首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myoblast transplantation is currently limited by poor survival and integration of these cells into host musculature. Transplantation systems that enhance the viability of the cells and induce their outward migration to populate injured muscle may enhance the success of this approach to muscle regeneration. In this study, enriched populations of primary myoblasts were seeded onto delivery vehicles formed from alginate, and the role of vehicle design and local growth factor delivery in cell survival and migration were examined. Only 5 +/- 2.5% of cells seeded into nanoporous alginate gels survived for 24 h and only 4 +/- 0.5% migrated out of the gels. Coupling cell adhesion peptides (G4RGDSP) to the alginate prior to gelling slightly increased the viability of cells within the scaffold to 16 +/- 1.4% and outward migration to 6 +/- 1%. However, processing peptide-modified alginate gels to yield macroporous scaffolds, in combination with sustained delivery of HGF and FGF2 from the material, dramatically increased the viability of seeded cells over a 5-day time course and increased outward migration to 110 +/- 12%. This data indicate long-term survival and migration of myoblasts placed within polymeric delivery vehicles can be greatly increased by appropriate scaffold composition, architecture, and growth factor delivery. This system may be particularly useful in the regeneration of muscle tissue and be broadly useful in the regeneration of other tissues as well.  相似文献   

2.
嗅鞘细胞/细胞外基质夹层支架的制备和形态学观察   总被引:1,自引:0,他引:1  
目的研究嗅粘膜嗅鞘细胞在细胞外基质夹层支架内的生长特性,为治疗神经系统损伤寻找新的移植供体。方法嗅鞘细胞/细胞外基质夹层支架由四层毯状细胞外基质支架和三层嗅粘膜嗅鞘细胞相间叠加构成。纤维蛋白原、层粘连蛋白和纤粘连蛋白按一定比例混合后,在新鲜大鼠血浆促凝作用下,构建单层毯状细胞外基质支架,在支架表面种植嗅粘膜来源的嗅鞘细胞。于倒置显微镜下观察嗅鞘细胞在支架上/内的生长过程,培养3d后,在细胞表面再次滴加上述细胞外基质混合胶以构建第二层毯状支架,依次重复两次。夹层支架制成组织切片和超薄切片后,用光镜和电镜观察和分析夹层支架的内部结构以及嗅鞘细胞在支架内的生长情况。结果由顶层至底层,支架内的嗅鞘细胞数量逐渐增多,细胞突起逐渐延长,细胞内分泌颗粒逐渐增多及其电子密度逐渐增高;细胞可在支架之间迁移,其水平排列方向具有一致性;嗅鞘细胞的细胞膜可与支架紧密粘附,支架内局部区域出现组织间隙。结论嗅粘膜嗅鞘细胞可在细胞外基质夹层支架内正常增殖和分化,细胞与支架具有良好的组织相容性。该夹层支架可作为嗅鞘细胞三维生长的载体,用于移植治疗神经损伤。  相似文献   

3.
Site-specific delivery of angiogenic growth factors from tissue-engineered devices should provide an efficient means of stimulating localized vessel recruitment to the cell transplants and would ensure cell survival and function. In the present article, we describe the construction of a novel porous alginate scaffold that incorporates tiny poly (lactic-co-glycolic acid) microspheres capable of controlling the release of angiogenic factors, such as basic fibroblast growth factor (bFGF). The microspheres are an integral part of the solid alginate matrix, and their incorporation does not affect the scaffold porosity or pore size. In vitro, bFGF was released from the porous composite scaffolds in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of cardiac fibroblasts. The controlled delivery of bFGF from the three-dimensional scaffolds accelerated the matrix vascularization after implantation on the mesenteric membrane in rat peritoneum. The number of penetrating capillaries into the bFGF-releasing scaffolds was nearly fourfold higher than into the control scaffolds (those incorporating microspheric BSA and heparin but not bFGF). At day 10 posttransplantation, capillary density in the composite scaffolds was 45 +/- 3/mm(2) and it increased to 70 +/- 7/mm(2) by day 21. The released bFGF induced the formation of large and matured blood vessels, as judged by the massive layer of mural cells surrounding the endothelial cells. The control over bFGF delivery and localizing its effects to areas of need, may aid in the wider application of bFGF in therapeutic angiogenesis as well as in tissue engineering.  相似文献   

