首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Corticothalamic connections of paralimbic regions in the rhesus monkey   总被引:8,自引:0,他引:8  
This study addressed the issue of whether paralimbic regions of the cerebral cortex share common thalamic projections. The corticothalamic connections of the paralimbic regions of the orbital frontal, medial prefrontal, cingulate, parahippocampal, and temporal polar cortices were studied with the autoradiographic method in the rhesus monkey. The results revealed that the orbital frontal, medial prefrontal, and temporal polar proisocortices have substantial projections to both the dorsomedial and medial pulvinar nuclei, whereas the anterior cingulate proisocortex (area 24) projects exclusively to the dorsomedial nucleus. These proisocortical areas also have thalamic connections with the intralaminar and midline nuclei. The cortical areas between the proisocortical regions on the one hand and the isocortical areas on the other, that is, the posterior cingulate region (area 23) and the posterior parahippocampal gyrus (areas TF and TH), project predominantly to the dorsal portion of the medial pulvinar nucleus, the anterior nuclear group (AV, AM), and the lateral dorsal (LD) nucleus. Additionally, the posterior cingulate and medial parahippocampal gyri (area TH) have projections to the lateral posterior (LP) nucleus. Thus, it appears that the proisocortical areas, which are characterized by a predominance of infragranular layers and an absence of layer IV, have common thalamic relationships. Likewise, the intermediate paralimbic areas between the proisocortex and isocortical regions, which also have a predominance of infragranular layers but in addition have evidence of a fourth layer, project to the medial pulvinar and to the so-called limbic nuclei, AV, AM, LD, as well as a modality-specific nucleus, LP.  相似文献   

2.
The afferent and efferent connections of the dorsolateral precentral gyrus, the primary motor cortex for control of the upper extremity, were studied by using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique in three adult macaque monkeys that had received HRP gel implants in this cortical region. Reciprocal corticocortical connections were observed primarily with the supplementary motor area (SMA) in medial premotor area 6 and dorsal bank of the cingulate sulcus, postarcuate area 6 cortex, dorsal cingulate cortex (area 24), superior parietal lobule (area 5, PE/PEa), and inferior parietal lobule (area 7b, PF/PFop, including the secondary somatosensory SII region). In these heavily labeled regions, the associational intrahemispheric afferents originated primarily from small and medium sized pyramidal cells in layer III, but also from layer V. The SMA projections were columnar in organization. Intrahemispheric afferents from contralateral homologous and nonhomologous frontal and cingulate cortices also originated predominantly from layer III, but the connections from contralateral area 4 were almost exclusively from layer III. The bilateral connections with premotor frontal area 6 and cingulate cortices were not observed with parietal regions; i.e., only ipsilateral intrahemispheric parietal corticocortical connections were observed. There were no significant connections with prearcuate area 8 or the granular frontal (prefrontal) cortex. Subcortical afferents originated primarily from the nucleus basalis of Meynert, dorsal claustrum, ventral lateral (VLo and VLc), area X, ventral posterolateral pars oralis (VPLo), central lateral and centromedian thalamic nuclei, lateral hypothalamus, pedunculopontine nucleus, locus ceruleus and subceruleus, and superior central and dorsal raphe nuclei. Lesser numbers of retrogradely labeled neurons were observed in the nucleus of the diagonal band, mediodorsal (MD), paracentral, and central superior lateral thalamic nuclei, nucleus limitans, nucleus annularis, and the mesencephalic and pontine reticular formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Reciprocal anatomical connections between anterior and posterior divisions of the cingulate gyrus are described for the rabbit. Cells within the anterior limbic and precentral agranular regions of the rostral cingulate gyrus, predominantly from layer V, send afferebts to layer I of posterior cingulate and retrosplenial cortices. Cells from layers II and III of posterior cingulate and from layer V of retrosplenial cortex project rostrally to the anterior limbic and precentral agranular cortices. These data demonstrate the existence of an associational anatomical system connecting anterior and posterior regions of the cingulate gyrus.  相似文献   

4.
