首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
Immunocytochemical techniques were employed in order to examine the distribution and relative intensity of immunolabeling of the α-amino-3-hydroxy-5-methyl-4-isoaxolepropionate (AMPA) receptor subunits GluR1 and GluR2/3 within the hippocampal formation of patients with Alzheimer disease (AD). Within sectors of the hippocampus that are particularly vulnerable to AD pathology (i.e., CA1, subiculum), we observed a variable loss of GluR1 and GluR2/3 immunolabeling correlating with the extent of cell loss and neurofibrillary pathology. In contrast, in less vulnerable sectors of the hippocampus (i.e., CA2/3, dentate gyrus), the intensity of immunolabeling was markedly increased in AD cases, particularly in the molecular and polymorphic layear of the dentate gyrus. Importantly, these latter regions correspond to termination zones of glutamatergic perforant pathway axons and mossy fiber collaterals, respectively. The increase in immunolabeling within these projection fields is hypothesized to occur in response to the deafferentation of selected glutamatergic pathways, and suggests a critical role for AMPA receptor subunits in hippocampal plasticity.  相似文献   

2.
Immunocytochemical techniques were employed in order to examine the distribution and relative intensity of immunolabeling of the α-amino-3-hydroxy-5-methyl-4-isoaxolepropionate (AMPA) receptor subunits GluR1 and GluR2/3 within the hippocampal formation of patients with Alzheimer disease (AD). Within sectors of the hippocampus that are particularly vulnerable to AD pathology (i.e., CA1, subiculum), we observed a variable loss of GluR1 and GluR2/3 immunolabeling correlating with the extent of cell loss and neurofibrillary pathology. In contrast, in less vulnerable sectors of the hippocampus (i.e., CA2/3, dentate gyrus), the intensity of immunolabeling was markedly increased in AD cases, particularly in the molecular and polymorphic layear of the dentate gyrus. Importantly, these latter regions correspond to termination zones of glutamatergic perforant pathway axons and mossy fiber collaterals, respectively. The increase in immunolabeling within these projection fields is hypothesized to occur in response to the deafferentation of selected glutamatergic pathways, and suggests a critical role for AMPA receptor subunits in hippocampal plasticity.  相似文献   

3.
Immunocytochemical techniques were employed in order to examine the distribution and relative intensity of the AMPA receptor subunits GluR1 and GluR2/3 within the hippocampal formation of normal controls and Alzheimer's disease (AD) cases. Throughout our investigation we examined cases exhibiting a wide range of pathologic severity, thus allowing us to correlate our immunohistochemical data with the extent of pathology. Specifically, we investigated the distribution of these receptor subunits in hippocampal sectors that are particularly vulnerable to AD pathology (i. e., CA1 and subiculum) and compared these findings with those obtained following examination of sectors that are generally resistant to pathologic change (i. e., CA2/3, dentate gyrus). Within vulnerable sectors we observed a variable loss of GluR1 and GluR2/3 immunolabeling. The degree to which these proteins were reduced appeared to correlate with the extent of neurofibrillary pathology and cell loss. Despite the loss of labeled cells, the intensity of immunolabeling within the remaining neurons was comparable with, and in many instances even greater than, that observed in control cases. Within resistant sectors, the distribution of immunoreactive elements was comparable in both case groups yet the intensity of immunolabeling was markedly increased in AD cases, particularly in the molecular layer of the dentate gyrus and in the stratum lucidum of CA3 (i. e., the termination zones of perforant pathway and mossy fibers). In addition, within AD cases dramatic increases were observed within the supragranular and polymorphic layer of the dentate gyrus (i. e., the terminal zones of sprouting mossy fiber collaterals). The increase in GluR1 and GluR2/3 immunolabeling is hypothesized to occur in response to the deafferentation of selected glutamatergic pathways. Moreover, our data support that hippocampal plasticity is preserved, even in severe AD cases, and suggest a critical role for AMPA receptor subunits in this plasticity and in maintaining hippocampal functioning. © 1995 Wiley-Liss, Inc.  相似文献   