4.
The successful use of transplanted cells and/or growth factors for tissue repair is limited by a significant cell loss and/or rapid growth factor diffusion soon after implantation. Highly porous alginate scaffolds formed with covalent crosslinking have been used to improve cell survival and growth factor release kinetics, but require open-wound surgical procedures for insertion and have not previously been designed to readily degrade in vivo. In this study, a biodegradable, partially crosslinked alginate scaffold with shape-memory properties was fabricated for minimally invasive surgical applications. A mixture of high and low molecular weight partially oxidized alginate modified with RGD peptides was covalently crosslinked using carbodiimide chemistry. The scaffold was compressible 11-fold and returned to its original shape when rehydrated. Scaffold degradation properties in vitro indicated ~85% mass loss by 28 days. The greater than 90% porous scaffolds released the recombinant growth factor insulin-like growth factor-1 over several days in vitro and allowed skeletal muscle cell survival, proliferation, and migration from the scaffold over a 28-day period. The compressible scaffold thus has the potential to be delivered by a minimally invasive technique, and when rehydrated in vivo with cells and/or growth factors, could serve as a temporary delivery vehicle for tissue repair.  相似文献   

5.
Despite the attractive features of nanofibrous scaffolds for cell attachment in tissue-engineering (TE) applications, impeded cell ingrowth has been reported in electrospun scaffolds. Previous findings have shown that the scaffold can function as a sieve, keeping cells on the scaffold surface, and that cell migration into the scaffold does not occur in time. Because fiber diameter is directly related to the pore size of an electrospun scaffold, the objective of this study was to systematically evaluate how cell delivery can be optimized by tailoring the fiber diameter of electrospun poly(epsilon-caprolactone) (PCL) scaffolds. Five groups of electrospun PCL scaffolds with increasing average fiber diameters (3.4-12.1 microm) were seeded with human venous myofibroblasts. Cell distribution was analyzed after 3 days of culture. Cell penetration increased proportionally with increasing fiber diameter. Unobstructed delivery of cells was observed exclusively in the scaffold with the largest fiber diameter (12.1 microm). This scaffold was subsequently evaluated in a 4-week TE experiment and compared with a poly(glycolic acid)-poly(4-hydroxybutyrate) scaffold, a standard scaffold used successfully in cardiovascular tissue engineering applications. The PCL constructs showed homogeneous tissue formation and sufficient matrix deposition. In conclusion, fiber diameter is a crucial parameter to allow for homogeneous cell delivery in electrospun scaffolds. The optimal electrospun scaffold geometry, however, is not generic and should be adjusted to cell size.  相似文献   

6.
A fibrous scaffold made of alginate or alginate/chitosan was fabricated for annulus fibrosus (AF) cell culture using a wet-spinning and lyophilization technique. The scaffolds were evaluated using several in vitro tests. Scanning electron microscopy showed the scaffold fibers generally aligned in one direction with individual fiber diameters varying between 40-100 microm. The alginate/chitosan hybrid scaffold exhibited a slower degradation rate, while both scaffold types did not display any cyto-toxicity to 3T3 fibroblasts and could maintain canine AF cell growth. The AF cells retained their spherical shape within the fibrous scaffold at the beginning of the culture period and formed into cell clusters at later times. Specific extracellular matrix molecules, including collagen I, collagen II, and aggrecan, could be detected in the AF cell clusters. These results demonstrate the feasibility of using this hybrid alginate/chitosan scaffold for AF cell culture, and the potential application for intervertebral disc tissue engineering.  相似文献   