The premotor cortex (area 6) has several architectonic sectors that can be delineated on the basis of cytoarchitectonic and myeloarchitectonic features. Area 6 may be broadly subdivided into a dorsal and a ventral sector at the spur of the arcuate sulcus. Dorsal 6 lacks a granular layer IV, but ventral 6 has an emergent layer IV that separates laminae III and V. Dorsal 6 has a higher myelin content than ventral 6. Dorsal area 6 is further subdivided into a caudal and a rostral sector on the basis of the presence of large pyramidal cells in the caudal but not in the rostral sector. The rostral sector of area 6 can be subdivided into a medial region distinguished from a more laterally situated area by the presence of more compact and darkly stained cells in layers III and V. Ventral area 6 can be subdivided into an upper and lower division. The upper part has more prominent pyramidal cells in layers III and V, and a better developed outer Baillarger band and vertical plexus than the lower division. The efferent and afferent connections of area 6 were studied with anterograde and retrograde tracers. The frontal connections of dorsal area 6 are restricted to neighboring dorsal frontal regions. Only the caudal sector of dorsal area 6 is connected with the motor cortex. In contrast, ventral area 6 is not only connected with the prefrontal cortex, but also directly with the motor cortex, the parainsular gustatory area, and with somatosensory areas in the frontal operculum. The widespread connections of ventral area 6 may be related to the specialization of the head, neck, and face structures that are represented ventrally within the premotor cortex.  相似文献   

5.
An investigation of the architectonic organization and intrinsic connections of the prefrontal cortex was conducted in rhesus monkeys. Cytoarchitectonic analysis indicates that in the prefrontal cortex there are two trends of gradual change in laminar characteristics that can be traced from limbic periallocortex towards isocortical areas. The stepwise change in laminar features is characterized by the emergence and gradual increase in the width of granular layer IV, by an increase in the size of pyramidal cells in layers III and V, and by a higher cell-packing density in the supragranular layers. Myeloarchitectonic analysis reveals that the limbic areas are poorly myelinated, adjacent areas have a diffuse myelin content confined to the deep layers, and in isocortices the myelinated fibers are distributed in organized horizontal bands (of Baillarger) and a vertical plexus. Using the above architectonic criteria, we observed that one of the architectonic trends takes a radial basoventral course from the periallocortex in the caudal orbitofrontal region to the adjacent proisocortex and then to area 13. The next stage of architectonic regions includes orbital areas 12, 11, and 14, which is followed by area 10, lateral area 12, and the rostral part of ventral area 46. The last group includes the caudal part of ventral area 46 and ventral area 8. The other trend takes a mediodorsal course from the periallocortex around the rostral portion of the corpus callosum to the adjacent proisocortical areas 24, 25, and 32 and then to the medially situated isocortical areas 9, 10, and 14. The next stage includes lateral areas 10 and 9 and the rostral part of dorsal area 46. The last group includes the caudal part of dorsal area 46 and dorsal area 8. The interconnections of subdivisions of the basoventral and mediodorsal cortices were studied with the aid of anterograde and retrograde tracers. Within each trend a given area projects in two directions: to adjoining regions belonging to succeeding architectonic stages on the one hand, and to nearby regions from the preceding architectonic stage on the other. In each direction there is more than one region involved in this projection system, paralleling the radial nature of architectonic change. Periallo- and proisocortices have widespread intrinsic connections, whereas isocortices situated at a distance from limbic areas, such as area 8, have restricted connections. Most interconnections are limited to areas within the same architectonic trend. However, there are links between cortices from the two trends, and these seem to occur between areas that are at a similar stage of architectonic differentiation. The results suggest that there are two architectonically, and perhaps functionally, distinct axes within the prefrontal cortex. The earliest stages within each axis, which have widespread connections, may have a global role in neural processing. On the other hand, the latest stages, which have restricted connections, may have a more specific role in processes associated with the frontal lobe.  相似文献   

6.
