首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marathi  UK; Howell  SR; Ashmun  RA; Brent  TP 《Blood》1996,88(6):2298-2305
Fanconi anemia (FA) cells are hypersensitive to cytotoxicity, cell cycle arrest, and chromosomal aberrations induced by DNA cross-linking agents, such as mitomycin C (MMC) and nitrogen mustard (HN2). Although MMC hypersensitivity is complemented in a subset of FA cells (complementation group C [FA-C]) by wild-type FAC cDNA, the cytoprotective mechanism is unknown. In the current study, we tested the hypothesis that FAC protein functions in the suppression of DNA interstand cross-link (ISC)-induced cell cycle arrest and apoptosis. Comparison of HN2-induced cell cycle arrest and apoptosis with those of its non-cross-linking analogs, diethylaminoethyl chloride and 2- dimethylaminoethyl chloride, delineated the DNA ISC specificity of FAC- mediated cytoprotection. Overexpression of wild-type FAC cDNA in FA-C lymphoblasts (HSC536N cell line) prevented HN2-induced growth inhibition, G2 arrest, and DNA fragmentation that is characteristic of apoptosis. In contrast cytoprotection was not conferred against the effects of the non-cross-linking mustards. Our data show that DNA ISCs induce apoptosis more potently than do DNA monoadducts and suggest that FAC suppresses specifically DNA ISC-induced apoptosis in the G2 phase of the cell cycle.  相似文献   

2.
Kupfer  GM; D'Andrea  AD 《Blood》1996,88(3):1019-1025
Fanconi anemia (FA) is an autosomal recessive disease marked by developmental defects, bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA cross-linking and alkylating agents and accumulate in the G2 phase of the cell cycle in response to these agents. FA cells also display genomic instability, suggesting a possible defect in the p53 pathway. To test the effect of heterologous expression of FAC cDNA on drug-induced cytotoxicity, G2 accumulation, and p53 induction in FA cells, we compared two isogenic FA cell lines: HSC536N (mock), a FA type C cell line sensitive to mitomycin C (MMC), and the same cell line transfected (corrected) with wild-type FAC cDNA (HSC536N [+FAC]). HSC536N (+FAC) cells showed a 30-fold increase in resistance to MMC concentration. Similarly, increases in resistance were observed following exposure to cisplatin, carboplatin, and cyclophosphamide. In addition, HSC536N (+FAC) cells showed a twofold lower G2 accumulation following MMC treatment. To analyze the possible interaction of FAC with the p53 pathway, we analyzed p53 induction in mock and corrected cell lines following exposure to MMC. HSC536N (mock) cells induced p53 at lower MMC concentrations than HSC536N (corrected). Caffeine, a known G2 checkpoint inhibitor, not only inhibited G2 accumulation seen in both cell lines but also caused the resistant HSC536N (+FAC) to become as sensitive to MMC as HSC536N (mock) cell line. We conclude that the FAC protein has a specific cytoprotective effect and may function as a cell cycle regulator of the G2 phase of the cell cycle.  相似文献   

3.
Fanconi's anaemia (FA) is characterized by increased spontaneous and induced chromosome fragility. This has been widely regarded to be due to a defect in DNA crosslink repair, because of the sensitivity of cells to known DNA crosslinking agents such as mitomycin C (MMC) and diepoxybutane (DEB). Although Fanconi cells are also sensitive to molecular oxygen, and may be protected by antioxidants, this has generally been considered to be a secondary phenomenon. However, it has recently been demonstrated that the FAC protein, coded for by the Fanconi anaemia gene for complementation group C, is strictly cytoplasmic and does not enter the nucleus even after DNA damage, which seems inconsistent with a role in DNA repair.
We have studied the effects of MMC and oxygen on apoptotic cell death in FA group C (FA-C) and normal lymphoblastoid cell lines. Hyperoxia alone failed to induce apoptosis in either FA-C or normal cells. At ambient oxygen, MMC is known to generate oxygen free radicals, whereas decreased oxygen tension facilitates the metabolic activation of MMC for DNA crosslinking. We therefore studied the effects of MMC at 20% and 5% oxygen to favour oxygen radical generation or DNA crosslinking respectively. FA-C cells showed increased sensitivity compared to normal cells for the induction of apoptosis by MMC at 20% oxygen. When cells were treated with MMC at 5% oxygen we found no increased sensitivity of Fanconi cells to MMC when compared to normal cells. These results imply a role for oxygen free radicals, but not for DNA crosslinking, in the sensitivity of FA cells to MMC.  相似文献   