4.
5.
Striatal and cortical neurons containing NADPH-diaphorase [NADPH-d(+)] are highly vulnerable to excitotoxicity that is induced by activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)- or kainate-sensitive glutamate receptors. This has been attributed to Ca2+ entry through AMPA/kainate receptors in NADPH-d(+) neurons. In this study, we applied single cell RT-PCR technique to test the hypothesis that differences in levels and processing of the GluR2 subunit would contribute to the selective vulnerability of NADPH-d(+) neurons to AMPA. The nested PCR specific for GluR1-GluR4 showed that rat striatal NADPH-d(+) neurons expressed twice as much GluR1 mRNA as NADPH-d(-) neurons did. The percentage of RNA editing at the Q/R site of GluR2 was 46% in NADPH-d(+) neurons and 92% in NADPH-d(-) neurons. These results suggest that the unedited expression of GluR2 and the reduced ratio of GluR2/GluR1 render NADPH-d(+) neurons highly sensitive to Ca2+-mediated AMPA neurotoxicity. In support of this, most NADPH-d(+) neurons exposed to 100 microM AMPA showed Co2+ uptake and survived AMPA challenge only in the absence of extracellular Ca2+.  相似文献   

6.
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) -type glutamate receptors play a critical role in excitotoxicity associated with cerebral hypoxia, ischaemia and other acute brain insults. AMPA receptors are composed of GluR1-GluR4 subunits in homomeric and heteromeric assemblies, forming nonselective cation channels. In addition, each subunit has alternative splice variants, flip and flop forms. Heterologous expression studies showed that the AMPA receptor channels exhibit diverse properties depending on subunit/variant composition. For example, the absence of the GluR2 subunit makes AMPA receptor assemblies Ca2+-permeable. Excitotoxicity induced by activating AMPA receptor channels has been linked to excessive Ca2+ influx through the GluR2-lacking channels. Here we demonstrate that coexpression of the AMPA receptor GluR2flip and GluR4flip subunits exerts a lethal effect on HEK293 cells, whereas no lethal activity is observed in other homomeric or heteromeric combinations of AMPA receptor subunits. Patch clamp recordings and Ca2+ imaging analyses have revealed that this GluR2flip/GluR4flip receptor exhibits a low Ca2+ permeability. This subunit combination, however, showed prolonged Na+ influx following AMPA stimulation, even in the absence of cyclothiazide, which attenuates AMPA receptor desensitization. Furthermore, the GluR2flip/GluR4flip-mediated lethality was potentiated by the interruption of cellular Na+ extrusion mechanisms using ouabain or benzamil. These observations suggest that the GluR2flip/GluR4flip receptor-mediated excitotoxicity is attributed to Na+ overload, but not Ca2+ influx.  相似文献   