The ipsilateral connections of motor areas of galagos were determined by injecting tracers into primary motor cortex (M1), dorsal premotor area (PMD), ventral premotor area (PMV), supplementary motor area (SMA), and frontal eye field (FEF). Other injections were placed in frontal cortex and in posterior parietal cortex to define the connections of motor areas further. Intracortical microstimulation was used to identify injection sites and map motor areas in the same cases. The major connections of M1 were with premotor cortex, SMA, cingulate motor cortex, somatosensory areas 3a and 1, and the rostral half of posterior parietal cortex. Less dense connections were with the second (S2) and parietal ventral (PV) somatosensory areas. Injections in PMD labeled neurons across a mediolateral belt of posterior parietal cortex extending from the medial wall to lateral to the intraparietal sulcus. Other inputs came from SMA, M1, PMV, and adjoining frontal cortex. PMV injections labeled neurons across a large zone of posterior parietal cortex, overlapping the region projecting to PMD but centered more laterally. Other connections were with M1, PMD, and frontal cortex and sparsely with somatosensory areas 3a, 1-2, S2, and PV. SMA connections were with medial posterior parietal cortex, cingulate motor cortex, PMD, and PMV. An FEF injection labeled neurons in the intraparietal sulcus. Injections in posterior parietal cortex revealed that the rostral half receives somatosensory inputs, whereas the caudal half receives visual inputs. Thus, posterior parietal cortex links visual and somatosensory areas with motor fields of frontal cortex.  相似文献   

7.
The cytoarchitecture and connections of the caudal cingulate and medial somatosensory areas were investigated in the rhesus monkey. There is a stepwise laminar differentiation starting from retrosplenial area 30 towards the isocortical regions of the medial parietal cortex. This includes a gradational emphasis on supragranular laminar organization and general reduction of the infragranular neurons as one proceeds from area 30 toward the medial parietal regions, including areas 3, 1, 2, 5, 31, and the supplementary sensory area (SSA). This trend includes a progressive increase in layer IV neurons. Area 23c in the lower bank and transitional somatosensory area (TSA) in the upper bank of the cingulate sulcus appear as nodal points. From area 23c and TSA the architectonic progression can be traced in three directions: one culminates in areas 3a and 3b (core line), the second in areas 1, 2, and 5 (belt line), and the third in areas 31 and SSA (root line). These architectonic gradients are reflected in the connections of these regions. Thus, cingulate areas (30, 23a, and 23b) are connected with area 23c and TSA on the one hand and have widespread connections with parieto-temporal, frontal, and parahippocampal (limbic) regions on the other. Area 23c has connections with areas 30, 23a and b, and TSA as well as with medial somatosensory areas 3, 1, 2, 5, and SSA. Area 23c also has connections with parietotemporal, frontal, and limbic areas similar to areas 30, 23a, and 23b. Area TSA, like area 23c, has connections with areas 3, 1, 2, 5, and SSA. However, it has only limited connections with the parietotemporal and frontal regions and none with the parahippocampal gyrus. Medial area 3 is mainly connected to medial and dorsal sensory areas 3, 1, 2, 5, and SSA and to areas 4 and 6 as well as to supplementary (M2 or area 6m), rostral cingulate (M3 or areas 24c and d), and caudal cingulate (M4 or areas 23c and d) motor cortices. Thus, in parallel with the architectonic gradient of laminar differentiation, there is also a progressive shift in the pattern of corticocortical connections. Cingulate areas have widespread connections with limbic, parietotemporal, and frontal association areas, whereas parietal area 3 has more restricted connections with adjacent somatosensory and motor cortices. TSA is primarily related to the somatosensory-motor areas and has limited connections with the parietotemporal and frontal association cortices.  相似文献   

8.