7.
Sapir Y  Cohen S  Friedman G  Polyak B 《Biomaterials》2012,33(16):4100-4109
One of the major challenges in engineering thick, complex tissues such as cardiac muscle, is the need to pre-vascularize the engineered tissue in vitro to enable its efficient integration with host tissue upon implantation. Herein, we explored new magnetic alginate composite scaffolds to provide means of physical stimulation to cells. Magnetite-impregnated alginate scaffolds seeded with aortic endothelial cells stimulated during the first 7 days out of a total 14 day experimental course showed significantly elevated metabolic activity during the stimulation period. Expression of proliferating cell nuclear antigen (PCNA) indicated that magnetically stimulated cells had a lower proliferation index as compared to the non-stimulated cells. This suggests that the elevated metabolic activity could instead be related to cell migration and re-organization. Immunostaining and confocal microscopy analyses supported this observation showing that on day 14 in magnetically stimulated scaffolds without supplementation of any growth factors, cellular vessel-like (loop) structures, known as indicators of vasculogenesis and angiogenesis were formed as compared to cell sheets or aggregates observed in the non-stimulated (control) scaffolds. This work is the first step in our understanding of how to accurately control cellular organization to form tissue engineered constructs, which together with additional molecular signals could lead to a creation of an efficient pre-vascularized tissue construct with potential applicability for transplantation.  相似文献   

8.
Development of biosynthetic conduits carrying extracellular matrix molecules and cell lines expressing neurotrophic growth factors represents a novel and promising strategy for spinal cord and peripheral nerve repair. In the present in vitro study, the compatibility and growth-promoting effects of (i) alginate hydrogel, (ii) alginate hydrogel complemented with fibronectin, and (iii) matrigel were compared between olfactory ensheathing cells (OECs), Schwann cells (SCs), and bone marrow stromal cells (BMSCs). Neurite outgrowth from embryonic dorsal root ganglia (DRG) neurons was used to assess the efficacy of the hydrogels alone or in combination with cultured cells to promote axonal regeneration. The result showed that alginate hydrogel transformed OECs, SCs, and BMSCs into atypical cells with spherical shape and inhibited their metabolic activity. Combination of alginate hydrogel with fibronectin promoted only OECs proliferation. Alginate hydrogel also inhibited outgrowth of DRG neurites, although this effect was attenuated by addition of fibronectin, SCs, or BMSCs. In contrast, matrigel stimulated cell proliferation, preserved the typical morphological features of the cultured cells and induced massive sprouting of DRG neurites. Addition of cultured cells to matrigel did not further improve DRG neurite outgrowth. The present findings suggest that addition of extracellular matrix should be considered when engineering biosynthetic scaffolds on the basis of alginate hydrogels.  相似文献   

9.
High cell density and uniformity in a tissue-engineered construct is essential to expedite the formation of a uniform extracellular matrix. In this study, we demonstrated an on-site gelation approach to increase cellular population and uniformity through porous scaffolds using alginate as gelling material. The on-site gelation was triggered during cell seeding and was shown to effectively restrain the cells in the porous scaffold during subsequent cell cultivation. The initial demonstration of the effectiveness of this system was made with chondrocyte cells, targeted at functional restoration of damaged or dysfunctional cartilage. By limiting cellular mobility, cell population increased by 89% after 7 days of cell culture in scaffolds encapsulating alginate gel as opposed to a 36% increase in scaffolds without gel. The cell distribution throughout the gelled scaffold was found to be more uniform than in the nongelled scaffold. SEM analysis revealed that the cells exhibited typical chondrocytic morphology. Improved cellular functionality was verified by low levels of collagen type I gene expression and steady gene activity levels of collagen type II over 3 weeks of cell cultivation. Alternatively, cells seeded in scaffolds with the conventional cell-seeding method demonstrated increased levels of collagen type I gene expression, indicating the possibility of cell dedifferentiation over long-term cell culture. Success with the chitosan-alginate scaffold model suggested that this flexible on-site gelation method could be potentially applied to other cell and tissue types for enhanced tissue engineering development.  相似文献   

10.
Abstract

The applications of alginate as a drug delivery vehicle and 3D cell culture scaffold have become increasingly popular in the fields of biomaterials and tissue engineering. Although histological analysis of intact alginate scaffold and cells is a critical aspect of investigations, the existing methods of histological processing often lead to distortions in the scaffold shape, resulting in poor image quality and misrepresentation of the cellular environment. For this reason, the use of glycol methacrylate (GMA) has been explored as an embedding material of alginate scaffolds for histological analysis of embedded cells. The results of the present study demonstrated that soaking alginate scaffolds in a barium chloride solution prior to fixation in neutral buffered formalin (NBF) was a critical step for maintenance of the structure. By slowly infiltrating the hydrogel matrix with GMA using a commercially available embedding kit, the techniques developed in the present study allowed preservation of alginate bead structural integrity and successful staining of the embedded cells.  相似文献   

