首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work of our group demonstrated that Crotalus durissus terrificus venom has a dual effect on macrophage function: it inhibits spreading and phagocytosis and stimulates hydrogen peroxide and nitric oxide production, antimicrobial activity and glucose and glutamine metabolism of these cells. Crotalid venom also induces analgesia and this effect is mediated by opioid receptors. The involvement of opioidergic mechanism and the determination of the active component responsible for the inhibitory effect of crotalid venom on macrophage function were investigated. The venom reduced the spreading and phagocytic activities of peritoneal macrophages. This effect was observed in vitro, 2 h after incubation of resident peritoneal macrophages with the venom, and in vivo, 2 h after subcutaneous injection of the venom. The inhibition of phagocytosis was not modified by naloxone, an antagonist of opioid receptors. Venom neutralization with crotalid antivenom abolished the inhibitory effect of the venom, indicating that venom toxins are involved in this effect. Crotoxin, the main toxin of crotalid venom, s.c. injected to rats or added to the medium of peritoneal cell incubation, inhibited macrophage function in a similar manner to that observed for crude venom. The present results suggest that crotoxin causes a direct inhibition of macrophage spreading and phagocytic activities and may contribute to the inhibitory effect of crotalid venom on macrophage function.  相似文献   

2.
We have previously demonstrated that rabbit antisera raised against crotoxin from Crotalus durissus cascavella venom (cdc-crotoxin) and its PLA2 (cdc-PLA2) neutralized the neurotoxicity of this venom and its crotoxin. In this study, we examined the ability of these antisera to neutralize the neurotoxicity of Crotalus durissus terrificus and Bothrops jararacussu venoms and their major toxins, cdt-crotoxin and bothropstoxin-I (BthTX-I), respectively, in mouse isolated phrenic nerve-diaphragm preparations. Immunoblotting showed that antiserum to cdc-crotoxin recognized cdt-crotoxin and BthTX-I, while antiserum to cdc-PLA2 recognized cdt-PLA2 and BthTX-I. ELISA corroborated this cross-reactivity. Antiserum to cdc-crotoxin prevented the neuromuscular blockade caused by C. d. terrificus venom and its crotoxin at a venom/crotoxin:antiserum ratio of 1:3. Antiserum to cdc-PLA2 also neutralized the neuromuscular blockade caused by C. d. terrificus venom or its crotoxin at venom or toxin:antiserum ratios of 1:3 and 1:1, respectively. The neuromuscular blockade caused by B. jararacussu venom and BthTX-I was also neutralized by the antisera to cdc-crotoxin and cdc-PLA2 at a venom/toxin:antiserum ratio of 1:10 for both. Commercial equine antivenom raised against C. d. terrificus venom was effective in preventing the neuromuscular blockade typical of B. jararacussu venom (venom:antivenom ratio of 1:2), whereas for BthTX-I the ratio was 1:10. These results show that antiserum produced against PLA2, the major toxin in C. durissus cascavella venom, efficiently neutralized the neurotoxicity of C. d. terrificus and B. jararacussu venoms and their PLA2 toxins.  相似文献   

3.
Crotoxin is the main neurotoxic component of Crotalus durissus terrificus snake venom. Previous work of our group demonstrated that this toxin or its phospholipase A2 subunit inhibits macrophage spreading and phagocytosis. The phagocytic activity of macrophages is controlled by the rearrangement of actin cytoskeleton and activity of the small Rho GTPases. The effect of crotoxin and its subunit on actin reorganization and tyrosine phosphorylation in rat peritoneal macrophages, during phagocytosis of opsonized zymosan, was presently investigated. The crude venom was used as positive control. In addition, the effect of crotoxin on the activity of Rho and Rac1 small GTPases was examined. Transmission electron studies showed that the venom or crotoxin decreased the extent of spread cells and increased microprojections often extended from macrophage surface. Immunocytochemical assays demosntrated that the venom or toxins increased F-actin content in the cytoplasm of these cells, but induced a marked decrease of phosphotyrosine. These effects were abolished by treatment with zileuton, a 5-lipoxygenase inhibitor. Furthermore, crotoxin decreased membrane-associated RhoA and Rac1 in translocation assays. The present results indicate that the crotalid venom and crotoxin are able to induce cytoskeleton rearrangement in macrophages. This effect is associated with inhibition of tyrosine phosphorylation and of the activity of proteins involved in intracellular signalling pathways important for the complete phagocytic activity of these cells.  相似文献   