4.
The Fanconi anemia (FA) group C gene product (FANCC) functions to protect cells from cytotoxic and genotoxic effects of cross-linking agents. FANCC is also required for optimal activation of STAT1 in response to cytokine and growth factors and for suppressing cytokine-induced apoptosis by modulating the activity of double-stranded RNA-dependent protein kinase. Because not all FANCC mutations affect STAT1 activation, the hypothesis was considered that cross-linker resistance function of FANCC depends on structural elements that differ from those required for the cytokine signaling functions of FANCC. Structure-function studies were designed to test this notion. Six separate alanine-substituted mutations were generated in 3 highly conserved motifs of FANCC. All mutants complemented mitomycin C (MMC) hypersensitive phenotype of FA-C cells and corrected aberrant posttranslational activation of FANCD2 in FA-C mutant cells. However, 2 of the mutants, S249A and E251A, failed to correct defective STAT1 activation. FA-C lymphoblasts carrying these 2 mutants demonstrated a defect in recruitment of STAT1 to the interferon gamma (IFN-gamma) receptor and GST-fusion proteins bearing S249A and E251A mutations were less efficient binding partners for STAT1 in stimulated lymphoblasts. These same mutations failed to complement the characteristic hypersensitive apoptotic responses of FA-C cells to tumor necrosis factor-alpha (TNF-alpha) and IFN-gamma. Cells bearing a naturally occurring FANCC mutation (322delG) that preserves this conserved region showed normal STAT1 activation but remained hypersensitive to MMC. The conclusion is that a central highly conserved domain of FANCC is required for functional interaction with STAT1 and that structural elements required for STAT1-related functions differ from those required for genotoxic responses to cross-linking agents. Preservation of signaling capacity of cells bearing the del322G mutation may account for the reduced severity and later onset of bone marrow failure associated with this mutation.  相似文献   

5.
Hematopoietic progenitor cells (HPC) from mice nullizygous at the Fanconi anemia (FA) group C locus and children with Fanconi anemia group C (FA-C) are hypersensitive to interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha. This hypersensitivity results, in part, from the capacity of these cytokines to prime the fas pathway. Because fas-mediated programmed cell death in many cells involves sequential activation of specific caspases, we tested the hypothesis that programmed cell death in FA HPC involves the ordered activation of specific caspase molecules. Lysates from lymphoblasts treated with both agonistic anti-fas antibody and IFN-gamma contained activated caspase 3 family members (caspases 3, 6, and 7), as well as caspase 8, whereas activation of caspases 1, 2, 4, 9, and 10 was not detected. The apoptotic effects of fas agonists in IFN-gamma-treated human and murine FA-C cells were blocked when pretreated with inhibitors (ac-DEVD-cho, CP-DEVD-cho, Z-DEVD-FMK) of the caspase 3 protease. Inhibitors (ac-YVAD-cho, CP-YVAD-cho, Z-YVAD-FMK) of caspase 1 did not block apoptosis or caspase 3 activation. Treatment of FA cells with the fluoromethyl ketone tetrapeptide caspase 8 inhibitor (ac-IETD-FMK) did suppress caspase 3 activation. A 4-fold greater fraction of IFN-induced FA-C cells expressed caspase 3 than FA-C cells complemented by retroviral-mediated transfer of FANCC. Therefore fas-induced apoptosis in Fanconi anemia cells of the C type involves the activation of caspase 8, which controls activation of caspase 3 family members and one direct or indirect function of the FANCC protein is to suppress apoptotic responses to IFN-gamma upstream of caspase 3 activation. (Blood. 2000;96:4204-4211)  相似文献   