7.
The activity and the subunit expression of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate ionotropic glutamate receptors were studied in retina cells developing in chick embryos and in retina cells cultured as retinospheroids, at the same stages of development. In the retinospheroids, the activity of the AMPA/kainate receptors was monitored by following the changes in the intracellular free calcium concentration ([Ca(2+)](i)), in response to AMPA, kainate or to L-glutamate, and the expression of the receptor subunits GluR1, GluR2/3, GluR4 and GluR6/7 was determined in the retinospheroids and in chick retinas by immunodetection using polyclonal antibodies. The changes in [Ca(2+)](i) in response to 400 microM kainate increased from 5h in vitro to 3 days, and remained constant until day 14, whereas the [Ca(2+)](i) in response to 500 microM L-glutamate or 400 microM AMPA increased from 5h in vitro to 3 days, and thereafter decreased slightly until day 14. The [Ca(2+)](i) responses to kainate are mainly due to AMPA receptor stimulation, since the signals were abolished by LY303070, the AMPA receptor antagonist, and were not affected by MK-801, the NMDA receptor antagonist. In retinospheroids, the levels of expression of GluR1 subunit increased from 5h in vitro until day 7, then decreased until day 14. The levels of expression of GluR2/3 and GluR4 subunits increased from 5h in vitro until day 10, and remained constant until day 14. The levels of kainate receptor subunits GluR6/7 increased from 5h in vitro until day 3, and thereafter decreased slightly until day 14. In the retinas, the expression of GluR1 and GluR6/7 subunits increased from day 8 until day 15, and then decreased until day 22 (post-natal 1). The subunits GluR2/3 and GluR4 increased from day 8 until day 18, and remained constant until day 22. The results suggest that AMPA/kainate receptors are expressed at early embryonic stages, although at low levels and before synapse formation (E12). However, the AMPA receptors are not completely functional at the first stage studied since they do not respond to the agonist AMPA. Also, the patterns of AMPA/kainate receptor subunit expression in retinospheroids of chick embryo retina cells cultured in vitro and in retina cells developing in the embryo (in vivo) were similar, indicating that the AMPA/kainate receptor subunits expression in these primary cultures mimics their expression in the developing chick retina.  相似文献   

8.
AMPA receptor-mediated excitotoxicity has been implicated in the selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). Motor neurons in vitro are particularly vulnerable to excessive AMPA receptor stimulation and one of the factors underlying this selective vulnerability is the presence of a large proportion of Ca2+ -permeable (i.e. GluR2-lacking) AMPA receptors. However, the precise role of GluR2-lacking AMPA receptors in motor neuron degeneration remains to be defined. We therefore studied the impact of GluR2 deficiency on motor neuron death in vitro and in vivo. Cultured motor neurons from GluR2-deficient embryos displayed an increased Ca2+ influx through AMPA receptors and an increased vulnerability to AMPA receptor-mediated excitotoxicity. We deleted the GluR2 gene in mutant SOD1G93A mice by crossbreeding them with GluR2 knockout mice. GluR2 deficiency clearly accelerated the motor neuron degeneration and shortened the life span of mutant SOD1G93A mice. These findings indicate that GluR2 plays a pivotal role in the vulnerability of motor neurons in vitro and in vivo, and that therapies that limit Ca2+ entry through AMPA receptors might be beneficial in ALS patients.  相似文献   

9.
Magnocellular cholinergic neurons in the basal forebrain have long been recognized as vulnerable to the pathology of Alzheimer's disease. Despite numerous anatomical, pharmacological, behavioral, and physiological investigations of these neurons the cellular mechanism that underlines their selective vulnerability remains unclear. As part of an ongoing investigation into the molecular mechanism(s) underlying neuronal vulnerability in Alzheimer's disease and normal aging, we employed immunocytochemical techniques and examined the cellular localization of the alpha-amino-3-hydroxy-5-methyl-4-isoaxolepropionate (AMPA) glutamate receptor subunits GluR1 and GluR2/3 in the basal forebrain of eight nondemented elderly human subjects (66-102 years). For each case we observed GluR1-positive magnocellular cells darkly labeled within all main divisions of the basal forebrain (Ch1-Ch4). Double-labeling immunohistochemical techniques confirmed that the overwhelming majority (94%) of these neurons were also positive for the p75NGFr antibody, thus substantiating the cholinergic nature of these neurons. In contrast, GluR2/3 immunolabeling upon magnocellular neurons was relatively faint or nonexistent. The latter observations were most apparent in cases of advanced age and in the posterior part of the nucleus basalis of Meynert (NBM) (i.e., Ch4). In contrast, in adjacent structures (e.g., globus pallidus), a number of robustly labeled GluR2/3-positive cells were observed. In addition to the eight elderly subjects, we examined GluR1 and GluR2/3 immunostaining in the NBM of five younger cases, 5, 33, 36, 47, and 48 years of age. Although practical considerations limited our observations to the Ch4 region, we observed both GluR1 and GluR2/3 labeling upon NBM neurons in this latter region. On average, the distribution of labeled cells and intensity of immunoreaction were comparable between GluR1 and GluR2/3. The presence of GluR2/3- and GluR1-labeled neurons in the Ch4 region of younger cases but primarily GluR1 in cases of advanced age suggests an age-related decrease in GluR2/3. Functionally, the loss of GluR2 from the AMPA receptor complex results in ion channels highly permeable to Ca(2+). These alterations in cation permeability of the AMPA receptor together with the occurrence of a number of other intrinsic and extrinsic events (i.e., decrease Ca(2+)-binding protein) likely contribute to the vulnerability of these neurons in aging and in AD.  相似文献   