4.
S.C. Sampaio  C.M. Peres  Y. Cury 《Toxicon》2005,45(5):671-676
Recent work demonstrated that crotoxin, the main toxin of Crotalus durissus terrificus venom, inhibits macrophage spreading and phagocytic activities. The crotoxin molecule is composed of two subunits, an acidic non-toxic and non-enzymatic polypeptide named crotapotin and a weakly toxic basic phospholipase A2 (PLA2). In the present work, the active subunit responsible for the inhibitory effect of crotoxin on macrophage function was investigated. Peritoneal macrophages harvested from naive rats were used. Crotapotin (2.12, 3.75, or 8.37 nM/ml), added for 2 h to the medium of peritoneal cell incubation, did not modify the spreading and phagocytic activities of these cells. On the other hand, the PLA2 (1.43, 2.86, or 6.43 nM/ml) subunit caused a significant reduction (30, 33, and 35%, respectively) of the spreading activity. The PLA2 also inhibited the phagocytosis of opsonised zymosan, opsonised sheep erythrocytes, and Candida albicans, indicating that this inhibitory effect is not dependent on the type of receptor involved in the phagocytosis process. The inhibitory effect of PLA2 was not due to loss of cell membrane integrity, since macrophage viability was higher than 95%. These findings indicate that the inhibitory effect of crotoxin on macrophage spreading and phagocytic activities is caused by the phospholipase A2 subunit.  相似文献   

5.
The toxicity of crotoxin, the major toxin of Crotalus durissus terrificus (South American rattlesnake) venom, is mediated by its basic phospholipase A(2) (PLA(2)) subunit. This PLA(2) is non-covalently associated with crotapotin, an acidic, enzymatically inactive subunit of the crotoxin complex. In this work, rabbit antiserum raised against crotapotin purified from Crotalus durissus cascavella venom was tested for its ability to neutralize the neurotoxicity of this venom and its crotoxin in vitro. The ability of this antiserum to inhibit the enzymatic activity of the crotoxin complex and PLA(2) alone was also assessed, and its potency in preventing myotoxicity was compared with that of antisera raised against crotoxin and PLA(2). Antiserum to crotapotin partially neutralized the neuromuscular blockade caused by venom and crotoxin in electrically stimulated mouse phrenic nerve-hemidiaphragm preparations and prevented the venom-induced myotoxicity, but did not inhibit the enzymatic activity of crotoxin and purified PLA(2). In contrast, previous findings showed that antisera against crotoxin and PLA(2) from C. d. cascavella effectively neutralized the neuromuscular blockade and PLA(2) activity of this venom and its crotoxin. The partial neutralization of crotoxin-mediated neurotoxicity by antiserum to crotapotin probably reduced the binding of crotoxin to its receptor following interaction of the antiserum with the crotapotin moiety of the complex.  相似文献   