6.
Employing the myeloblastic leukemia M1 cell line, which does not express endogenous p53, and genetically engineered variants, it was recently shown that activation of p53, using a p53 temperature- sensitive mutant transgene (p53ts), resulted in rapid apoptosis that was delayed by high level ectopic expression of bcl-2. In this report, advantage has been taken of these M1 variants to investigate the relationship between p53-mediated G1 arrest and apoptosis. Flow cytometric cell cycle analysis has provided evidence that activation of wild-type (wt) p53 function in M1 cells resulted in the induction of G1 growth arrest; this was clearly seen in the M1p53/bcl-2 cells because of the delay in apoptosis that unmasked p53-induced G1 growth arrest. This finding was further corroborated at the molecular level by analysis of the expression and function of key cell cycle regulatory genes in M1p53 versus M1p53/bcl-2 cells after the activation of wt p53 function; events that take place at early times during the p53-induced G1 arrest occur in both the M1p53 and the M1p53/bcl-2 cells, whereas later events occur only in the M1p53/bcl-2 cells, which undergo delayed apoptosis, thereby allowing the cells to complete G1 arrest. Finally, it was observed that a spectrum of p53 target genes implicated in p53- induced growth suppression and apoptosis were similarly regulated, either induced (gadd45, waf1, mdm2, and bax) or suppressed (c-myc and bcl-2), after activation of wt p53 function in M1p53 and M1p53/bcl-2 cells. Taken together, these findings show that wt p53 can simultaneously induce the genetic programs of both G1 growth arrest and apoptosis within the same cell type, in which the genetic program of cell death can proceed in either G1-arrested (M1p53/bcl-2) or cycling (M1p53) cells. These findings increase our understanding of the functions of p53 as a tumor suppressor and how alterations in these functions could contribute to malignancy.  相似文献   

7.
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A–H). Two FA genes, corresponding to complementation groups A and C, have been cloned, but the function of the FAA and FAC proteins remains unknown. We have recently shown that the FAA and FAC proteins bind and form a nuclear complex. In the current study, we analyzed the FAA and FAC proteins in normal lymphoblasts and lymphoblasts from multiple FA complementation groups. In contrast to normal controls, FA cells derived from groups A, B, C, E, F, G, and H were defective in the formation of the FAA/FAC protein complex, the phosphorylation of the FAA protein, and the accumulation of the FAA/FAC protein complex in the nucleus. These biochemical events seem to define a signaling pathway required for the maintenance of genomic stability and normal hematopoiesis. Our results support the idea that multiple gene products cooperate in the FA Pathway.  相似文献   

8.
In response to genotoxic stress, mammalian cells can activate cell cycle checkpoint pathways to arrest the cell for repair of DNA damage or induce apoptosis to eliminate damaged cells. The checkpoint kinase, Chk2, has been implicated in both of these responses and is believed to function in an ataxia telangiectasia (Atm)-dependent manner. We show here that Chk2-/- mouse embryo fibroblasts (MEFs), unlike Atm-/- or p53-/- MEFs, behaved like normal MEFs in manifesting p21 induction and G(1) arrest upon exposure to gamma-irradiation. Therefore, Chk2 is not involved in p53-mediated G(1) arrest. To examine the role of Chk2 in p53-dependent apoptotic response, we used adenovirus E1A-expressing MEFs. We show that Chk2-/- cells, like p53-/- cells, did not undergo DNA damage-induced apoptosis, whereas Atm-/- cells behaved like normal cells in invoking an apoptotic response. Furthermore, this apoptosis could occur in the absence of protein synthesis, suggesting that it is preexisting, or "latent," p53 that mediates this response. We conclude that Chk2 is not involved in Atm- and p53-dependent G(1) arrest, but is involved in the activation of latent p53, independently of Atm, in triggering DNA damage-induced apoptosis.  相似文献   