10.
Brand-Schieber E  Werner P 《Glia》2003,42(1):12-24
Spinal cord white matter is susceptible to AMPA/kainate (KA)-type glutamate receptor-mediated excitotoxicity. To understand this vulnerability, it is important to characterize the distribution of AMPA/KA receptor subunits in this tissue. Using immunohistochemistry and laser confocal microscopy, we studied the expression sites of AMPA/KA receptor subunits in mouse spinal cord. The white matter showed consistent immunoreactivity for AMPA receptor subunit GluR2/3 and KA receptor subunits GluR6/7 and KA2. In contrast, antibodies against GluR1, GluR2, GluR4 (AMPA), and GluR5 (KA) subunits showed only weak and occasional labeling of white matter. However, gray matter neurons did express GluR1 and GluR2, as well as GluR2/3. The white matter astrocytes were GluR2/3 and GluR6/7 immunopositive, while the gray matter astrocytes displayed primarily GluR6/7. Both exclusively and abundantly, KA2 labeled oligodendrocytes and myelin, identified by CNPase expression. Interestingly, myelin basic protein, another myelin marker, showed less correlation with KA2 expression, placing KA2 at specific CNPase-containing subdomains. Focal points of dense KA2 labeling showed colocalization with limited, but distinct, axonal regions. These regions were identified as nodes of Ranvier by coexpressing the nodal marker, ankyrin G. Overall, axonal tracts showed little, if any, AMPA/KA receptor expression. The proximity of oligodendrocytic KA2 to the axonal node and the paucity of axonal AMPA/kainate receptor expression suggest that excitotoxic axonal damage may be secondary and, possibly, mediated by oligodendrocytes. Our data demonstrate differential expression of glutamate AMPA and KA receptor subunits in mouse spinal cord white matter and point to astrocytes and oligodendrocytes as potential targets for pharmacological intervention in white matter glutamate excitotoxicity.  相似文献   

11.
Immunocytochemical techniques were employed to examine the distribution of the γ-aminobutyric acid (GABA)A receptor α1 subunit within the hippocampus of 19 elderly subjects with Alzheimer-related neuropathologic changes. In mild cases (i.e., Braak stages I and II), the most intense neuropil immunolabeling was observed in the molecular layer of the dentate gyrus, the stratum pyramidale of the CA1 subregion and subiculum, while the weakest labeling was observed in the CA3 subfield. In CA4 region, the proximal dendrites and cell bodies of mossy cells were intensely α1 positive. Throughout the hippocampus, we observed a number of α1 labeled interneurons. These cells consisted of both large and small multipolar cells as well as small bipolar neurons. In moderate cases (i.e., Braak stages III and IV), the pattern and intensity of α1 immunolabeling appeared indistinguishable from mild cases. In severe cases (i.e., Braak stages V and VI), we observed a marked decrease in neuropil immunolabeling within the CA2, CA1 subregions and prosubiculum, while the labeling of the molecular layer of the dentate gyrus, subiculum proper and presubiculum was indistinguishable from mild and moderate cases. These data together with our previous immunocytochemical study in which we demonstrated a marked preservation of the GABAA receptor subunit β2/3 suggest that responses of selected GABAA receptor subunits to AD pathology are variable with the α1 subunit displaying a high degree of vulnerability.  相似文献   

