis newly born neurons migrate radially along the extended bipolar process of cells termed radial glia. Our views of radial glia as a 'static' support/guide cell have changed over recent years. It is now clear that within the developing cortex, and possibly the entire central nervous system (CNS), radial glia actively divide, producing daughter cells that include both neurons and glia. A subset of forebrain radial glia may serve as the founders of adult forebrain neural stem cells and genetic disruption of normal radial glia function can result in tumorigenesis or congenital neurological disorders. Elucidating the cell intrinsic and environmental cues that regulate radial glia behaviour is therefore essential for a full understanding of mammalian CNS development and physiology. Here, we review those studies in which radial glia have been investigated in vitro following isolation from foetal tissues or differentiation of embryonic stem (ES) cells. We discuss how these approaches, together with an ability to expand radial glia-like neural stem (NS) cell lines, may offer unique opportunities in basic and applied neurobiology.  相似文献   

12.
Radial glia cells (RGC) are multipotent progenitors that generate neurons and glia during CNS development, and which also served as substrate for neuronal migration. After a lesion, reactive glia are the main contributor to CNS regenerative blockage, although some reactive astrocytes are also able to de-differentiate in situ into radial glia-like cells (RGLC), providing beneficial effects in terms of CNS recovery. Thus, the identification of substrate properties that potentiate the ability of astrocytes to transform into RGLC in response to a lesion might help in the development of implantable devices that improve endogenous CNS regeneration. Here we demonstrate that functional RGLC can be induced from in vitro matured astrocytes by using a precisely-sized micropatterned PMMA grooved scaffold, without added soluble or substrate adsorbed biochemical factors. RGLC were extremely organized and aligned on 2 μm line patterned PMMA and, like their embryonic counterparts, express nestin, the neuron-glial progenitor marker Pax6, and also proliferate, generate different intermediate progenitors and support and direct axonal growth and neuronal migration. Our results suggest that the introduction of line patterns in the size range of the RGC processes in implantable scaffolds might mimic the topography of the embryonic neural stem cell niche, driving endogenous astrocytes into an RGLC phenotype, and thus favoring the regenerative response in situ.  相似文献   

13.
Ao Q  Wang AJ  Chen GQ  Wang SJ  Zuo HC  Zhang XF 《Medical hypotheses》2007,69(6):1234-1237
Spinal cord repair is a problem that has long puzzled neuroscientists. The failure of the spinal cord to regenerate and undergo reconstruction after spinal cord injury (SCI) can be attributed to secondary axonal demyelination and neuronal death followed by cyst formation and infarction as well as to the nature of the injury environment, which promotes glial scar formation. Cellular replacement and axon guidance are both necessary for SCI repair. Multipotent neural stem cells (NSCs) have the potential to differentiate into both neuronal and glial cells and are, therefore, likely candidates for cell replacement therapy following SCI. However, NSC transplantation alone is not sufficient for spinal cord repair because the majority of the NSCs engrafted into the spinal cord have been shown to differentiate with a phenotype which is restricted to glial lineages, further promoting glial scaring. Olfactory ensheathing cells (OECs) are a unique type of glial cell that occur both peripherally and centrally along the olfactory nerve. The ability of olfactory neurons to grow axons in the mature central nervous system (CNS) milieu has been attributed to the presence of OECs. It has been shown that transplanted OECs are capable of migrating into and through astrocytic scars and thereby facilitating axonal regrowth through an injury barrier. Given the complementary properties of NSCs and OECs, we predict that the co-transplantation of NSCs and OECs into an injured spinal cord would have a synergistic effect, promoting neural regeneration and functional reconstruction. The lost neurocytes would be replaced by NSCs, while the OECs would build "bridges" crossing the glial scaring that conduct axon elongation and promote myelinization simultaneously. Furthermore, the two types of cells could first be seeded into a bioactive scaffold and then the cell seeded construct could be implanted into the defect site. We believe that this type of treatment would lead to improved neural regeneration and functional reconstruction after SCI.  相似文献   