Injections of the retrograde/anterograde tracers Wheat Germ Agglutinin-Horseradish peroxidase (WGA-HRP) into the cortex along the banks of the inferior limb of the arcuate sulcus in the cortex of 4 macaque monkeys (Macaca fascicularis) were used to investigate its cortico-cortical connections. All injections produced transported label within the sulcus principalis, the ventral lateral prefrontal cortex, the anterior cingulate sulcus and the dorsal insular cortex. The distribution of label within each of these areas differed slightly depending on the injection site. Injections along the caudal bank of the inferior arcuate sulcus label premotor, supplementary motor, and precentral motor areas but produce relatively sparse prefrontal labeling. Posteriorly label is transported to the inferior parietal cortex and the dorsal opercular bank of the Sylvian fissure. Injections along the rostral bank of the sulcus do not label motor areas but produce labeling in dorsal, lateral and orbital prefrontal areas, and in cortex along the ventral bank of the superior branch of the arcuate sulcus. Posteriorly label is transported to cortical areas in the superior temporal gyrus including the dorsal bank of the superior temporal sulcus. The more dorsal rostral bank injection produced both superior temporal and some sparse inferior parietal labeling and the more ventral rostral bank injection produced extensive superior temporal labeling but no parietal labeling. No labeling was ever seen in cortex ventral to the fundus of the superior temporal sulcus. Although other auditory recipient prefrontal areas have been reported, this is the first demonstration of a region chiefly devoted to auditory connections within the ventral frontal cortex. Its adjacency to areas associated with vocal muscle movement, and its connections to midline cortical areas associated with vocal functions in both primates and humans may provide important clues to the organization of Broca's language area.  相似文献   

9.
The cortical and subcortical forebrain connections of the marmoset prefrontal cortex (PFC) were examined by injecting the retrograde tracer, choleratoxin, and the anterograde tracer, biotin dextran amine, into four sites within the PFC. Two of the sites, the lateral and orbital regions, had previously been shown to provide functionally dissociable contributions to distinct forms of behavioral flexibility, attentional set-shifting and discrimination reversal learning, respectively. The dysgranular and agranular regions lying on the orbital and medial surfaces of the frontal lobes were most closely connected with limbic structures including cingulate cortex, amygdala, parahippocampal cortex, subiculum, hippocampus, hypothalamus, medial caudate nucleus, and nucleus accumbens as well as the magnocellular division of the mediodorsal nucleus of the thalamus and midline thalamic nuclei, consistent with findings in the rhesus monkey. In contrast, the granular region on the dorsal surface closely resembled area 8Ad in macaques and had connections restricted to posterior parietal cortex primarily associated with visuospatial functions. However, it also had connections with limbic cortex, including retrosplenial and caudal cingulate cortex as well as auditory processing regions in the superior temporal cortex. The granular region on the lateral convexity had the most extensive connections. Based on its architectonics and functionality, it resembled areas 12/45 in macaques. It had connections with high-order visual processing regions in the inferotemporal cortex and posterior parietal cortex, higher-order auditory and polymodal processing regions in the superior temporal cortex. In addition it had extensive connections with limbic regions including the amygdala, parahippocampal cortex, cingulate, and retrosplenial cortex.  相似文献   

10.
Injections of HRP-WGA in four cytoarchitectonic subdivisions of the posterior parietal cortex in rhesus monkeys allowed us to examine the major limbic and sensory afferent and efferent connections of each area. Area 7a (the caudal part of the posterior parietal lobe) is reciprocally interconnected with multiple visual-related areas: the superior temporal polysensory area (STP) in the upper bank of the superior temporal sulcus (STS), visual motion areas in the upper bank of STS, the dorsal prelunate gyrus, and portions of V2 and the parieto-occipital (PO) area. Area 7a is also heavily interconnected with limbic areas: the ventral posterior cingulate cortex, agranular retrosplenial cortex, caudomedial lobule, the parahippocampal gyrus, and the presubiculum. By contrast, the adjacent subdivision, area 7ip (within the posterior bank of the intraparietal sulcus), has few limbic connections but projects to and receives projections from widespread visual areas different than those that are connected with area 7a: the ventral bank and fundus of the STS including part of the STP cortex and the inferotemporal cortex (IT), areas MT (middle temporal) and possibly MTp (MT peripheral) and FST (fundal superior temporal) and portions of V2, V3v, V3d, V3A, V4, PO, and the inferior temporal (IT) convexity cortex. The connections between posterior parietal areas and visual areas located on the medial surface of the occipital and parieto-occipital cortex, containing peripheral representations of the visual field (V2, V3, PO), represent a major previously unrecognized source of visual inputs to the parietal association cortex. Area 7b (the rostral part of the posterior parietal lobe) was distinctive among parietal areas in its selective association with somatosensory-related areas: S1, S2, 5, the vestibular cortex, the insular cortex, and the supplementary somatosensory area (SSA). Like 7ip, area 7b had few limbic associations. Area 7m (on the medial posterior parietal cortex) has its own topographically distinct connections with the limbic (the posterior ventral bank of the cingulate sulcus, granular retrosplenial cortex, and presubiculum), visual (V2, PO, and the visual motion cortex in the upper bank of the STS), and somatosensory (SSA, and area 5) cortical areas. Each parietal subdivision is extensively interconnected with areas of the contralateral hemisphere, including both the homotopic cortex and widespread heterotopic areas. Indeed, each area is interconnected with as many areas of the contralateral hemisphere as it is within the ipsilateral one, though less intensively. This pattern of distribution allows for a remarkable degree of interhemispheric integration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The primary motor and premotor areas of the human cerebral cortex.   总被引:3,自引:0,他引:3  
Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.  相似文献   

12.