12.
There is considerable controversy whether aberrant fascia dentata (FD) mossy fiber sprouting is an epiphenomena related to neuronal loss or a pathologic abnormality responsible for spontaneous limbic seizures. If mossy fiber sprouting contributes to seizures, then reorganized axon circuits should alter postsynaptic glutamate receptor properties. In the pilocarpine-status rat model, this study determined if changes in alpha amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) and n-methyl-D-aspartic acid (NMDA) receptor subunit mRNA levels correlated with mossy fiber sprouting. Sprague-Dawley rats were injected with pilocarpine (320 mg/kg; i.p.) and maintained in status epilepticus for 6 to 8 hours (pilocarpine-status). Rats were killed during the: (1) latent phase after neuronal loss but before spontaneous limbic seizures (day 11 poststatus; n = 7); (2) early seizure phase after their first seizures (day 25; n = 7); and (3) chronic seizure phase after many seizures (day 85; n = 9). Hippocampi were studied for neuron counts, inner molecular layer (IML) neo-Timm's staining, and GluR1–3 and NMDAR1–2b mRNA levels. Compared with controls, pilocarpine-status rats in the: (1) latent phase showed increased FD GluR3, NMDAR1, and NMDAR2b; greater CA4 and CA1 NMDAR1; and decreased subiculum GluR1 hybridization densities; (2) early seizure phase showed increased FD GluR3, increased CA1 NMDAR1, and decreased subiculum NMDAR2b densities; and (3) chronic seizure phase showed increased FD GluR2; increased FD and CA4 GluR3; decreased CA1 GluR2; and decreased subiculum GluR1, GluR2, NMDAR1, and NMDAR2b levels. In multivariate analyses, greater IML neo-Timm's staining: (1) positively correlated with FD GluR3 and NMDAR1 and (2) negatively correlated with CA1 and subiculum GluR1 and GluR2 mRNA levels. These results indicate that: (1) hippocampal AMPA and NMDA receptor subunit mRNA levels changed as rats progressed from the latent to chronic seizure phase and (2) certain subunit alterations correlated with mossy fiber sprouting. Our findings support the hypothesis that aberrant axon circuitry alters postsynaptic hippocampal glutamate receptor subunit stoichiometry; this may contribute to limbic epileptogenesis. J. Neurosci. Res. 54:734–753, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Heath PR  Tomkins J  Ince PG  Shaw PJ 《Neuroreport》2002,13(14):1753-1757
Disturbance of glutamate neurotransmission may contribute to the motor neuron injury seen in amyotrophic lateral sclerosis. Previous studies have suggested that human spinal motor neurons express a specific profile of the AMPA subtype of glutamate receptor with low mRNA expression for the GluR2 AMPA receptor subunit but other studies have contested this finding. The present study uses laser capture microdissection to isolate specifically identified neurons coupled with quantitative RT-PCR to demonstrate that the level of expression of the GluR2 subunit is lower in spinal motor neurons than in dorsal horn neurons from the same spinal cord region. Thus, it is likely that human spinal motor neurons express a proportion of Ca2+-permeable AMPA receptors which may contribute to the selective vulnerability of these cells in amyotrophic lateral sclerosis.  相似文献   

14.
We examined the biology of AMPA/kainate-induced motor neuron degeneration using dissociated spinal cord cultures and motor neuron-specific antibodies which enable characterization of individual motor neurons in culture. Cobalt, which is thought to pass through Ca2+-permeable AMPA/kainate receptors following kainate exposure, labeled motor neurons in spinal cord cultures. The analysis of AMPA subunit distribution in dissociated motor neurons revealed a unique pattern of glutamate receptor (GluR) subunits in those cells; the GluR1 subunit was found in all spinal cord neurons, but the GluR2 subunit was not found in identified dissociated motor neurons. These data suggest that selective sensitivity of motor neurons to non-NMDA receptor activation is due, at least in part, to the presence of Ca2+-permeable AMPA/kainate receptors.  相似文献   

