首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene for protein S maps near the centromere of human chromosome 3   总被引:2,自引:1,他引:2  
Two different mapping approaches were used to determine the human chromosomal location of the gene for protein S. A human protein S cDNA was used as a hybridization probe to analyze a panel of somatic cell hybrids containing different human chromosomes. Cosegregation of protein S-specific DNA restriction fragments with human chromosome 3 was observed. Three cell hybrids containing only a portion of chromosome 3 were analyzed in order to further localize protein S. Based on the somatic cell hybrid analysis, protein S is assigned to a region of chromosome 3 that contains a small part of the long arm and short arm of the chromosome including the centromere (3p21----3q21). In situ hybridization of the protein S cDNA probe to human metaphase chromosomes permitted a precise localization of protein S to the region of chromosome 3 immediately surrounding the centromere (3p11.1---- 3q11.2). Protein S is the first protein involved in blood coagulation that has been mapped to human chromosome 3.  相似文献   

2.
Human chromosome 7 carries the beta 2 interferon gene.   总被引:7,自引:2,他引:7  
A cDNA clone (pAE20-4) corresponding to the 1.3-kilobase human beta 2 interferon mRNA was used as a probe in blot-hybridization experiments of DNA from a panel of human-rodent somatic cell hybrids containing overlapping subsets of human chromosomes. The DNA hybridization experiments showed that the human beta 2 interferon gene is located on human chromosome 7. This assignment is consistent with previous experimental data in which the expression of the translationally active 1.3-kilobase beta 2 interferon mRNA was assayed in various somatic cell hybrids. Blot-hybridization experiments using DNA from different human cell strains and cell lines reveal distinct EcoRI restriction fragment length polymorphisms of the human beta 2 interferon gene.  相似文献   

3.
We describe a general strategy for the detection of high-frequency restriction fragment length polymorphisms in the centromeric regions of human chromosomes by molecular analysis of alpha satellite DNA, a diverse family of tandemly repeated DNA located near the centromeres of all human chromosomes. To illustrate this strategy, cloned alpha satellite repeats isolated from two human chromosomes, 17 and X, have been used under high-stringency conditions that take advantage of the chromosome-specific organization of this divergent repeated DNA family. Multiple high-frequency restriction fragment length polymorphisms are described for the centromeric region of both chromosome 17 and X chromosome. Mendelian inheritance of the variants is demonstrated. The X-linked alpha satellite polymorphisms in particular are highly informative and constitute a virtually unique centromeric DNA marker for each X chromosome examined. Since the strategy we describe is a general one, the alpha satellite family of DNA should provide a rich source of molecular variation in the human genome and should contribute to the development of centromere-based genetic linkage maps of human chromosomes.  相似文献   

4.
Phenylketonuria (PKU) is an autosomal recessive disorder of amino acid metabolism caused by a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH; phenylalanine 4-monooxygenase, EC 1.14.16.1). A cDNA clone for human PAH has previously been used to assign the corresponding gene to human chromosome 12. To define the regional map position of the disease locus and the PAH gene on human chromosome 12, DNA was isolated from human-hamster somatic cell hybrids with various deletions of human chromosome 12 and was analyzed by Southern blot analysis using the human cDNA PAH clone as a hybridization probe. From these results, together with detailed biochemical and cytogenetic characterization of the hybrid cells, the region on chromosome 12 containing the human PAH gene has been defined as 12q14.3----qter. The PAH map position on chromosome 12 was further localized by in situ hybridization of 125I-labeled human PAH cDNA to chromosomes prepared from a human lymphoblastoid cell line. Results of these experiments demonstrated that the region on chromosome 12 containing the PAH gene and the PKU locus in man is 12q22----12q24.1. These results not only provide a regionalized map position for a major human disease locus but also can serve as a reference point for linkage analysis with other DNA markers on human chromosome 12.  相似文献   