11.
Biomaterial scaffolds are central to many tissue engineering strategies as they create a space for tissue growth and provide a support for cell adhesion and migration. However, biomaterial implantation results in unavoidable injury resulting in an inflammatory response, which can impair integration with the host and tissue regeneration. Toward the goal of reducing inflammation, we investigated the hypothesis that a lentiviral gene therapy-based approach to localized and sustained IL-10 expression at a scaffold could modulate the number, relative proportions, and cytokine production of infiltrating leukocyte populations. Flow cytometry was used to quantify infiltration of six leukocyte populations for 21 days following implantation of PLG scaffolds into intraperitoneal fat. Leukocytes with innate immune functions (i.e., macrophages, dendritic cells, neutrophils) were most prevalent at early time points, while T lymphocytes became prevalent by day 14. Reporter gene delivery indicated that transgene expression persisted at the scaffold for up to 28 days and macrophages were the most common leukocyte transduced, while transduced dendritic cells expressed the greatest levels of transgene. IL-10 delivery decreased leukocyte infiltration by 50% relative to controls, increased macrophage IL-10 expression, and decreased macrophage, dendritic cell, and CD4 T cell IFN-γ expression. Thus, IL-10 gene delivery significantly decreased inflammation following scaffold implant into the intraperitoneal fat, in part by modulating cytokine expression of infiltrating leukocytes.  相似文献   

12.
Adoptive transfer of cells for therapeutic purposes requires efficient and precise delivery to the target organ whilst preserving cell function. Therefore, therapeutically applied cells need to migrate and integrate within their target tissues after delivery, e.g. dendritic cells (DCs) need to migrate to lymph nodes to elicit an antigen-specific immune response. Previous studies have shown that inappropriate cell delivery can hinder DC migration and result in insufficient immune induction. As migration can be extremely difficult to study quantitatively in vivo, we propose an in vitro assay that reproduces key in vivo conditions to optimize cell delivery and migration in vivo. Using DC migration along a chemokine gradient, we describe here a novel (19)F MR-based, large-scale, quantitative assay to measure cell migration in a three-dimensional collagen scaffold. Unlike conventional migration assays, this set-up is amenable to both large and small cell numbers, as well as opaque tissue samples and the inclusion of chemokines or other factors. We labeled primary human DCs with a (19)F label suitable for clinical use; (0.5-15) × 10(6) cells in the scaffolds were imaged sequentially, and migration was assessed using two independent methods. We found no migration with larger numbers of cells, but up to 3% with less than one million cells. Hence, we show that the cell density in cell bolus injections has a decisive impact on migration, and this may explain the limited migration observed using large cell numbers in the clinic.  相似文献   

13.
Porous carriers for biomedical applications based on alginate hydrogels   总被引:9,自引:0,他引:9  
Eiselt P  Yeh J  Latvala RK  Shea LD  Mooney DJ 《Biomaterials》2000,21(19):1921-1927
Macroporous scaffolds are typically utilized in tissue engineering applications to allow for the migration of cells throughout the scaffold and integration of the engineered tissue with the surrounding host tissue. A method to form macroporous beads with an interconnected pore structure from alginate has been developed by incorporating gas pockets within alginate beads, stabilizing the gas bubbles with surfactants, and subsequently removing the gas. Macroporous scaffolds could be formed from alginate with different average molecular weights (5-200 kDa) and various surfactants. The gross morphology, amount of interconnected pores, and total void volume was investigated both qualitatively and quantitatively. Importantly, macroporous alginate beads supported cell invasion in vitro and in vivo.  相似文献   