15.
It has been repeatedly reported that spinal motor neurons are selectively vulnerable to AMPA receptor-mediated excitotoxicity. Therefore, identifying the uniqueness of AMPA receptors that are expressed on motor neurons, especially in individuals affected with sporadic amyotrophic lateral sclerosis (ALS) is essential for elucidating the etiology of this disorder. The mechanism that initiates motor neuronal death appears to be an exaggerated influx of Ca(2+) through AMPA receptors. The determinants that affect this Ca(2+) influx are Ca(2+) permeability, which is regulated by the presence of the GluR2 subunit and by RNA editing at the Q/R site of GluR2; channel desensitization, which is regulated by alternative splicing at the flip/flop site and by RNA editing at the R/G site of GluR subunits; and receptor density on the cell surface, which is controlled by many factors including regulatory proteins, direct phosphorylation and RNA editing at the Q/R site. This review focuses on recent progress on the molecular dynamics of AMPA receptors and discusses the pathophysiology of selective motor neuron death mediated by AMPA receptors in individuals affected with sporadic ALS.  相似文献   

16.
Activation of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors has been linked to potent effects on survival and dendritic outgrowth of spinal motoneurons. Ca(2+) permeability of AMPA receptors is controlled by the GluR2 subunit. Whole-cell electrophysiological studies have suggested that GluR2-containing and GluR2-lacking AMPA receptors may coexist in individual motoneurons. However, there has not been a direct demonstration of heterogeneity in AMPA receptor subunit composition in single motoneurons, nor of distinct subcellular distributions of GluR2-containing and GluR2-lacking receptors. In the present study, we have used confocal microscopy, immunocytochemistry and Ca(2+) imaging to characterize the subcellular localization of AMPA receptors in cultured rat spinal motoneurons. Immunoreactivity for GluR2 and GluR4 was concentrated in clusters, the vast majority of which were found in dendrites at synapses. Double-labelling for GluR2 and GluR4 revealed variability in relative expression of GluR2 and GluR4 between clusters within individual motoneurons; most AMPA receptor clusters were immunoreactive for both GluR2 and GluR4, but a significant minority of clusters were immunoreactive for GluR2 only or for GluR4 only. The majority of GluR2-immunonegative AMPA receptor clusters was present in dendrites, but the relative proportion of GluR2-immunonegative and GluR2-immunopositive clusters was similar in dendrites and soma. Imaging of [Ca(2+)](i) rises triggered by AMPA receptor activation confirmed Ca(2+) influx in motoneuron dendrites. These findings strongly support a model in which GluR2-containing and GluR2-lacking AMPA receptors coexist in motoneurons, clustered at synapses, and mixed in a relative proportion that varies considerably between cell membrane microdomains.  相似文献   