We have examined the circuitry connecting the posterior parietal cortex with the frontal lobe of rhesus monkeys. HRP-WGA and tritiated amino acids were injected into subdivisions 7m, 7a, 7b, and 7ip of the posterior parietal cortex, and anterograde and retrograde label was recorded within the frontal motor and association cortices. Our main finding is that each subdivision of parietal cortex is connected with a unique set of frontal areas. Thus, area 7m, on the medial parietal surface, is interconnected with the dorsal premotor cortex and the supplementary motor area, including the supplementary eye field. Within the prefrontal cortex, area 7m's connections are with the rostral sector of the frontal eye field (FEF), the dorsal bank of the principal sulcus, and the anterior bank of the inferior arcuate sulcus (Walker's area 45). In contrast, area 7a, on the posterior parietal convexity, is not linked with premotor regions but is heavily interconnected with the rostral FEF in the anterior bank of the superior arcuate sulcus, the dorsolateral prefrontal convexity, the rostral orbitofrontal cortex, area 45, and the fundus and adjacent cortex of the dorsal and ventral banks of the principal sulcus. Area 7b, in the anterior part of the posterior parietal lobule, is interconnected with still a different set of frontal areas, which include the ventral premotor cortex and supplementary motor area, area 45, and the external part of the ventral bank of the principal sulcus. The prominent connections of area 7ip, in the posterior bank of the intraparietal sulcus, are with the supplementary eye field and restricted portions of the ventral premotor cortex, with a wide area of the FEF that includes both its rostral and caudal sectors, and with area 45. All frontoparietal connections are reciprocal, and although they are most prominent within a hemisphere, notable interhemispheric connections are also present. These findings provide a basis for a parcellation of the classically considered association cortex of the frontal lobe, particularly the cortex of the principal sulcus, into sectors defined by their specific connections with the posterior parietal subdivisions. Moreover, the present findings, together with those of a companion study (Cavada and Goldman-Rakic: J. Comp. Neurol. this issue) have allowed us to establish multiple linkages between frontal areas and specific limbic and sensory cortices through the posterior parietal cortex. The networks thus defined may form part of the neural substrate of parallel distributed processing in the cerebral cortex.  相似文献   

13.
Lateralization of higher brain functions requires that a dominant hemisphere collects relevant information from both sides. The right dorsal premotor cortex (PMd), particularly implicated in visuomotor transformations, was hypothesized to be optimally located to converge visuospatial information from both hemispheres for goal‐directed movement. This was assessed by probabilistic tractography and a novel analysis enabling group comparisons of whole‐brain connectivity distributions of the left and right PMd in standard space (16 human subjects). The resulting dominance of contralateral PMd connections was characterized by right PMd connections with left visual and parietal areas, indeed supporting a dominant role in visuomotor transformations, while the left PMd showed dominant contralateral connections with the frontal lobe. Ipsilateral right PMd connections were also stronger with posterior parietal regions, relative to the left PMd connections, while ipsilateral connections of the left PMd were stronger with, particularly, the anterior cingulate, the ventral premotor and anterior parietal cortex. The pattern of dominant right PMd connections thus points to a specific role in guiding perceptual information into the motor system, while the left PMd connections are consistent with action dominance based on a lead in motor intention and fine precision skills.  相似文献   

14.