14.
In contrast to the peripheral nervous system (PNS), little structural and functional regeneration of the central nervous system (CNS) occurs spontaneously following injury in adult mammals. The inability of the CNS to regenerate is mainly attributed to its own inhibitorial environment such as glial scar formation and the myelin sheath of oligodendrocytes. Therefore, one of the strategies to promote axonal regeneration of the CNS is to experimentally modify the environment to be similar to that of the PNS. Schwann cells are the myelinating glial cells in the PNS, and are known to play a key role in Wallerian degeneration and subsequent regeneration. Central nervous system regeneration can be elicited by Schwann cell transplantation, which provides a suitable environment for regeneration. The underlying cellular mechanism of regeneration is based upon the cooperative interactions between axons and Schwann cells involving the production of neurotrophic factors and other related molecules. Furthermore, tight and gap junctional contact between the axon and Schwann cell also mediates the molecular interaction and linking. In this review, the role of the Schwann cell during the regeneration of the sciatic (representing the PNS) and optic (representing the CNS) nerves is explained. In addition, the possibility of optic nerve reconstruction by an artificial graft of Schwann cells is also described. Finally, the application of cells not of neuronal lineage, such as bone marrow stromal cells (MSCs), in nerve regeneration is proposed. Marrow stromal cells are known as multipotential stem cells that, under specific conditions, differentiate into several kinds of cells. The strategy to transdifferentiate MSCs into the cells with a Schwann cell phenotype and the induction of sciatic and optic nerve regeneration are described.  相似文献   

15.
Multiple sclerosis (MS), a demyelinating disorder of the central nervous system (CNS), remains among the most prominent and devastating diseases in contemporary neurology. Despite remarkable advances in anti-inflammatory therapies, the inefficiency or failure of myelin-forming oligodendrocytes to remyelinate axons and preserve axonal integrity remains a major impediment for the repair of MS lesions. To this end, the enhancement of remyelination through endogenous and exogenous repair mechanisms and the prevention of axonal degeneration are critical objectives for myelin repair therapies. Thus, recent advances in uncovering myelinating cell sources and the intrinsic and extrinsic factors that govern neural progenitor differentiation and myelination may pave a way to novel strategies for myelin regeneration. The scope of this review is to discuss the potential sources of stem/progenitor cells for CNS remyelination and the molecular mechanisms underlying oligodendrocyte myelination.  相似文献   

16.
Urodele spinal cord regeneration and related processes.   总被引:6,自引:0,他引:6  
Urodele amphibians, newts and salamanders, can regenerate lesioned spinal cord at any stage of the life cycle and are the only tetrapod vertebrates that regenerate spinal cord completely as adults. The ependymal cells play a key role in this process in both gap replacement and caudal regeneration. The ependymal response helps to produce a different response to neural injury compared with mammalian neural injury. The regenerating urodele cord produces new neurons as well as supporting axonal regrowth. It is not yet clear to what extent urodele spinal cord regeneration recapitulates embryonic anteroposterior and dorsoventral patterning gene expression to achieve functional reconstruction. The source of axial patterning signals in regeneration would be substantially different from those in developing tissue, perhaps with signals propagated from the stump tissue. Examination of the effects of fibroblast growth factor and epidermal growth factor on ependymal cells in vivo and in vitro suggest a connection with neural stem cell behavior as described in developing and mature mammalian central nervous system. This review coordinates the urodele regeneration literature with axial patterning, stem cell, and neural injury literature from other systems to describe our current understanding and assess the gaps in our knowledge about urodele spinal cord regeneration.  相似文献   

17.
Direct-current electrical fields (EFs) promote nerve growth and axon regeneration. We report here that at physiological strengths, EFs guide the migration of neuronal stem/progenitor cells (NSPCs) toward the cathode. EF-directed NSPC migration requires activation of N-methyl-d-aspartate receptors (NMDARs), which leads to an increased physical association of Rho GTPase Rac1-associated signals to the membrane NMDARs and the intracellular actin cytoskeleton. Thus, this study identifies the EF as a directional guidance cue in controlling NSPC migration and reveals a role of the NMDAR/Rac1/actin signal transduction pathway in mediating EF-induced NSPC migration. These results suggest that as a safe physical approach in clinical application, EFs may be developed as a practical therapeutic strategy for brain repair by directing NSPC migration to the injured brain regions to replace cell loss. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