17.
The post-synaptic AMPA receptors play an important role in mediating fast excitatory transmission in the mammalian brain. Over-activated AMPA receptors induce excitotoxicity, implicated in a number of chronic neuro-de-gen-era-tive disorders such as Parkinson's disease, Huntington's disease, and AIDS encephalitis. AMPA receptor antagonists offer protection against neurodegeneration in the experimental models even if they are given 24 h after the injury. Because AMPA receptors seem to be involved in the neurodegenerative diseases, modulating the activity of the AMPA receptors could be an attractive approach to reduce or prevent excitotoxicity. Studies conducted recently have exhibited a number of new mechanisms for AMPA receptor regulation. Modulations of these were found to have protective implications. AMPA receptor depolarization and desensitization are protective to the neurons. Receptor desensitization depends on the receptor subunit composition. The R/G editing site and the flip/flop cassettes in AMPA receptor subunits contribute to a great extent in receptor desensitization and recovery rates. Molecules that could quicken receptor desensitization or delay recovery could be of use. AMPA receptors limit neuronal entry of Ca2+ ions by regulating Ca2+-permeability. Ca2+-permeable receptor channels are made up of GluR1, GluR3, or GluR4 subunits, whereas presence of the GluR2 subunit restricts Ca2+ entry and renders the receptor Ca2+-impermeable. GluR2 levels, however, experience a fall after neuronal insult rendering the AMPA receptors Ca2+-permeable, thus factors that could interfere with this event might prove to be very beneficial- against excitotoxicity. AMPA receptor clusters are stabilized by PSD-95, which requires palmitoylation at two sites. Targeting palmitoylation of the PSD-95 can also be a useful approach to disperse AMPA clusters at the synapse. In the perisynaptic region, mGluRs are present a little away from the synapse and are among the glutamate transporters, which require high-frequency firing for activation. On activation they might enhance the activity of NMDA receptors at the synapse to increase the levels of AMPA receptors. AMPA receptors surfaced at this juncture can contribute to heavy Ca2+ influx. Thus, blocking this pathway could be of considerable importance in preventing the excitotoxicity. A number of proteins such as the GRIP, PICK, and NSF also modulate the functions of AMPA receptors. Polyamines also block Ca2+ permeable AMPA receptors and thus are pro--tec-tive. NO and cGMP also play an important role in negatively regulating AMPA receptors and thus could offer protection. Modulation of AMPA receptor by different mechanisms has been discussed in the present review to implicate importance of these targets/pathways for safer and future neuro-protective drugs.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder that results in selective degeneration of most, but not all, groups of motoneurons. The greater susceptibility of vulnerable motoneurons to glutamate excitotoxicity and neurodegeneration has been hypothesized to result from their lower expression of the GluR2 AMPA receptor subunit under control conditions, which renders these receptors permeable to calcium. To address the question of whether there is differential expression of the GluR2 subunit in motoneurons, we compared in normal adult rats expression of GluR2 mRNA and protein within two cranial motor nuclei that are either resistant (III; oculomotor nucleus) or vulnerable (XII; hypoglossal nucleus) to degeneration in ALS. RT-PCR analysis of tissue punched from III and XII motor nuclei detected mRNA for all AMPA subunits (GluR1-R4). In situ hybridization demonstrated no significant difference in GluR2 mRNA expression between III and XII nuclei. Immunohistochemical examination of GluR2 (and GluR4) protein levels demonstrated a similar pattern of the subunit expression in both motor nuclei. This equivalent expression of GluR2 mRNA and protein in motoneurons that differ in their vulnerability to degeneration in ALS suggests that reduced expression of GluR2 is not a factor predisposing motoneurons to degeneration.  相似文献   