The ipsilateral association connections of the cortex of the dorsal part of the rostral bank of the parieto-occipital sulcus and of the adjoining posterior part of the superior parietal lobule were studied by using different retrograde fluorescent tracers. Fluoro-Ruby, Fast blue and Diamidino yellow were injected into visual area V6A, and dorso-caudal (PMdc, F2) and dorso-rostral (PMdr, F7) premotor cortex, respectively. The parietal area of injection had been previously characterized physiologically in behaving monkeys, through a variety of oculomotor and visuomanual tasks. Area V6A is mainly linked by reciprocal projections to parietal areas 7m, MIP (medial intraparietal) and PEa, and, to a lesser extent, to frontal areas PMdr (rostral dorsal premotor cortex, F7) and PMdc (F2). All these areas project to that part of the dorsocaudal premotor cortex that has a direct access to primary motor cortex. V6A is also connected to area F5 and, to a lesser extent, to 7a, ventral (VIP) and lateral (LIP) intraparietal areas. This pattern of association connections may explain the presence of visually-related and eye-position signals in premotor cortex, as well as the influence of information concerning arm position and movement direction on V6A neural activity. Area V6A emerges as a potential 'early' node of the distributed network underlying visually-guided reaching. In this network, reciprocal association connections probably impose, through re-entrant signalling, a recursive property to the operations leading to the composition of eye and hand motor commands.  相似文献   

15.
Common efferent projections of the dorsolateral prefrontal cortex and posterior parietal cortex were examined in 3 rhesus monkeys by placing injections of tritiated amino acids and HRP in frontal and parietal cortices, respectively, of the same hemisphere. Terminal labeling originating from both frontal and parietal injection sites was found to be in apposition in 15 ipsilateral cortical areas: the supplementary motor cortex, the dorsal premotor cortex, the ventral premotor cortex, the anterior arcuate cortex (including the frontal eye fields), the orbitofrontal cortex, the anterior and posterior cingulate cortices, the frontoparietal operculum, the insular cortex, the medial parietal cortex, the superior temporal cortex, the parahippocampal gyrus, the presubiculum, the caudomedial lobule, and the medial prestriate cortex. Convergent terminal labeling was observed in the contralateral hemisphere as well, most prominently in the principal sulcal cortex, the superior arcuate cortex, and the superior temporal cortex. In certain common target areas, as for example the cingulate cortices, frontal and parietal efferents terminate in an array of interdigitating columns, an arrangement much like that observed for callosal and associational projections to the principal sulcus (Goldman-Rakic and Schwartz, 1982). In other areas, frontal and parietal terminals exhibit a laminar complementarity: in the depths of the superior temporal sulcus, prefrontal terminals are densely distributed within laminae I, III, and V, whereas parietal terminals occupy mainly laminae IV and VI directly below the prefrontal bands. Subcortical structures also receive apposing or overlapping projections from both prefrontal and parietal cortices. The dorsolateral prefrontal and posterior parietal cortices project to adjacent, longitudinal domains of the neostriatum, as has been described previously (Selemon and Goldman-Rakic, 1985); these projections are also found in close apposition in the claustrum, the amygdala, the caudomedial lobule, and throughout the anterior medial, medial dorsal, lateral dorsal, and medial pulvinar nuclei of the thalamus. In the brain stem, both areas of association cortex project to the intermediate layers of the superior colliculus and to the midline reticular formation of the pons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