5.
Polymorphic human somatostatin gene is located on chromosome 3.   总被引:4,自引:2,他引:2       下载免费PDF全文
Somatostatin is a 14-amino-acid neuropeptide and hormone that inhibits the secretion of several peptide hormones. The human gene for somatostatin SST has been cloned, and the sequence has been determined. This clone was used as a probe in chromosome mapping studies to detect the human somatostatin sequence in human-rodent hybrids. Southern blot analysis of 41 hybrids, including some containing translocations of human chromosomes, placed SST in the q21 leads to qter region of chromosome 3. Human DNAs from unrelated individuals were screened for restriction fragment polymorphisms detectable by the somatostatin gene probe. Two polymorphisms were found: (i) an EcoRI variant located at the 3' end of the gene, found in Caucasian, U.S. Black, and Asian populations with a frequency of approximately 0.10 and (ii) a BamHI variant in the intron, which occurs in Caucasians at a frequency of 0.13.  相似文献   

6.
Four additional DNA variants (restriction enzyme fragment length polymorphisms) making a total of eight polymorphic sites at the human albumin locus have been identified. These eight sites were found after screening 689 of 20,000 nucleotides by using cDNA probes for albumin with 27 different restriction enzymes. One in 85 nucleotides was therefore potentially polymorphic. The average nucleotide diversity between any two randomly chosen chromosomes was calculated to be 1/500. We observed marked linkage disequilibrium between the eight variants. Only 7 haplotypes among 256 possible combinations were observed in 160 chromosomes from Caucasoids, Blacks, and Asians. Two haplotypes were found in all three human races, indicating that their origin predated human racial divergence. The three rarest haplotypes appear to represent recombinational events between the more common haplotypes. All crossovers occurred in the same general region. Studies of several nonhuman primates indicated that the origin of one haplotype predated the human-African ape divergence. Although it is not possible to rule out maintenance of this tight linkage by selection or fixation, it is suggested that the limited number of haplotypes at the chromosomal site of the albumin gene near the centromere of chromosome 4 may be the result of decreased recombination.  相似文献   

7.
P450c17 is the single enzyme mediating both 17 alpha-hydroxylase and 17,20 lyase activities. We identified several human P450c17 cDNA clones in a human adrenal cDNA library we constructed in lambda gt10. A short clone containing the 3'-terminal 650 bases of the full-length sequence was used to examine Southern blots of DNA from normal persons and from a panel of mouse/human somatic cell hybrid lines. The pattern of hybridization of this cDNA to normal human DNA cut with 8 restriction endonucleases suggests the human genome has two (or more) P450c17 genes. The pattern of hybridization to the somatic cell hybrid cell lines, each containing a limited, known number of human chromosomes, indicates the human adrenal P450c17 gene lies on chromosome 10. The chromosomal locations of the other P450c17 genes could not be determined.  相似文献   

8.
Murine and human cDNAs, related to but distinct from c-raf-1, have been isolated and designated mA-raf and hA-raf, respectively. The mA-raf and hA-raf cDNAs detect the same murine and human fragments in Southern blots of restriction enzyme-cleaved murine and human cellular DNA. The murine restriction enzyme fragments homologous to mA-raf cDNA cosegregate with mouse chromosome X in a panel of Chinese hamster-mouse hybrid cells, thus localizing the mA-raf locus to mouse chromosome X. Two independently segregating loci, detected by the hA-raf cDNA (or mA-raf cDNA), hA-raf-1 and hA-raf-2, are located on human chromosomes X and 7, respectively. The mA-raf locus and the hA-raf-1 locus are actively transcribed in several mouse and human cell lines.  相似文献   