19.
The post-synaptic AMPA receptors play an important role in mediating fast excitatory transmission in the mammalian brain. Over-activated AMPA receptors induce excitotoxicity, implicated in a number of Chronic neurodegenerative disorders such as Parkinson's disease, Huntington's disease, and AIDS encephalitis. AMPA receptor antagonists offer protection against neurodegeneration in the experimental models even if they are given 24 h after the injury. Because AMPA receptors seem to be involved in the neurodegenerative diseases, modulating the activity of the AMPA receptors could be an attractive approach to reduce or prevent excitotoxicity. Studies conducted recently have exhibited a number of new mechanisms for AMPA receptor regulation. Modulations of these were found to have protective implications. AMPA receptor depolarization and desensitization are protective to the neurons. Receptor desensitization depends on the receptor subunit composition. The R/G editing site and the flip/flop cassettes in AMPA receptor subunits contribute to a great extent in receptor desensitization and recovery rates. Molecules that could quicken receptor desensitization or delay recovery could be of use. AMPA receptors limit neuronal entry of Ca2+ ions by regulating Ca2+-permeability. Ca2+-permeable receptor channels are made up of GluR1, GluR3, or GluR4 subunits, whereas presence of the GluR2 subunit restricts Ca2+ entry and renders the receptor Ca2+-impermeable. GluR2 levels, however, experience a fall after neuronal insult rendering the AMPA receptors Ca2+-permeable, thus factors that could interfere with this event might prove to be very beneficial against excitotoxicity. AMPA receptor clusters are stabilized by PSD-95, which requires palmitoylation at two sites. Targeting palmitoylation of the PSD-95 can also be a useful approach to disperse AMPA clusters at the synapse. In the perisynaptic region, mGluRs are present a little away from the synapse and are among the glutamate transporters, which require high-frequency firing for activation. On activation they might enhance the activity of NMDA receptors at the synapse to increase the levels of AMPA receptors. AMPA receptors surfaced at this juncture can contribute to heavy Ca2+ influx. Thus, blocking this pathway could be of considerable importance in preventing the excitotoxicity. A number of proteins such as the GRIP, PICK, and NSF also modulate the functions of AMPA receptors. Polyamines also block Ca2+ permeable AMPA receptors and thus are protective. NO and cGMP also play an important role in negatively regulating AMPA receptors and thus could offer protection. Modulation of AMPA receptor by different mechanisms has been discussed in the present review to implicate importance of these targets/pathways for safer and future neuroprotective drugs.  相似文献   

20.
Ca2+ currents are thought to enhance glutamate excitotoxicity. To investigate whether reduced expression of the Ca2+ limiting GluR2(B) subunit enhances seizure-induced vulnerability to either CA1 or CA3 neurons, we delivered GluR2(B) oligodeoxynucleotides (AS-ODNs) to the dorsal hippocampus of adult rats before inducing kainate (KA) seizures. After knockdown, no changes in behavior, electrographic activity, or histology were observed. In contrast, GluR2(B) knockdown and KA-induced status epilepticus produced accelerated histological injury to the ipsilateral CA3a-b and hilar subregions. At 8 to 12 h, the CA3a was preferentially labeled by both silver and TUNEL methods. TUNEL staining revealed 2 types of nuclei. They were round with uniform label, features of necrosis, or had DNA clumping or speckled chromatin deposits within surrounding cytosol, features of apoptosis. At 16 to 24 h, many CA3a-c neurons were shrunken, eosinophilic, argyrophilic, or completely absent. Immunohistochemistry revealed marked decreases in GluR2(B) subunits throughout the hippocampus, NR1 immunoreactivity was also reduced but to a lesser extent. In contrast, GluR1 and NR2A/B immunohistochemistry was relatively uniform except in regions of cell loss or within close proximity to the CA1 infusion site. At 144 h, the CA3 was still preferentially injured although bilateral CA1 injury was also observed in some AS-ODN-, S-ODN-, and KA-only-treated animals. Glutamate receptor antibodies revealed generalized decreases in the CA3 with all probes tested at this delayed time. In contrast, GluR2(B) expression was increased within CA1 irregularly shaped, injured neurons. Therefore, hippocampal deprivation of GluR2(B) subunits is insufficient to induce cell death in mature animals but may accelerate the already known CA3/hilar lesion, possibly by triggering apoptosis within CA3 neurons. CA1 and DG survive the first week despite their loss of GluR2(B) subunits, suggesting that other intrinsic properties such as increased Na+ conductance and reduced ability of the GluR2(B) subunit to interact with certain cytoplasmic proteins may be responsible for the augmented cell death rather than changes in AMPA receptor-mediated Ca2+ permeability. Alternatively, changes in allosteric interactions that affect other receptor classes of high density at the mossy fiber synapse (e.g. KA receptors) may augment KA neurotoxicity. Latent GluR2(B) increases in CA1 injured neurons support a role for AMPA receptor subunit alterations in seizure-induced tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号