This study gives a detailed account of the cyto-architectonic features of the cortex of a tammar wallaby, a member of the Macropodidae, a family of Australian metatherian mammals. With the aid of the physiological data and data from pathway studies, six different cortical regions - frontal, parietal, temporal, occipital, insular and cingulate - were identified based on their eutherian homologues. Each region is distinguished by its individual cyto-architectonic properties. The frontal region consists of six layers throughout. Layer I is extremely thick, and an agranular region was not seen. The parietal region contains six layers of which layer IV is very prominent due to its great thickness and high cell density. Layer V is also thick and is present throughout this region. The temporal region consists of two areas: a dorsal area, physiologically defined as auditory, and a ventral temporal area. The cyto-architectonic features of the dorsal temporal area are similar to those of the parietal region, but the thickness of the neocortical mantle is narrower than that in the parietal region. In the ventral temporal area, layer VI has a speckled appearance and the cells are arranged in horizontal rows. In the occipital region, layers III and IV are very thick and well differentiated, giving a striated appearance to this region. The insular region was identified ventral to the frontal region and consists of both agranular and granular areas. The cingulate region, mostly situated in the medial part of the cortex, lacks a layer IV. Midway along its rostrocaudal extent, cells in layer III stain deeply and are tightly packed, forming a band separating layers I and II from layers V and VI. Layer VI has a speckled appearance and its cells are oriented in horizontal rows. Most of the cortical cyto-architectonic features in wallabies are comparable to those in eutherian mammals. The cortex of the tammar apparently lacks the agranular region described within the motor cortex of a number of eutherian mammals. Nonetheless, the cyto-architectonic features of the tammar are otherwise comparable to those of contemporary eutherian mammals.  相似文献   

17.
Superior area 6 of the macaque monkey frontal cortex is formed by two cytoarchitectonic areas: F2 and F7. In the present experiment, we studied the input from the superior parietal lobule (SPL) to these areas by injecting retrograde neural tracers into restricted parts of F2 and F7. Additional injections of retrograde tracers were made into the spinal cord to define the origin of corticospinal projections from the SPL. The results are as follows: 1) The part of F2 located around the superior precentral dimple (F2 dimple region) receives its main input from areas PEc and PEip (PE intraparietal, the rostral part of area PEa of Pandya and Seltzer, [1982] J. Comp. Neurol. 204:196–210). Area PEip was defined as that part of area PEa that is the source of corticospinal projections. 2) The ventrorostral part of F2 is the target of strong projections from the medial intraparietal area (area MIP) and from the dorsal part of the anterior wall of the parietooccipital sulcus (area V6A). 3) The ventral and caudal parts of F7 receive their main parietal input from the cytoarchitectonic area PGm of the SPL and from the posterior cingulate cortex. 4) The dorsorostral part of F7, which is also known as the supplementary eye field, is not a target of the SPL, but it receives mostly afferents from the inferior parietal lobule and from the temporal cortex. It is concluded that at least three separate parietofrontal circuits link the superior parietal lobule with the superior area 6. Considering the functional properties of the areas that form these circuits, it is proposed that the PEc/PEip-F2 dimple region circuit is involved in controlling movements on the basis of somatosensory information, which is the traditional role proposed for the whole dorsal premotor cortex. The two remaining circuits appear to be involved in different aspects of visuomotor transformations. J. Comp. Neurol. 402:327–352, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The distribution of the monoclonal antibody Cat-301 was examined in the frontal and parietal cortex of macaque monkeys. In both regions the distribution was uniform within cytoarchitecturally defined areas (or subareas) but varied between them. In all areas, Cat-301 labeled the soma and proximal dendrites of a restricted population of neurons. In the frontal lobe, Cat-301-positive neurons were intensely immunoreactive and present in large numbers in the motor cortex (area 4), premotor cortex (area 6, excluding its lower ventral part), the supplementary motor area (SMA), and the caudal prefrontal cortex (areas 8a, 8b and 45). In the parietal lobe, large numbers of intensely immunoreactive neurons were evident in the post-central gyrus (areas 1 and 2), the superior parietal lobule (PE/5), and the dorsal bank (PEa), fundus (IPd), and deep half of the ventral bank (POa(i] of the intraparietal sulcus (IPS). Two major patterns of laminar distribution were evident. In motor, supplementary motor, premotor (excluding the lower part of its ventral division), and the caudal prefrontal cortex (Walker's areas 8a, 