9.
10.
Programmed cell death (apoptosis) is a normal physiological process, which could in principle be manipulated to play an important role in cancer therapy. The key importance of p53 expression in the apoptotic response to DNA-damaging agents has been stressed because mutant or deleted p53 is so common in most kinds of cancer. An important strategy, therefore, is to find ways to induce apoptosis in the absence of wild-type p53. In this paper, we compare apoptosis in normal human mammary epithelial cells, in cells immortalized with human papilloma virus (HPV), and in mammary carcinoma cell lines expressing wild-type p53, mutant p53, or no p53 protein. Apoptosis was induced with mitomycin C (MMC), a DNA cross-linking and damaging agent, or with staurosporine (SSP), a protein kinase inhibitor. The normal and HPV-transfected cells responded more strongly to SSP than did the tumor cells. After exposure to MMC, cells expressing wild-type p53 underwent extensive apoptosis, whereas cells carrying mutated p53 responded weakly. Primary breast cancer cell lines null for p53 protein were resistant to MMC. In contrast, two HPV immortalized cell lines in which p53 protein was destroyed by E6-modulated ubiquitinylation were highly sensitive to apoptosis induced by MMC. Neither p53 mRNA nor protein was induced in the HPV immortalized cells after MMC treatment, although p53 protein was elevated by MMC in cells with wild-type p53. Importantly, MMC induced p21 mRNA but not p21 protein expression in the HPV immortalized cells. Thus, HPV 16E6 can sensitize mammary epithelial cells to MMC-induced apoptosis via a p53- and p21-independent pathway. We propose that the HPV 16E6 protein modulates ubiquitin-mediated degradation not only of p53 but also of p21 and perhaps other proteins involved in apoptosis.  相似文献   

11.
OBJECTIVE: Fanconi anemia (FA) is a human autosomal-recessive cancer susceptibility disorder characterized by multiple congenital abnormalities, progressive bone marrow failure, and cellular sensitivity to mitomycin C (MMC). FA has at least eight complementation groups (A, B, C, D1, D2, E, F, G), and six of the FA genes have been cloned. Several FA proteins, including FANCA, FANCC, FANCF, and FANCG, interact in a nuclear complex, and this complex is required for the activation (monoubiquitination) of the downstream FANCD2 protein. Activation of FANCD2 results in the assembly of FANCD2/BRCA1 foci. The aim of this study was to analyze the FA pathway in several FA patient-derived cell lines. MATERIALS AND METHODS: We generated an antibody to FANCF and analyzed FANCF expression in human lymphoblasts corresponding to all known FA subtypes. We systematically analyzed the FA pathway (FANCD2 monoubiquitination and assembly of FANCD2 nuclear foci) in patient-derived FA-F and FA-D1 cell lines. RESULTS: FANCF protein expression is normal in cells derived from all FA complementation groups except FA-F and does not vary during cell cycle progression. FANCF, but not FANCD2, is a component of the nuclear FA protein complex and appears to stabilize other subunits of the complex. FANCF is required for the monoubiquitination of the FANCD2 protein following ionizing radiation. FANCD2 is monoubiquitinated in FA-D1 cells, even though these cells are highly sensitive to MMC. CONCLUSIONS: The recently cloned FANCF protein is required for FANCD2 activation, and the yet uncloned FANCD1 protein functions further downstream or independently of the FA pathway.  相似文献   

12.
OBJECTIVE: The pathophysiology of bone marrow failure in Fanconi anemia (FA) patients is thought to involve excessive apoptosis involving signaling triggered by fas ligation and tumor necrosis factor (TNF)-alpha, or interferon (IFN)-gamma exposure. We investigated whether a new member of the TNF family, TRAIL (TNF-related apoptosis-inducing ligand), would similarly trigger preferential apoptotic cell death in FA phenotype cells. MATERIAL AND METHODS: Hematopoietic cells from FANCC(-/-) transgenic mice and human FA-C lymphoblasts (HSC536N) as well as their phenotypically corrected counterparts (FANCC(+/+), HSC536/FA-Cneo) were compared for their response to apoptosis induction by TRAIL and fas ligation in the presence or absence of IFN-gamma. Cells were also studied for the protein and gene expression of TRAIL-receptors, caspase-8 and its inhibitory protein, FLIP. RESULTS: TRAIL exposure by itself or in combination with IFN-gamma did not lead to preferential apoptosis induction in human and murine FA-C phenotype hematopoietic cells. This resistance was unrelated to the expression of TRAIL receptors or FLIP isoforms, but correlated with absent cleavage of pro-caspase-8. Results were validated by those from gene expression profiling of relevant genes in the two lymphoblast cell lines. CONCLUSION: TRAIL, in contrast to fas ligation, does not induce preferential apoptosis in FA-C phenotype cells despite shared downstream signaling described in non-FA models. These data provide further insight into the complexity of FA-C-regulated apoptotic signaling.  相似文献   

