首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
Event-related desynchronization (ERD) and event-related synchronization (ERS) of the 1–30 EEG frequencies were studied in eight early Finnish–Swedish bilinguals during an auditory bilingual Sternberg memory task using Finnish–Swedish cognates as stimuli. Only subtle differences between languages were expected, since cognates have been assumed to have shared conceptual representations in the bilingual memory. Encoding elicited theta and alpha frequency ERS and beta frequency ERD responses in both languages. Retrieval elicited theta ERS and alpha and beta ERD responses. Some statistically significant differences between encoding and retrieval in Finnish versus Swedish emerged: greater theta and alpha ERS responses were observed during encoding in Swedish than during encoding in Finnish. During between-language retrieval, later-appearing theta ERS and alpha ERD responses were elicited as compared to within-language retrieval. These delayed oscillatory responses might reflect the involvement of central executive attentional functions in relation to language switching.  相似文献   

2.
Event-related desynchronization (ERD) and event-related synchronization (ERS) of the 1-20Hz EEG frequencies were studied using wavelet transforms in young (n = 10, mean age 22) and elderly subjects (n = 10, mean age 65) performing an auditory Sternberg memory task with words as stimuli. In both age groups, encoding of the four-word memory set elicited ERS in the theta and alpha frequency range. Theta ERS, and ERD in the alpha and beta bands were observed during retrieval. During encoding, the elderly showed greater alpha ERS and smaller theta ERS. During retrieval, smaller alpha ERD and theta ERS was found in the elderly subjects. Also, in the elderly, beta ERD was elicited in the late time window during retrieval. The statistically significant differences between the age groups were more marked during retrieval than during encoding. The results indicate that although the two groups performed equally well behaviorally in the task and the elderly subjects were cognitively intact, normal aging affects oscillatory theta, alpha and beta responses particularly during retrieval from working memory. The ERD/ERS patterns of the elderly resemble those of children found in a recent study, which might suggest that those memory-related brain processes that evolve later in childhood are the first to be affected in older age.  相似文献   

3.
Many studies have reported that frontal theta and posterior alpha activities are associated with working memory tasks. However, fewer studies have focused on examining whether or not the frontal alpha or posterior theta can play a role in the working memory task. This study investigates electroencephalography (EEG) dynamics and connectivity among different brain regions' theta and alpha oscillations. The EEG was collected from undergraduate students (n = 64) while they were performing a Sternberg-like working memory task involving chemistry concepts. The results showed that the frontal midline cluster exhibited sustained theta augmentation across the periods of stimulus presentations, maintenance, and probe presentation, suggesting that the frontal midline theta might associate with facilitating the central execute function to maintain information in the working memory. Study of the central parietal and the occipital clusters revealed a sequence of theta augmentation followed by alpha suppression at constant intervals after the onset of stimulus and probe presentations, suggesting that the posterior theta might be associated with sensory processing, theta gating, or stimulus selection. It further suggests that the posterior alpha event-related de-synchronization (ERD) might be linked to direct information flow into and out of the long-term memory (LTM) and precede stimulus recognition. An alternating phasic alpha event-related synchronization (ERS) and ERD following the 1st stimulus and probe presentations were observed at the occipital cluster, in which alpha ERS might be linked to the inhibition of irrelevant information.  相似文献   

4.
Principal components analysis (PCA) has long been used to decompose the ERP into components, and these mathematical entities are increasingly accepted as meaningful and useful representatives of the electrophysiological components constituting the ERP. A similar expansion appears to be beginning in regard to decomposition of the EEG amplitude spectrum into frequency components via frequency PCA. However, to date, there has been no exploration of the brain's dynamic EEG‐ERP linkages using PCA decomposition to assess components in each measure. Here, we recorded intrinsic EEG in both eyes‐closed and eyes‐open resting conditions, followed by an equiprobable go/no‐go task. Frequency PCA of the EEG, including the nontask resting and within‐task prestimulus periods, found seven frequency components within the delta to beta range. These differentially predicted PCA‐derived go and no‐go N1 and P3 ERP components. This demonstration suggests that it may be beneficial in future brain dynamics studies to implement PCA for the derivation of data‐driven components from both the ERP and EEG.  相似文献   