8b and 45), and throughout the parietal cortex (with the exception of area 3), Cat-301-positive neurons were concentrated in the lower part of layer III and in layer V. The laminar positions of labeled cells in these areas were remarkably constant, as were the proportions of labeled neurons that had pyramidal and nonpyramidal morphologies (means of 30.2% and 69.8%, respectively). In contrast, in prefrontal areas 9, 10, 11, 12, 13, 14, and 46, in the cingulate cortex (areas 23, 24 and 25), and in the lower part of the ventral premotor cortex, Cat-301-positive neurons were spread diffusely across layers II to VI and a mean of 3.6% of the labeled neurons were pyramidal while 96.4% were nonpyramidal. Area 3 was unique among frontal and parietal areas, in that the labeled neurons in this area were concentrated in layers IV and VI. The areas in the frontal lobe which were heavily labeled are thought to be involved in the control of somatic (areas 4 and 6) and ocular (areas 8 and 45) movements. Those in parietal cortex may be classified as areas with somatosensory functions (1, 2, PE/5, and PEa) and areas which may participate in the analysis of visual motion (Pandya and Seltzer's IPd and POa(i), which contain Maunsell and Van Essen's VIP). The parietal somatosensory areas are connected to frontal areas with somatic motor functions, while POa(i) is interconnected with the frontal eye fields (8a and 45).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Corticocortical projections to the caudal and rostral areas of dorsal premotor cortex (6DC and 6DR, also known as F2 and F7) were studied in the marmoset monkey. Both areas received their main thalamic inputs from the ventral anterior and ventral lateral complexes, and received dense projections from the medial premotor cortex. However, there were marked differences in their connections with other cortical areas. While 6DR received consistent inputs from prefrontal cortex, area 6DC received few such connections. Conversely, 6DC, but not 6DR, received major projections from the primary motor and somatosensory areas. Projections from the anterior cingulate cortex preferentially targeted 6DC, while the posterior cingulate and adjacent medial wall areas preferentially targeted 6DR. Projections from the medial parietal area PE to 6DC were particularly dense, while intraparietal areas (especially the putative homolog of LIP) were more strongly labeled after 6DR injections. Finally, 6DC and 6DR were distinct in terms of inputs from the ventral parietal cortex: projections to 6DR originated preferentially from caudal areas (PG and OPt), while 6DC received input primarily from rostral areas (PF and PFG). Differences in connections suggest that area 6DR includes rostral and caudal subdivisions, with the former also involved in oculomotor control. These results suggest that area 6DC is more directly involved in the preparation and execution of motor acts, while area 6DR integrates sensory and internally driven inputs for the planning of goal‐directed actions. They also provide strong evidence of a homologous organization of the dorsal premotor cortex in New and Old World monkeys. J. Comp. Neurol. 522:3683–3716, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Summary The density of senile plaques (SP) was determined in 55 cytoarchitectonic areas of the cerebral cortex in three aged (27 + years) macaque monkeys. In silverstained sections the SP distributions pattern was variable, with a predilection for frontal areas and the primary somatosensory cortex. In one monkey, SP density in motor and premotor areas reached a level comparable to that found in Alzheimer's disease (AD). Lower SP densities were found in the amygdala and insula, and in cingulate, limbic temporal, and temporal, occipital, and parietal association cortices. Then lowest densities were in the hippocampus and in the primary auditory and primary visual cortices. SP stained with Congo red, to identify the older amyloid-containing plaques, showed a similar distribution.but were fewer in number. There was at times a marked shift in SP density between adjacent cytoarchitectonic fields, suggesting that cytoarchitectonics or connectivity may play a role in determining SP distribution. The distribution of the SP in the normal aged human brain according to cytoarchitectonic areas is not known. Their pattern of distribution in these three primates appears to differ from that found in AD, which emphasizes the hippocampus, amygdala, entorhinal cortex, and temporal and parietal lobe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号