14.
背景:脊髓损伤最初往往会导致细胞和组织的不断丢失,组织工程支架可以模拟细胞外基质的生理状态,从而有利于细胞的黏附、迁移、扩增和分化。 目的:总结近年来组织工程支架材料联合细胞和/或细胞因子修复脊髓损伤的新进展。 方法:应用计算机检索PubMed、Ovid Medline及CBM数据库中2000-10/2010-10 与组织工程支架材料修复脊髓损伤相关的文章。  结果与结论:组织工程材料治疗脊髓损伤需要3 因素:种子细胞、组织工程支架、细胞因子。组织工程支架对于损伤脊髓断端起到桥接作用,而种植于材料的种子细胞和/或细胞因子可以促进神经轴突的生长和迁移。可用于组织工程支架的材料可分为天然材料和人工合成材料,包括胶原、壳聚糖、琼脂糖/藻酸盐、聚乳酸、纤连蛋白、聚羟基乙酸/聚乳酸、聚β羟丁酸等,动物实验已经取得一些成果,显示组织工程支架材料联合细胞移植修复效果更好,但临床上目前尚无开展组织工程支架材料修复脊髓损伤的研究。  相似文献   

15.
Mihardja SS  Sievers RE  Lee RJ 《Biomaterials》2008,29(31):4205-4210
The conductive polymer polypyrrole was blended with alginate to investigate its potential in tissue engineering applications. This study showed that increasing the polypyrrole content altered the macroscopic structural morphology of the polymer blend scaffold, but did not alter the overall conductivity of the polymer blend, which was 10(-2)S/cm(2). Culturing of human umbilical vein endothelial cells on the polymer blend scaffolds showed that addition of polypyrrole mediated cell attachment to the polymer scaffold. However, cell proliferation was dependent on the polypyrrole content with 0.025% v/v polypyrrole giving the best results. Using an ischemia-reperfusion rat myocardial infarction model, local injection of 0.025% polypyrrole in alginate polymer blend into the infarct zone yielded significantly higher levels of arteriogenesis at 5 weeks post-treatment when compared with the saline control group and the alginate only treatment group. In addition, this alginate-polypyrrole polymer blend significantly enhanced infiltration of myofibroblasts into the infarct area when compared with the control group. The results of this study highlight the potential clinical benefit of using this alginate-polypyrrole polymer blend as an injectable scaffold to repair ischemic myocardium after myocardial infarction.  相似文献   

16.
Tissue engineering with three-dimensional biomaterials represents a promising approach for developing hepatic tissue to replace the function of a failing liver. Herein, we address cell seeding and distribution within porous alginate scaffolds, which represent a new type of porous biomaterial for tissue engineering. The hydrophilic nature of the alginate scaffold as well as its pore structure and interconnectivity enabled the efficient seeding of hepatocytes into the scaffolds, that is, 70-90% of the initial cells depending on the seeding method. Utilization of centrifugal force during seeding enhanced cell distribution in the porous scaffolds, consequently enabling the seeding of concentrated cell suspensions (>1 x 10(7) cells/mL). Cell density in scaffolds affected hepatocyte viability as judged by MTT assay. At a cell density of 0.28 x 10(6) cells/cm3 scaffold, the number of viable hepatocytes decreased to 33% of its initial value within 7 days, whereas at the denser cultures, 5.7 x 10(6) cells/cm3 scaffold and higher, the cells maintained higher viability while forming a network of connecting spheroids. In the high-density cellular constructs, hepatocellular functions such as albumin and urea secretion, and detoxification (cytochrome P-450 and phase II conjugating enzyme activities), remained high during the 7-day culture. Collectively, the results of the present study highlight the importance of cell density on the hepatocellular functions of three-dimensional hepatocyte constructs as well as the advantages of alginate matrices as scaffoldings.  相似文献   

17.
为了研究自组装纳米纤维凝胶材料异亮氨酸-赖氨酸-缬氨酸-丙氨酸-缬氨酸(IKVAV)多肽与大鼠嗅鞘细胞(OECs)的生物相容性。将培养纯化的大鼠OECs种植于自组装制成IKVAV多肽纳米纤维凝胶表面(二维培养)和纤维凝胶内部(三维培养),倒置显微镜和免疫荧光镜下观察OECs的黏附、增殖情况,并采用MTT法和S-100阳性细胞计数、胞体面积、细胞周长的图像处理和统计分析检测支架对细胞的毒性来评价细胞的活力。OECs接种到IKVAV凝胶后,大多数OECs能在凝胶中生长良好,MTT检测及荧光显微镜下观察OECs的数目、周长与面积与多聚赖氨酸(PLL)组无显著性差异。证实自组装IKVAV多肽纳米纤维凝胶与大鼠OECs有良好的生物相容性。  相似文献   