5.
Event-related desynchronization (ERD) and event-related synchronization (ERS) responses of 1-30 Hz EEG frequencies during the different stages of an auditory Sternberg memory task were examined. The ERD/ERS responses were examined separately for successive memory set items (four) and for the two recognition conditions (YES/NO). The presentation of the memory set elicited ERS responses in the theta and alpha frequencies, and also beta ERD responses. These ERD/ERS responses elicited during encoding were found to evolve with successive memory set item presentation. The ERD/ERS responses elicited during the presentation of the probe dissociated significantly between the two recognition conditions (YES/NO). When the probe was included in the memory set (YES condition), recognition elicited stronger alpha and beta frequency ERD responses as compared to the NO condition. The findings from the current study verify that alpha ERD/ERS responses robustly dissociate between auditory encoding and recognition. The increasing alpha ERS responses with increasing memory set item presentation during encoding may be correlates of the functioning phonological loop, active memory maintenance and/or attention. The alpha ERD responses during recognition are undoubtedly associated with auditory memory search processes and distinguish between previously presented versus not presented verbal material. We propose that alpha ERD/ERS responses reflect explicitly auditory memory processes, discriminating between auditory encoding and recognition. Theta ERS responses may be associated with working memory processes, and possibly more specifically with the functioning of the central executive. Beta ERD/ERS responses may reflect also cognitive and/or memory processing, rather than merely the activity of the motor cortices.  相似文献   

6.
Brain dynamics research has highlighted the significance of the ongoing EEG in ERP genesis and cognitive functioning. Few studies, however, have assessed the contributions of the intrinsic resting state EEG to these stimulus‐response processes and behavioral outcomes. Principal components analysis (PCA) has increasingly been used to obtain more objective, data‐driven estimates of the EEG and ERPs. PCA was used here to reassess resting state EEG and go/no‐go task ERP data from a previous study (Karamacoska et al., 2017) and the relationships between these measures. Twenty adults had EEG recorded with eyes closed (EC) and eyes open (EO), and as they completed an auditory go/no‐go task. Separate EEG and ERP PCAs were conducted on each resting condition and stimulus type. For each state, seven EEG components were identified within the delta‐beta frequency range, and six ERP components were obtained for go and no‐go stimuli. Within the task, mean reaction time (RT) correlated positively with go P2 amplitude and negatively with P3b positivity. Regressions revealed that greater EC delta‐1 amplitude predicted shorter mean RT, and larger alpha‐3 amplitude predicted go P3b enhancement. These findings demonstrate the immediate P2 and P3b involvement in decision making and response control and the intrinsic EC delta‐1 and alpha‐3 amplitudes that underpin these processes.  相似文献   

7.
The present study examined electroencephalogram profiles on a novel stimulus‐response compatibility (SRC) task in order to elucidate the distinct brain mechanisms of stimulus‐stimulus (S‐S) and stimulus‐response (S‐R) conflict processing. The results showed that the SRC effects on reaction times (RTs) and N2 amplitudes were additive when both S‐S and S‐R conflicts existed. We also observed that, for both RTs and N2 amplitudes, the conflict adaptation effects—the reduced SRC effect following an incongruent trial versus a congruent trial—were present only when two consecutive trials involved the same type of conflict. Time‐frequency analysis revealed that both S‐S and S‐R conflicts modulated power in the theta band, whereas S‐S conflict additionally modulated power in the alpha and beta bands. In summary, our findings provide insight into the domain‐specific conflict processing and the modular organization of cognitive control.  相似文献   

8.
By means of magnetoencephalography (MEG), we investigated event-related synchronization and desynchronization (ERS/ERD) in auditory cortex activity, recorded from twelve children aged four to six years, while they passively listened to a violin tone and a noise-burst stimulus. Time-frequency analysis using Wavelet Transform was applied to single-trials of source waveforms observed from left and right auditory cortices. Stimulus-induced changes in non-phase-locked activities were evident. ERS in the beta range (13-30 Hz) lasted only for 100 ms after stimulus onset. This was followed by prominent alpha ERD, which showed a clear dissociation between the upper (12 Hz) and lower (8 Hz) alpha range in both left and right auditory cortices for both stimuli. The time courses of the alpha ERD (onset around 300 ms, peak at 500 ms, offset after 1500 ms) were similar to those previously found for older children and adults with auditory memory related tasks. For the violin tone only, the ERD lasted longer in the upper than the lower alpha band. The findings suggest that induced alpha ERD indexes auditory stimulus processing in children without specific cognitive task requirement. The left auditory cortex showed a larger and longer-lasting upper alpha ERD than did the right auditory cortex, likely reflecting hemispheric differences in maturational stages of neural oscillatory mechanisms.  相似文献   