13.
Lin Y  Brown L  Hedley DW  Barber DL  Benchimol S 《Blood》2002,100(12):3990-4000
Various cytokines have been shown to protect cells from p53-dependent apoptosis. To investigate the mechanism underlying cytokine-mediated survival, we used a Friend virus-transformed erythroleukemia cell line that expresses a temperature-sensitive p53 allele. These cells express the spleen focus-forming virus-encoded envelope glycoprotein gp55 that allows the cells to proliferate in the absence of erythropoietin (EPO). These cells respond to p53 activation at 32 degrees C by undergoing G(1) cell cycle arrest and apoptosis. In the presence of EPO, p53 activation leads only to prolonged but viable G(1) arrest. These findings indicate that EPO functions as a survival factor and that gp55/EPO receptor signaling is distinct from EPO/EPO receptor signaling. We demonstrate that p53-dependent apoptosis results in mitochondrial damage as shown by loss of mitochondrial membrane potential, increase in intracellular calcium, and release of mitochondrial cytochrome c into the cytosol. EPO prevented all of these changes including the subsequent activation of caspases. We identify an intrinsic phosphatidylinositol-3'-OH kinase/protein kinase B (PI3'K/PKB)-dependent survival pathway that is constitutively active in these cells. This survival pathway limits p53-dependent apoptosis. We propose that EPO promotes survival through a distinct pathway that is dependent on JAK2 but independent of STAT5 and PI3'K.  相似文献   

14.
AIM:To investigate the relationship between theinhibited growth (cytotoxic activity) of berberine andapoptotic pathway with its molecular mechanism ofaction.METHODS:The in vitro cytotoxic techniques werecomplemented by cell cycle analysis and determinationof sub-G_1 for apoptosis in human gastric carcinomaSNU-5 cells.Percentage of viable cells,cell cycle,andsub-G_1 group (apoptosis) were examined and determinedby the flow cytometric methods.The associated proteinsfor cell cycle arrest and apoptosis were examined byWestern blotting.RESULTS:For SNU-5 cell line,the IC (50) was found tobe 48 μmol/L of berberine.In SNU-5 cells treated with25-200 μmol/L berberine,G_2/M cell cycle arrest wasobserved which was associated with a marked incrementof the expression of p53,Wee1 and CDk1 proteins anddecreased cyclin B.A concentration-dependent decreaseof cells in G_0/G_1 phase and an increase in G_2/M phasewere detected.In addition,apoptosis detected as sub-Gocell population in cell cycle measurement was proved in25-200 μmol/L berberine-treated cells by monitoring theapoptotic pathway.Apoptosis was identified by sub-G_0cell population,and upregulation of Bax,downregulation of Bcl-2,release of Ca(2 ),decreased the mitochondrialmembrane potential and then led to the release ofmitochondrial cytochrome C into the cytoplasm andcaused the activation of caspase-3,and finally led to theoccurrence of apoptosis.CONCLUSION:Berberine induces p53 expression andleads to the decrease of the mitochondrial membranepotential,Cytochrome C release and activation ofcaspase-3 for the induction of apoptosis.  相似文献   

15.
Activation of the tumor suppressor p53 by DNA damage induces either cell cycle arrest or apoptosis, but what determines the choice between cytostasis and death is not clear. In this report, we show that the E1A-binding p300 nucleoprotein is a key determinant of p53-dependent cell fate in colorectal cancer cells: absence of p300 increases apoptosis in response to DNA damage. In addition, p300-deficient (p300(-)) cells fail to undergo G(1)/S arrest after UV irradiation. These abnormalities are associated with prolongation of p53 stability, reduced p53-acetylation, blunting of MDM2 activation, failure to transactivate p21, and a disproportionate increase in PUMA levels. When xenografted, p300(-) cells are more sensitive to chemotherapy with doxorubicin. These results show that p300 is a key regulator of the p53 response and suggest that p300 inhibition could be used to modulate chemotherapy.  相似文献   