6.
Crotoxin, the principal neurotoxin in venom of the South American rattlesnakes Crotalus durissus terrificus and Crotalus durissus cascavella, contains a basic phospholipase A2 (PLA2) and an acidic protein, crotapotin. In this work, we examined the ability of rabbit anti-sera against crotoxin and its PLA2 subunit to neutralize the neurotoxicity of venom and crotoxin from C. d. cascavella in mouse phrenic nerve-diaphragm and chick biventer cervicis preparations. Immunoblotting showed that the anti-sera recognized C. d. cascavella crotoxin and PLA2. This was confirmed by ELISA, with both anti-sera having end-point dilutions of 3 x 10(-6). Anti-crotoxin serum neutralized the neuromuscular blockade in phrenic nerve-diaphragm muscle preparations at venom or crotoxin:anti-serum ratios of 1:2 and 1:3, respectively. Anti-PLA2 serum also neutralized this neuromuscular activity at a venom or crotoxin:anti-serum ratio of 1:1. In biventer cervicis preparations, the corresponding ratio for anti-crotoxin serum was 1:3 for venom and crotoxin, and 1:1 and 1:2 for anti-PLA2 serum. The neutralizing capacity of the sera in mouse preparations was comparable to that of commercial anti-serum raised against C. d. terrificus venom. These results show that anti-sera against crotoxin and PLA2 from C. d. cascavella venom neutralized the neuromuscular blockade induced by venom and crotoxin in both nerve-muscle preparations, with the anti-serum against crotoxin being slightly less potent than that against crotoxin.  相似文献   

7.
The composition of the crotalic venom and the immunochemistry and/or pathophysiological characterization and main components were well studied. However, few studies have been carried out to investigate the effect of toxins of this venom on the development of the immune response. The objective of this work was to find out if venom or crotoxin of Crotalus durissus terrificus was able to modulate the immune response through its ability to change the mediators involved in the immune response by an unrelated antigen. We observed in the murine model, that venom as well as crotoxin have inhibitory effect on splenic cells proliferation induced by Con-A. Moreover, CB did not inhibit the proliferative response, suggesting that the integrity of crotoxin complex is necessary for the development of this phenomenon. Moreover, we showed that the effect on cellular proliferation was unrelated to cytotoxicity activity. We also observed that venom or crotoxin inhibited cytokine release induced in HSA immunised mice, mainly IL-2, IL-4 and IL-10, however, crotoxin did not inhibit the release of IFN-gamma. The involvement of T or B cells in the suppressive effect of venom was evaluated through the transference of purified splenic cells from venom-mice to normal mice that also produced low IgG1 anti-HSA levels, indicating the participation of these cells in this process. Mechanism of action of the crotalic venom on development of immune response to an unrelated antigen is much more complex, therefore it must not only involve the interaction of distinct cellular populations, but activation or inhibition of signalling proteins, need to be further investigated.  相似文献   

8.
Crotalus durissus terrificus (South American rattlesnake) venom possesses myotoxic and neurotoxic activities, both of which are also expressed by crotoxin, the principal toxin of this venom. We have investigated the ability of commercial equine antivenom and antivenoms raised in rabbits against C. d. terrificus venom and crotoxin to neutralize the physiological and morphological changes induced by this venom and crotoxin in electrically-stimulated phrenic nerve-diaphragm (PND) and extensor digitorum longus (EDL) preparations of mice. The time required to produce 50% neuromuscular blockade in the PND and EDL preparations was, respectively, 103+/-9 and 59+/-6 min for C. d. terrificus venom (10 microg/ml) and 75+/-9 and 110+/-7 min for crotoxin (10 microg/ml). The antivenoms dose-dependently inhibited this neuromuscular activity of the venom and crotoxin. At a venom:antivenom ratio of 1:3, the rabbit antivenoms were as effective as the commercial equine antivenom. The creatine kinase (CK) concentrations in the organ bath containing EDL muscle were 290 and 1020 U/l following a 120 min exposure to C. d. terrificus venom and crotoxin, respectively. All of the antivenoms neutralized the release of CK by crotoxin, but were ineffective against C. d. terrificus venom. Histological analysis of the two preparations showed that rabbit anticrotoxin antivenom protected against the myotoxic action of C. d. terrificus venom and crotoxin better than the other antivenoms. We conclude that antisera raised in rabbits are better than equine antiserum in neutralizing the neurotoxic and myotoxic activities of C. d. terrificus venom and crotoxin.  相似文献   