9.
Contrary to other phobias, individuals with blood phobia do not show a clear‐cut withdrawal disposition from the feared stimulus. The study of response inhibition provides insights into reduced action disposition in blood phobia. Twenty individuals with and 20 without blood phobia completed an emotional go/no‐go task including phobia‐related pictures, as well as phobia‐unrelated unpleasant, neutral, and pleasant stimuli. Behavioral results did not indicate a phobia‐specific reduced action disposition in the phobic group. Time‐frequency decomposition of event‐related EEG data showed a reduction of right prefrontal activity, as indexed by an increase in alpha power (200 ms), for no‐go mutilation trials in the phobic group but not in controls. Moreover, theta power (300 ms) increased specifically for phobia‐related pictures in individuals with, but not without, blood phobia, irrespective of go or no‐go trial types. Passive avoidance of phobia‐related stimuli subtended by the increased alpha in the right prefrontal cortex, associated with increased emotional salience indexed by theta synchronization, represents a possible neurophysiological correlate of the conflicting motivational response in blood phobia. Through the novel use of time‐frequency decomposition in an emotional go/no‐go task, the present study contributed to clarifying the neurophysiological correlates of the overlapping motivational tendencies in blood phobia.  相似文献   

10.
Neuropsychological research and practice rely on cognitive task performance measures as indicators of brain functioning. The neural activity underlying stimulus‐response processes can be assessed with ERPs, but the relations between these cognitive processes and the brain's intrinsic resting state EEG activity are less understood. This study focused on the neurocognitive functioning of 20 healthy young adults in an equiprobable go/no‐go task to map the ERP correlates of behavioral responses and examine contributions of the resting state intrinsic EEG to task‐related outcomes. Continuous EEG was recorded during pretask eyes‐closed (EC) and eyes‐open (EO) conditions, and in the subsequent task. Delta, theta, alpha, and beta band amplitudes were assessed for the EC state and also for the reactive change to EO. Go/no‐go ERPs were submitted to temporal principal components analysis, where the P2, N2, P3, and slow wave components of interest were extracted. The performance measure of reaction time (RT) variability was positively correlated with no‐go and go errors, and also with go P2 amplitude, linking these to stimulus discrimination efforts involved in appropriate response selection. An N2c‐P3b pairing was enhanced for shorter mean RTs, supporting their involvement in the decision to execute a response. A stepwise regression model identified EC midline delta as a predictor of P3b positivity, highlighting the relevance of delta in the neural mechanisms of attentional processes. These findings clarify the electrophysiology underlying decision‐making processes in executive function, and provide a platform for further research assessing performance outcomes in larger samples and in developmental/clinical contexts.  相似文献   

11.
Prior research suggests that event-related potentials (ERP) obtained during active and passive auditory paradigms, which have demonstrated abnormal neurocognitive function in schizophrenia, may provide helpful tools in predicting transition to psychosis. In addition to ERP measures, reduced modulations of EEG alpha, reflecting top-down control required to inhibit irrelevant information, have revealed attentional deficits in schizophrenia and its prodromal stage. Employing a three-stimulus novelty oddball task, nose-referenced 48-channel ERPs were recorded from 22 clinical high-risk (CHR) patients and 20 healthy controls detecting target tones (12% probability, 500 Hz; button press) among nontargets (76%, 350 Hz) and novel sounds (12%). After current source density (CSD) transformation of EEG epochs (− 200 to 1000 ms), event-related spectral perturbations were obtained for each site up to 30 Hz and 800 ms after stimulus onset, and simplified by unrestricted time–frequency (TF) principal components analysis (PCA). Alpha event-related desynchronization (ERD) as measured by TF factor 610–9 (spectral peak latency at 610 ms and 9 Hz; 31.9% variance) was prominent over right posterior regions for targets, and markedly reduced in CHR patients compared to controls, particularly in three patients who later developed psychosis. In contrast, low-frequency event-related synchronization (ERS) distinctly linked to novels (260–1; 16.0%; mid-frontal) and N1 sink across conditions (130–1; 3.4%; centro-temporoparietal) did not differ between groups. Analogous time-domain CSD-ERP measures (temporal PCA), consisting of N1 sink, novelty mismatch negativity (MMN), novelty vertex source, novelty P3, P3b, and frontal response negativity, were robust and closely comparable between groups. Novelty MMN at FCz was, however, absent in the three converters. In agreement with prior findings, alpha ERD and MMN may hold particular promise for predicting transition to psychosis among CHR patients.  相似文献   