16.
AIM: To investigate the inhibitory effect of tumor suppressor p33ING1b and its synergy with p53 gene in hepatocellular carcinoma (HCC). METHODS: Recombinant sense and antisense p33ING1b plasmids were transfected into hepatoma cell line HepG2 with lipofectamine. Apoptosis, G0/G1 arrest, cell growth rate and cloning efficiency in soft agar of HepG2 were analyzed after transfection. In three hepatoma cell lines with different endogenous p53 gene expressions, the synergistic effect of p33ING1b with p53 was analyzed by flow cytometry and luciferase assay was performed to detect the activation of p53 downstream gene p21WAF1/CIP1. In addition, the expression and mutation rates of p33ING1b in HCC tissues were measured by immunohistochemistry and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). RESULTS: Overexpression of p33ING1b inhibited cell growth of HepG2, induced more apoptosis and protected cells from growth in soft agar. Combined transfer of p33ING1b and p53 gene promoted hepatoma cell apoptosis, G0/G1 arrest and elevated expression of p21WAF1/CIP1. Immunostaining results showed co-localized P33ING1b with P53 protein in HCC tissues and there was a significant relation between protein expression rates of these two genes (P<0.01). Among 28 HCC samples, p33ING1b presented a low gene mutation rate (7.1%). CONCLUSION: p33ING1b collaborates with p53 in cell growth inhibition, cell cycle arrest and apoptosis in HCC. Loss or inactivation of p33ING1b normal function may be an important mechanism for the development of HCC retaining wildtype p53.  相似文献   

17.
Cumming  RC; Liu  JM; Youssoufian  H; Buchwald  M 《Blood》1996,88(12):4558-4567
Fanconi anemia (FA) is a genetically heterogeneous, inherited blood disorder characterized by bone marrow failure, congenital malformations, and a predisposition to leukemias. Because FA cells are hypersensitive to DNA cross-linking agents and have chromosomal instability, FA has been viewed as a disorder of DNA repair. However, the exact cellular defect in FA cells has not been identified. Sequence analysis of the gene defective in group C patients (FAC) has shown no significant homologies to other known genes. The FAC protein has been localized to the cytoplasm, indicating that FAC may either play an indirect role in DNA repair or is involved in a different cellular pathway. Recent evidence has indicated that FA cells may be predisposed to apoptosis, especially after treatment with DNA cross-linking agents. The demonstration that genes can suppress apoptosis has been accomplished by overexpression of such genes in growth factor-dependent cell lines that die by apoptosis after factor withdrawal. Using retroviral-mediated gene transfer, we present evidence that expression of FAC in the hematopoietic factor-dependent progenitor cell lines 32D and MO7e can suppress apoptosis induced by growth factor withdrawal. Flow cytometry and morphologic analysis of propidium iodide stained cells showed significantly lower levels of apoptosis in FAC-retroviral transduced cells after growth factor deprivation. Expression of FAC in both cell lines promoted increased viability rather than proliferation, which is consistent with other apoptosis-inhibiting genes such as Bcl- 2. These findings imply that FAC may act as a mediator of an apoptotic pathway initiated by growth factor withdrawal. Furthermore, the congenital malformations and hematologic abnormalities characterizing FA may be related to an increased predisposition of FA progenitor cells to undergo apoptosis, particularly in the absence of extracellular signals.  相似文献   