9.
Crotoxin is the main neurotoxic component of Crotalus durissus terrificus snake venom and modulates immune and inflammatory responses, interfering with the activity of leukocytes. In the present work, the effects of crotoxin on the number of blood and lymphatic leukocytes and on lymph nodes and spleen lymphocytes population were investigated. The toxin s.c. administered to male Wistar rats, decreases the number of lymphocytes in blood and lymph circulation and increases the content of B and T-lymphocytes in lymph nodes. These effects were detected 1-2h after treatment. The crotoxin molecule is composed of two subunits, an acidic non-toxic polypeptide, named crotapotin and a toxic basic phospholipase A(2) (PLA(2)). PLA(2), but not crotapotin, decreased the number of circulating blood and lymph lymphocytes. Crotoxin promotes leukocyte adherence to endothelial cells of blood microcirculation and to lymph node high endothelial venules, which might contribute to the drop in the number of circulating lymphocytes. Crotoxin increases expression of the adhesion molecule LFA-1 in lymphocytes. The changes in the expression of the adhesion molecule might contribute, at least in part, for the increased leukocyte adhesion to endothelium. Zileuton, a 5-lipoxygenase inhibitor, blocked the decrease in the number of circulating leukocytes induced by crotoxin and also abolished the changes observed in leukocyte-endothelial interactions, suggesting the involvement of lipoxygenase-derived mediators in the effects of the toxin.  相似文献   

10.
Crotoxin is a heterodimeric protein composed of an acidic and basic subunit from the venom of Crotalus durissus terrificus and is representative of a number of presynaptically acting neurotoxins found in the venom of rattlesnakes. Four different monoclonal antibodies, typed as IgG1 subclass, were raised against the basic subunit of this toxin. One was a potent neutralizing antibody of intact crotoxin, which could neutralize approximately 1.6 moles of purified crotoxin per mole of antibody. The monoclonal antibody enhanced the neutralizing ability of commercial polyvalent crotalid antivenom against the lethality of crude C. d. terrificus venom four-fold. Paradoxically, this monoclonal antibody by itself was ineffective against the lethality of crude C. d. terrificus venom. Using an enzyme-linked immunosorbent assay, we tested various proteins for competitive inhibition of binding of biotinylated-crotoxin to plates coated with the four individual monoclonal antibodies. Concolor toxin, vegrandis toxin, intact crotoxin, Mojave toxin, and the basic subunit of crotoxin showed increasing effectiveness as displacers of crotoxin from the neutralizing monoclonal antibody. None of the monoclonal antibodies reacted with purified phospholipase A2 enzymes from Crotalus atrox or Crotalus adamanteus, nor any of the components present in the crude venoms from four different elapids known to contain presynaptically acting neurotoxins, which show some sequence identity to crotoxin.  相似文献   

11.
R D Crosland 《Toxicon》1991,29(6):613-631
I investigated the efficacy of 10 drugs with respect to reducing the lethality in mice of the following venoms and their respective neurotoxins: Bungarus caeruleus venom; Bungarus multicinctus venom, alpha-bungarotoxin, beta-bungarotoxin; Crotalus durissus terrificus venom, crotoxin: Notechis scutatus scutatus venom; Oxyuranus scutellatus venom, taipoxin. The drugs diltiazem, nicergoline, primaquine, verapamil and vesamicol protected mice from the lethality of B. caeruleus venom, B. multicinctus venom, and/or beta-bungarotoxin. Dexamethasone provided protection from B. multicinctus venom, beta-bungarotoxin, crotoxin, O. scutellatus venom and taipoxin. Protective activity resided in amphiphilic drugs and correlated with the charge on the drug at physiological pH. Protection from lethality was maximal when the drugs were administered immediately after injection of the venom or toxin. Nifedipine, piracetam and reserpine provided no protection from any of the venoms or toxins tested.  相似文献   