12.
Summary Event-Related Desynchronization (ERD) and Synchronization (ERS) of several EEG alpha frequencies was studied in 19 subjects during the presentation of linguistic and/or melodic auditory stimuli. The stimulus length was 1300 msec (+/–100 msec) and the interstimulus interval was 2000 msec. A significant ERD was found during auditory stimulation in the 8–10 Hz and 10–12 Hz alpha frequency bands, and there were also significant differences in the spatiotemporal pattern of the ERD between these frequency bands. Significant ERD was elicited also in the 10–11 and 11–12 Hz frequency bands by auditory stimulation. There were no significant differences between these one-hertz frequency bands. The subjects were assigned to two analysis groups according to their individual alpha peak frequency (10–11 or 11–12 Hz) at rest. The ERD in these groups reached statistical significance and there were significant differences between the groups. The ERD of the two groups differed significantly also when their EEG data was studied in the 10–12 Hz frequency band. The results from this study show that ERD is not modality-specific, i.e., it can be elicited also by auditory stimuli. Moreover, they indicate that it is important to control over interindividual variation in the EEG when studying the ERD phenomenon.This study was financially supported by the The Cultural Scholarship Foundation of Southwestern Finland (Varsinais-Suomen Kulttruurirahasto) and by the Council for Social Sciences, Academy of Finland (project 7338).  相似文献   

13.
The question is examined whether the extent of changes in relative band power as measured by event-related desynchronization (ERD) depends on absolute band power. The results for target stimuli of a simple oddball task indicate that the prestimulus (reference) level of absolute band power has indeed a strong influence on ERD. Whereas for the alpha band large band power in the reference interval is related to a strong degree of alpha suppression as measured by ERD, the opposite holds true for the theta band. Here, a low level of band power during the reference interval is related to a pronounced increase in band power during the processing of the target stimulus. In contrast to alpha and theta, ERD in the delta band is not influenced by the magnitude of band power in the reference interval.  相似文献   

14.
Adults use different strategies in mental arithmetic. For example, they directly retrieve the answer from memory or calculate by means of procedural strategies. Despite growing insight into the hemodynamic and electrophysiological correlates of these strategies, the functional changes in the oscillatory brain dynamics during the use of these strategies remain unknown. In the present high-resolution electroencephalography (EEG) study, we analysed event-related synchronisation (ERS) and desynchronisation (ERD) in the theta and alpha bands while participants solved addition and subtraction problems, which displayed a high probability of retrieval or procedural strategy use. Findings revealed that arithmetic fact retrieval is reflected in left-hemispheric ERS in the theta band, whereas the application of procedural strategies is accompanied by bilateral parietooccipital ERD in the alpha band. The topographical and frequency specificity of the strategy effects provides a start for the development of electrophysiological indices of strategy use in arithmetic. B. De Smedt and R. H. Grabner equally contributed to this study and should be regarded as joint first authors.  相似文献   

15.
一种运动想象脑电分类算法的研究   总被引:1,自引:0,他引:1  
为了解决脑机接口(BCI)中不同意识任务下脑电信号分类问题,针对运动想象脑电(EEG)的事件相关去同步/同步(ERD/ERS)现象,提出一种基于支持向量机(SVM)的实用分类算法。该算法首先对脑电信号进行滤波,获得对运动想象比较敏感的频段,对滤波后的脑电信号,通过去均值减小由于均值不同所造成的误差,然后,再提取基于ERD/ERS的脑电能量场强特征,对提取的特征,运用支持向量机(SVM)进行分类,得到了满意的效果。结果表明,此方法可为脑机接口技术的应用提供有效的手段。  相似文献   

16.
Sokolov's classic works discussed electroencephalogram (EEG) alpha desynchronization as a measure of the Orienting Reflex (OR). Early studies confirmed that this reduced with repeated auditory stimulation, but without reliable stimulus-significance effects. We presented an auditory habituation series with counterbalanced indifferent and significant (counting) instructions. Time-frequency analysis of electrooculogram (EOG)-corrected EEG was used to explore prestimulus levels and the timing and amplitude of event-related increases and decreases in 4 classic EEG bands. Decrement over trials and response recovery were substantial for the transient increase (in delta, theta, and alpha) and subsequent desynchronization (in theta, alpha, and beta). There was little evidence of dishabituation and few effects of counting. Expected effects in stimulus-induced alpha desynchronization were confirmed. Two EEG response patterns over trials and conditions, distinct from the full OR pattern, warrant further research.  相似文献   