18.
Recently alginate-based tissue repair scaffolds fabricated using 3D printing techniques have been extensively examined for use in tissue engineering applications. However, their physical and mechanical properties are unfavorable for many tissue engineering applications because these properties are poorly controlled during the fabrication process. Some improvement of alginate gel properties can be realized by addition of hyaluronic acid (HA), and this may also improve the ability of cells to interact with the gel. Here, we report improvement of the physical properties of alginate–HA gel scaffolds by the addition of the polycation polyethyleneimine (PEI) during the fabrication process in order to stabilize alginate molecular structure through the formation of a polyelectrolyte complex. We find that PEI has a significant beneficial influence on alginate–HA scaffold physical properties, including a reduction in the degree of gel swelling, a reduction in scaffold degradation rate, and an increase in the Young’s modulus of the gel. Further study shows that fabrication of alginate–HA gels with PEI increases the encapsulation efficiency of bovine serum albumin, a model protein, and reduces the subsequent initial protein release rate. However, it was also found that survival of Schwann cells or ATDC-5 chondrogenic cells encapsulated during the scaffold fabrication process was modestly reduced with increasing PEI concentration. This study illustrates that the use of PEI during scaffold fabrication by plotting can provide an effective means to control alginate-based scaffold properties for tissue engineering applications, but that the many effects of PEI must be balanced for optimal outcomes in different situations.  相似文献   

19.
In tissue engineering, artificial tissue scaffolds containing living cells have been studied for tissue repair and regeneration. Notably, the performance of these encapsulated-in-scaffolds cells in terms of cell viability, proliferation, and expression of function during and after the scaffold fabrication process, has not been well documented because of the influence of mechanical, chemical, and physical properties of the scaffold substrate materials. This paper presents our study on the influence of mechanical properties of alginate-based substrates on the performance of Schwann cells, which are the major glial cells of peripheral nervous system. Given the fact that alginate polysaccharide hydrogel has poor cell adhesion properties, in this study, we examined several types of cell-adhesion supplements and found that alginate covalently modified with RGD peptide provided improved cell proliferation and adhesion. We prepared alginate-based substrates for cell culture using varying alginate concentrations for altering their mechanical properties, which were confirmed by compression testing. Then, we examined the viability, proliferation, morphology, and expression of the extracellular matrix protein laminin of Schwann cells that were seeded on the surface of alginate-based substrates (or 2D culture) or encapsulated within alginate-based substrates (3D cultures), and correlated the examined cell performance to the alginate concentration (or mechanical properties) of hydrogel substrates. Our findings suggest that covalent attachment of RGD peptide can improve the success of Schwann cell encapsulation within alginate-based scaffolds, and provide guidance for regulating the mechanical properties of alginate-based scaffolds containing Schwann cells for applications in peripheral nervous system regeneration and repair.  相似文献   

20.
Our objective was to develop collagen-based hydrogels as tissue substitutes for corneal transplantation. The design of the full-thickness corneal grafts includes prevention of cell migration onto the posterior surface of the implants, using a plasma-assisted surface modification technique. Briefly, the hydrogel materials were subjected to ammonia plasma functionalization followed by grafting of alginate macromolecules to the target surface. The treated materials surfaces showed observable decreases in endothelial cell attachment. The decrease in cell attachment and adhesion was dependant upon the concentration of alginate and plasma radio frequency (RF) power. High concentrations of alginate 5% (w/v) and high RF power of 100 W produced surfaces with minimal cell attachment. The plasma-alginate treatment did not adversely affect the optical or swelling properties of the constructs. Contact angle measurement analysis revealed that the posterior surface hydrophilicity significantly increased after the treatment. The grafting of alginate to the implants surfaces was confirmed by fourier transform infrared spectroscopy. Both of the untreated and alginate grafted corneal materials were found to be superior to human cornea in optical and swelling properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号