12.
In Brazil, the Crotalus durissus terrificus subspecie is the most studied, particularly concerning its crotoxin. Crotoxin is the major toxic component of the South American rattlesnake Crotalus durissus venom. It is composed of two different subunits, CA called crotapotin and CB weakly toxic phospholipase A2 with high enzymatic activity. In this paper, we decided to make a study of the main toxic characteristics of crotoxin (CTX) and CB fraction from the other subspecies, Crotalus durissus cascavella and of Crotalus durissus collilineatus, in comparison with those of C. d. terrificus. Ours results have shown that the venoms presented similar chromatographic profiles and the purified fractions were free of contaminants. Regarding the toxic activities, the DL50 of the crotoxins showed no significant differences between the subspecies. The smaller toxicity of CB indicated that the toxicity of the crotoxin complex depends on the interaction between CA and CB. CTX and fraction CB of the three species of Crotalus showed negligible proteolytic activity. C. d. terrificus CTX presented higher PLA2 activity when compared with the others two subspecies. The oedema induced by CB developed later than the CTX and reached its peak 3 h after the injection. The myotoxic activity was determined by assaying serum CK levels. Mice injected with CTX of C. d. terrificus presented greater myotoxic activity compared to the others. The myotoxic activity of CB from the three subspecies was lower than the activity of the crotoxin, reinforcing the idea that the fraction CA increases the toxicity of CB.  相似文献   

13.
Antisera were raised against intact crotoxin (Crotalus durissus terrificus), Mojave toxin (Crotalus scutulatus scutulatus) and concolor toxin (Crotalus viridis concolor), as well as the subunits of crotoxin. Double immunodiffusion and enzyme-linked immunosorbent assays (ELISA) demonstrated antigenic similarity between these three purified toxins and their subunits. Additionally, when crotoxin antisera were pre-incubated with each of the three toxins before injection, the lethal activity of all were neutralized equally well. Antiserum was considerably more effective in neutralizing crotoxin in vivo when the toxin was injected i.m. than when injected i.v. Antisera against both intact crotoxin and its basic subunit were an order of magnitude more effective than crotoxin acidic subunit antiserum in crotoxin neutralization. Purified phospholipase A2 from Crotalus adamanteus and Crotalus atrox showed weak cross-reactivity with antisera raised against intact crotoxin and its subunits in the ELISA. Our results suggest that crotalid neurotoxins can be detected and neutralized by polyclonal antibodies raised against any intact toxin or basic subunit in this group of homologous toxins.  相似文献   

14.
The effects of myotoxin III (MT-III), a phospholipase A(2) (sPLA(2)) from Bothrops asper snake venom, and crotoxin B (CB), a neurotoxic and myotoxic sPLA(2) from the venom of Crotalus durissus terrificus, on cyclooxygenases (COXs) expression and biosynthesis of prostaglandins (PGs) were evaluated, together with the mechanisms involved in these effects. Upon intraperitoneal injection in mice, both sPLA(2)s promoted the synthesis of PGD(2) and PGE(2), with a different time-course. MT-III, but not CB, induced COX-2 expression by peritoneal leukocytes without modification on COX-1 constitutive expression, whereas CB increased the constitutive activity of COX-1. MT-III increased the enzymatic activity of COX-1 and COX-2. Similar effects were observed when these sPLA(2)s were incubated with isolated macrophages, evidencing a direct effect on these inflammatory cells. Moreover, both toxins elicited the release of arachidonic acid from macrophages in vitro. Inhibition of cPLA(2) by AACOCF(3), but not of iPLA(2) by PACOCF(3) or BEL, significantly reduced PGD(2), PGE(2) and arachidonic acid (AA) release promoted by MT-III. These inhibitors did not affect MT-III-induced COX-2 expression. In contrast, cPLA(2) inhibition did not modify the effects of CB, whereas iPLA(2) inhibition reduced PGD(2) and AA production induced by CB. These findings imply that distinct regulatory mechanisms leading to PGs' synthesis are triggered by these snake venom sPLA(2)s. Such differences are likely to explain the dissimilar patterns of inflammatory reaction elicited by these sPLA(2)s in vivo.  相似文献   