17.
Recent studies have related enhancements of theta‐ (∼4–8 Hz) and alpha‐power (∼8–13 Hz) to listening effort based on parallels between enhancement and task difficulty. In contrast, nonauditory works demonstrate that, although increases in difficulty are initially accompanied by increases in effort, effort decreases when a task becomes so difficult as to exceed one's ability. Given the latter, we examined whether theta‐ and alpha‐power enhancements thought to reflect effortful listening show a quadratic trend across levels of listening difficulty from impossible to easy. Listeners (n = 14) performed an auditory delayed match‐to‐sample task with frequency‐modulated tonal sweeps under impossible, difficult (at ∼70.7% correct threshold), and easy (well above threshold) conditions. Frontal midline theta‐power and posterior alpha‐power enhancements were observed during the retention interval, with greatest enhancement in the difficult condition. Independent component‐based analyses of data suggest that theta‐power enhancements stemmed from medial frontal sources at or near the anterior cingulate cortex, whereas alpha‐power effects stemmed from occipital cortices. Results support the notion that theta‐ and alpha‐power enhancements reflect effortful cognitive processes during listening, related to auditory working memory and the inhibition of task‐irrelevant cortical processing regions, respectively. Theta‐ and alpha‐power dynamics can be used to characterize the cognitive processes that make up effortful listening, including qualitatively different types of listening effort.  相似文献   

18.
Participating in the study were 30 respondents, who could be clustered as high-average verbal/performance intelligent (HIQ/AIQ), or emotionally intelligent (HEIQ/AEIQ). The EEG was recorded while students were performing two tasks: the Raven's advanced progressive matrices (RAPM), and identifying emotions in pictures (IDEM). Significant differences in event-related desynchronization/synchronization (ERD/ERS) related to verbal/performance intelligence were only observed while respondents solved the RAPM. The HIQ and AIQ groups displayed temporal and spatial differently induced gamma band activity. Significant differences in ERD/ERS related to emotional intelligence were only observed for the IDEM task. HEIQ individuals displayed more gamma band ERS and less upper alpha band ERD than did AEIQ individuals. It can be concluded that HIQ and HEIQ individuals employed more adequate strategies for solving the problems at hand. The results further suggest that emotional intelligence and verbal/performance intelligence represent distinct components of the cognitive architecture.  相似文献   

19.
Event-related desynchronization (ERD) and synchronization (ERS) were studied during the invasive exploration of an epileptic surgery candidate. An electrode that was targeted in the amygdalo-hippocampal complex passed through the putamen with several contacts. During a simple self-paced motor task, we observed in the putamen a power decline (ERD) in both the alpha and beta frequency bands, and a rebound phenomenon (ERS) in the beta frequency band, concurrent with the movement of each hand. This is the first report of ERD/ERS in the basal ganglia. Electronic Publication  相似文献   

20.
Recent work investigating physiological mechanisms of working memory (WM) has revealed that modulation of alpha and beta frequency bands within the EEG plays a key role in WM storage. However, the nature of that role is unclear. In the present study, we examined event‐related desynchronization of alpha and beta (α/β‐ERD) elicited by visual tasks with and without a memory component to measure the impact of a WM demand on this electrophysiological marker. We recorded EEG from 60 healthy participants while they completed three variants on a typical change detection task: one in which participants passively viewed the sample array, passive (WM?); one in which participants viewed and attended the sample array in search of a target color but did not memorize the colors, active (WM?); and one in which participants encoded, attended to, and memorized the sample array, active (WM+). Replicating previous findings, we found that active (WM+) elicited robust α/β‐ERD in frontal and posterior electrode clusters and that α‐ERD was significantly associated with WM capacity. By contrast, α/β‐ERD was significantly smaller in the passive (WM?) and active (WM?) tasks, which did not consistently differ from one another. Furthermore, no such relationship was observed between WM capacity and desynchronization in the passive (WM?) or active (WM?) tasks. Taken together, these results suggest that α‐ERD during memory formation reflects a memory‐specific process such as consolidation or maintenance, rather than serving a generalized role in perceptual gating or engagement of attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号