18.
Bone morphogenetic proteins (BMPs) are a class of morphogens that are critical regulators of the central nervous system (CNS), peripheral nervous system, and craniofacial development. Modulation of BMP signaling also appears to be an important component of the postnatal stem cell niche. However, describing a comprehensive model of BMP actions is complicated by their paradoxical effects in precursor cells, which include dorsal specification, promoting proliferation or mitotic arrest, cell survival or death, and neuronal or glial fate. In addition, in postmitotic neurons BMPs can promote dendritic growth, act as axonal chemorepellants, and stabilize synapses. Although many of these responses depend on interactions with other incoming signals, some reflect the recruitment of distinct BMP signal transduction pathways. In this review, we classify the diverse effects of BMPs on neural cells, focus on the known mechanisms that specify distinct responses, and discuss the remaining challenges in identifying the cellular basis of BMP pleiotropism. Addressing these issues may have importance for stem cell mobilization, differentiation, and cell integration/survival in reparative therapies.  相似文献   

19.
Many recent research studies have proposed stem cell therapy as a treatment for cancer, spinal cord injuries, brain damage, cardiovascular disease, and other conditions. Some of these experimental therapies have been tested in small animals and, in rare cases, in humans. Medical researchers anticipate extensive clinical applications of stem cell therapy in the future. The lack of basic knowledge concerning basic stem cell biology-survival, migration, differentiation, integration in a real time manner when transplanted into damaged CNS remains an absolute bottleneck for attempt to design stem cell therapies for CNS diseases. A major challenge to the development of clinical applied stem cell therapy in medical practice remains the lack of efficient stem cell tracking methods. As a result, the fate of the vast majority of stem cells transplanted in the human central nervous system (CNS), particularly in the detrimental effects, remains unknown. The paucity of knowledge concerning basic stem cell biology—survival, migration, differentiation, integration in real-time when transplanted into damaged CNS remains a bottleneck in the attempt to design stem cell therapies for CNS diseases. Even though excellent histological techniques remain as the gold standard, no good in vivo techniques are currently available to assess the transplanted graft for migration, differentiation, or survival. To address these issues, herein we propose strategies to investigate the lineage fate determination of derived human embryonic stem cells (hESC) transplanted in vivo into the CNS. Here, we describe a comprehensive biological Global Positioning System (bGPS) to track transplanted stem cells. But, first, we review, four currently used standard methods for tracking stem cells in vivo: magnetic resonance imaging (MRI), bioluminescence imaging (BLI), positron emission tomography (PET) imaging and fluorescence imaging (FLI) with quantum dots. We summarize these modalities and propose criteria that can be employed to rank the practical usefulness for specific applications. Based on the results of this review, we argue that additional qualities are still needed to advance these modalities toward clinical applications. We then discuss an ideal procedure for labeling and tracking stem cells in vivo, finally, we present a novel imaging system based on our experiments.  相似文献   

20.
It is well known that the injured mammalian PNS can successfully regenerate, while the CNS such as the optic nerve of adult mammals is incapable of regeneration. It is now generally accepted that the inability of CNS neurons to regenerate appears to be caused by the glial environment made up of astrocytes and oligodendrocytes. However, recent studies show that such CNS neurons have the intrinsic capacity to regenerate which is triggered by an experimental replacement of inhibitorial glial environment to peripheral nerve segment. Thus, the PNS environment is suitable not only for the regeneration of PNS itself, but also for the elicitation of CNS regeneration. Schwann cell is the major component of PNS, which plays a central role both in PNS and CNS regeneration by producing various kinds of functional substances. The contact of axons to Schwann cells based upon the structural and molecular linkages seems to be indispensable for stable and successful regeneration. In addition to cell adhesion molecules, Schwann cells utilize short focal tight junctions to provide morphological stabilization of the contact with the elongating axon, as well as small scale gap junctions to facilitate traffic of substances between them. Thus, nerve regeneration is not a simple phenomenon of axonal elongation on the part of the Schwann cell membrane, but is based on direct and dynamic communication between the axon and the neighboring Schwann cell, which may be partly associated with the mechanisms of neural regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号