15.
R D Crosland 《Toxicon》1989,27(6):655-663
Antivenoms are the currently available agents for the treatment of intoxication by snake venoms. Therapeutic approaches using more generally available drugs could improve treatment of envenomation by reducing the cost of the therapeutic agent, eliminating hypersensitivity reactions to antivenoms, and reducing storage costs. I investigated the efficacies of chlorpromazine and quinacrine with respect to reducing the lethality in mice of Bungarus caeruleus venom, Bungarus multicinctus venom and its neurotoxic components alpha- and beta-bungarotoxin, Crotalus durissus terrificus venom and its neurotoxic component crotoxin, and Oxyuranus scutellatus venom and its neurotoxic component taipoxin. Venom or toxin was administered i.p., followed immediately by an i.p. injection of chlorpromazine or quinacrine. The effect of drug on the lethality of the venom was recorded 24 hr later. Chlorpromazine and quinacrine were effective antagonists of the lethality of B. caeruleus venom, B multicinctus venom, and beta-bungarotoxin without themselves being overtly toxic. Chlorpromazine (1 mg/kg) increased the LD50 of B. caeruleus venom, B. multicinctus venom, and beta-bungarotoxin by 8.6-, 2.6- and 3.7-fold, respectively. In the range of 1 to 5 mg/kg, quinacrine increased the LD50 of B. caeruleus venom, B. multicinctus venom and beta-bungarotoxin by 5.7-, 11- and 8.6-fold, respectively. Neither drug had any effect on the other venoms or toxins. Chlorpromazine and quinacrine were also injected at different times both before and after the injection of venom or toxin. Protection from lethality was maximal for both drugs when they were administered immediately after injection of venom or toxin.  相似文献   

16.
V Choumet  M S Jiang  I Specker  C Bon 《Toxicon》1991,29(4-5):441-451
Polyclonal rabbit antisera were raised against the phospholipase A2 neurotoxin agkistrodotoxin (AGTX) from Agkistrodon blomhoffii brevicaudus venom and against the phospholipase A2 subunit (component-B, CB) of crotoxin from Crotalus durissus terrificus venom. Anti-AGTX antibodies cross-reacted strongly with crotoxin and crotoxin-like molecules and more weakly with other phospholipases A2 from the venoms of Viperidae and Crotalidae. On the other hand, anti-CB antibodies cross-reacted with AGTX, and also recognized ammodytoxin A and the phospholipase A2 from Vipera berus venom, but not other phospholipases A2 from Crotalidae and Viperidae. Anti-AGTX and anti-CB antibodies were able to inhibit the phospholipase A2 activity and to neutralize the lethal potency of the homologous and heterologous toxins (AGTX or crotoxin). Immunoaffinity chromatography columns were used to isolate anti-AGTX antibodies which recognized CB (91% of the total anti-AGTX antibodies), and anti-CB antibodies which recognized AGTX (52% of the total anti-CB antibodies). Immunochemical investigations performed with each type of antibody indicated that the majority of AGTX antigenic determinants are present on crotoxin component-B and on phospholipases A2 from Viperidae venoms, and that some of these determinants are involved in the neutralization of lethal potency and in the inhibition of enzymatic activity of AGTX and crotoxin.  相似文献   

17.
Analysis of fatty acids released by crotoxin in rat brain synaptosomes.   总被引:1,自引:0,他引:1  
Crotoxin, the main toxin of Crotalus durissus terrificus venom, exerts its lethal effect by blocking neurotransmission at the neuromuscular junction level through a triphasic mechanism. This effect seems to depend on its phospholipasic activity, suggesting that the mechanism of neurotransmission blockage may be related to fatty acids release in specific sites of the nervous terminal. In this work, we purified the fatty acids released by crotoxin's activity and this outline was compared with other phospholipases A(2), including CB, a subunit of crotoxin. Our results show a higher release of palmitate and arachidonate by crotoxin when compared to other phospholipases A(2). Since palmitate has a role in protein acylation processes and arachidonate participates in signal transduction events, these mechanisms may be related to the neurotoxic actions of crotoxin.  相似文献   