18.
Kim JM  Yoon YD  Tsang BK 《Endocrinology》1999,140(5):2307-2317
In the present study we have examined the presence of Fas, Fas ligand (FasL), and p53 in rat granulosa cells during follicular development and atresia, especially in relation to the granulosa cell cycle progression and the onset of granulosa cell apoptosis. Fas, FasL, and p53 proteins were immunolocalized, and their contents were determined by Western blotting. Granulosa cell apoptosis was assessed by DNA fragmentation analyses (DNA ladder) and in situ terminal deoxynucleotidyl transferase mediated deoxy-UTP-biotin nick end labeling (TUNEL) as well as by flow cytometry. Ovaries not exposed to gonadotropins (control) consisted predominantly of preantral and early (small) antral follicles, the latter of which were mostly atretic and demonstrated intense TUNEL staining in granulosa cells exhibiting positive immunoreactivities for FasL and Fas. Granulosa cells isolated from these follicles were apoptotic, as evident by clear ladder pattern of DNA fragmentation upon electrophoretic analysis and the high percentage (>10%) of the cell population in the A0 phase of the cell cycle. After gonadotropin treatment, these features completely disappeared during each of the 3 days of follicular growth to the medium to large antral stages. Cell cycle analysis showed significantly higher proportion of the cells in S and G2/M phases compared with controls, which was accompanied by marked decrease in immunoreactivities for Fas, FasL, and p53. By days 4 and 5, widespread atresia and extensive granulosa cell apoptosis were noted in large antral and preovulatory follicles and were coincidental to increased expression of p53 and Fas, but not of FasL, as well as an apparent arrest of granulosa cell G1/S progression, as evident by an increased cell population in G0/G1 and a decrease in the S and G2/M. Granulosa cells from equine CG-primed ovaries exhibited marked increases in p53 and Fas protein contents and apoptosis after adenoviral p53-sense complementary DNA infection in vitro and were more responsive to Fas activation by an agonistic Fas monoclonal antibody challenge. Taken together, these findings are consistent with the well accepted concept that gonadotropin plays a central role as a survival factor in the regulation of granulosa cell Fas/FasL and p53 expression during ovarian follicular development. In addition, the control of granulosa cell apoptosis may involve two consecutive cellular/molecular events: cell cycle arrest at G1/S and exit from G0 into A0 phase, via regulation of the p53 and Fas/FasL death pathways.  相似文献   

19.
A critical determinant of the efficacy of antineoplastic therapy is the response of malignant cells to DNA damage induced by anticancer agents. The p53 tumor-suppressor gene is a critical component of two distinct cellular responses to DNA damage, the induction of a reversible arrest at the G1/S cell cycle checkpoint, and the activation of apoptosis, a genetic program of autonomous cell death. Expression of the BCR-ABL chimeric gene produced by a balanced translocation in chronic myeloid leukemia, confers resistance to multiple genotoxic anticancer agents. BCR-ABL expression inhibits the apoptotic response to DNA damage without altering either the p53-dependent WAF1/CIP1-mediated G1 arrest or DNA repair. BCR-ABL-mediated inhibition of DNA damage-induced apoptosis is associated with a prolongation of cell cycle arrest at the G2/M restriction point; the delay of G2/M transition may allow time to repair and complete DNA replication and chromosomal segregation, thereby preventing a mitotic catastrophe. The inherent resistance of human cancers to genotoxic agents may result not only by the loss or inactivation of the wild-type p53 gene, but also by genetic alterations such as BCR-ABL that can delay G2/M transition after DNA damage.  相似文献   

20.
OBJECTIVE: The purpose of this study is to investigate the effect of subclinical-dose C-beam irradiation on cell cycle and cell apoptosis in hepatocarcinoma cells. MATERIALS AND METHODS: The HepG2 cells were exposed to 0-2.0 Gy of either the C beam or a gamma-ray. Cell survival was detected by clonogenic assay. Cell cycle was determined by flow-cytometry analysis. The apoptosis was monitored by fluorescence microscope with DAPI staining. p53 and p21 expression were detected by Western blot. RESULTS: The G0/G1 cells in the irradiated groups were significantly more than those in the control (P<0.05). The C-ion irradiation had a greater effect on the cell cycle of HepG2 cells (including promoting G1-phase and G2-phase arrest) than gamma-ray irradiation. The apoptotic cells induced by C beam were significantly more numerous than those induced by gamma-ray (P<0.05). The carbon ions had a stronger effect on p53 and p21 expression than the gamma-ray irradiation. The survival fractions for cells irradiated by C beam were significantly smaller than those irradiated by gamma-ray (P<0.05). CONCLUSION: The subclinical-dose C-beam irradiation significantly suppresses HepG2 cells through cell-cycle arrests and cell apoptosis in contrast to same-dose gamma-ray irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号