18.
G Faure  C Bon 《Toxicon》1987,25(2):229-234
Crotalus durissus terrificus venoms collected either from individual snakes or from a large number of animals (more than 30) have been fractionated by high performance liquid chromatography on gel-filtration and ion exchange columns. The chromatographic patterns obtained with individual venom samples indicated that each Crotalus durissus terrificus snake synthesizes five to ten different crotoxin isoforms in widely variable relative proportions. Furthermore, the heterogeneity of venom samples collected from a large number of snakes did not appear significantly larger than that observed with venoms obtained from individual snakes. The comparison of the chromatographic patterns that we obtained with the various (individual and pooled) venoms allowed us to identify about 15 crotoxin isoforms, which may result from the expression of isogenes, since two amino acid variants have been reported to occur at several positions in the sequence of crotoxin component B. These observations confirm the existence of numerous molecular isoforms of crotoxin and suggest that an individual Crotalus durissus terrificus snake possesses several genes coding for the various crotoxin isoforms. The heterogeneity of venom samples collected from a large number of animals is explained, in a large measure, by the complexity of the venom obtained from the individual snakes.  相似文献   

19.
S. A. and L. A. . Preliminary fractionation of tiger rattlesnake (Crotalus tigris) venom. Toxicon 28, 1447–1455, 1990.—Tiger rattlesnake (Crotalus tigris) venom was fractioned by using fast protein liquid chromatography (FPLC). The crude venom had low protease activity, lacked hemolytic activity and had an i.p. 50 of 0.070 mg/kg for mice. Lethal fractions obtained by anion and cation exchange were examined for antigenic identity with crotoxin and Mojave toxin. Four toxins were obtained by anion exchange chromatography which showed immunoidentity with these toxins, and one fraction caused rear limb paresis in mice. A lethal toxin (about 10% of total venom protein) purified further with Superose-12 FPLC (molecular sieve) had an i.p. 50 of 0.050 mg/kg for mice, reacted strongly with anti-crotoxin and anti-Mojave toxin antiserum in ELISA and immunoelectrophoresis. This toxin also showed complete immunoidentity with crotoxin and Mojave toxin in immunodiffusion assays with anti-crotoxin antiserum. The results indicated the presence of crotoxin and/or Mojave toxin isoforms in this venom. Although this species has a low venom yield (average 10 mg per snake), the venom is highly toxic and contains high concentrations of several neurotoxic isotoxins.  相似文献   

20.
This work was undertaken to determine the role of the calcineurin pathway on the necrosis of skeletal muscle induced by crotoxin, the major component of the venom of Crotalus durissus terrificus. Rats were treated with cyclosporin A (CsA), a calcineurin inhibitor, for 5 days and, in the 6th day, received an intramuscular injection of crotoxin into the tibialis anterior muscle. Rats were also treated with diclofenac, a non-steroidal anti-inflammatory drug, for 5 days and, on the 6th day, injected with crotoxin. All treated groups were sacrificed 24 h after injection of crotoxin. Tibialis anterior and soleus muscles were removed, frozen and stored in liquid nitrogen. Histological sections were stained with Toluidine Blue and assayed for acid phosphatase. The results show that CsA, but not diclofenac, is able to significantly minimize myonecrosis promoted by crotoxin. In conclusion, CsA attenuates skeletal muscle necrosis induced by crotoxin, indicating that the calcineurin pathway is essential for crotoxin myotoxic activity. The myoprotective effect of CsA is not related to its anti-inflammatory effect since diclofenac, a cyclo-oxygenase inhibitor, was not able to produce myoprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号