9.
The regional chromosomal location of the human gene for plasminogen activator inhibitor type 1 (PAI1) was determined by three independent methods of gene mapping. PAI1 was localized first to 7cen-q32 and then to 7q21.3-q22 by Southern blot hybridization analysis of a panel of human and mouse somatic cell hybrids with a PAI1 cDNA probe and in situ hybridization, respectively. We identified a frequent HindIII restriction fragment length polymorphism (RFLP) of the PAI1 gene with an information content of 0.369. In family studies using this polymorphism, genetic linkage was found between PAI1 and the loci for erythropoietin (EPO), paraoxonase (PON), the met protooncogene (MET), and cystic fibrosis (CF), all previously assigned to the middle part of the long arm of chromosome 7. The linkage with EPO was closest with an estimated genetic distance of 3 centimorgans, whereas that to CF was 20 centimorgans. A three-point genetic linkage analysis and data from previous studies showed that the most likely order of these loci is EPO, PAI1, PON, (MET, CF), with PAI1 being located centromeric to CF. The PAI1 RFLP may prove to be valuable in ordering genetic markers in the CF-linkage group and may also be valuable in genetic analysis of plasminogen activation-related diseases, such as certain thromboembolic disorders and cancer.  相似文献   

10.
Apolipoprotein A-I (apo A-I), the major apolipoprotein in human high density lipoproteins, is involved in the disease atherosclerosis. Cloned apo A-I cDNA (pA1-3) was used as a probe in chromosome mapping studies to detect the human apo A-I structural gene sequence in human-Chinese hamster cell hybrids. Southern blot analysis of 13 hybrids localized the gene to human chromosome 11. Confirmation of the chromosomal assignment was obtained by analysis of a hybrid (J1) containing a single human chromosome, no. 11. Regional mapping was achieved by using deletion subclones of J1 that localized the human apo A-I structural gene to the region 11q13 leads to qter. Since the human apolipoprotein C-III (apo C-III) structural gene is closely linked to apo A-I, it can be assigned to the same region on the long arm of chromosome 11. By extension of methods previously described, it now appears possible to carry out fine-structure analysis of this and related gene regions on chromosome 11 and to study the biochemical concomitants of these genes and of genes on other chromosomes for analysis of their role in atherosclerosis.  相似文献   

11.
A series of mouse-hamster somatic cell hybrids, containing reduced numbers of mouse chromosomes and a complete set of hamster chromosomes, was used to determine the chromosomal locations of the genes for the alpha and beta subunits of mouse thyrotropin. Cloned cDNA probes for each subunit, in conjunction with Southern blot analysis of DNA treated with the restriction enzyme BamHI, allowed for assignment of the alpha-subunit gene to mouse chromosome 4 and of the beta-subunit gene to chromosome 3. Mouse alpha-subunit gene sequences always segregated with chromosome 4 (concordant in 14 hybrids) and the enzyme markers phosphoglucomutase 2 and 6-phosphogluconate dehydrogenase. Mouse beta-subunit gene sequences always segregated with chromosome 3 (concordant in 15 hybrids). Thus, the genes for at least one of the glycoprotein hormones, thyrotropin, are on different chromosomes.  相似文献   

12.
A myeloid-related sequence that localizes to human chromosome 8q21.1-22   总被引:1,自引:0,他引:1  
A myeloid-related sequence (mrs) has previously been identified that is highly expressed in selected subpopulations of myeloid leukocytes. Nucleotide sequence analysis indicates that mrs encodes what is apparently a unique 93-amino acid protein that includes an 18-amino acid leader sequence. Hybridization of an mrs cDNA probe to a Southern blot made from somatic cell hybrid DNAs shows 100% concordance with human chromosome 8, thus indicating that mrs localizes to this chromosome. In situ hybridization to metaphase chromosomes further sublocalizes mrs to bands 8q21.1-23 as 58% of the grains displayed on chromosome 8 were clustered in this region. This area encompasses the translocation breakpoint 8q22, which is rearranged in an estimated 18% of patients diagnosed with the M2 subclassification of acute nonlymphocytic leukemia (M2-ANLL). When Southern blot hybridization was performed by using somatic cell hybrid DNAs harboring either a single 8q- or a single 21q+ chromosome from two different patients with M2-ANLL, a signal was only detected in the hybrid containing the 8q-chromosome.  相似文献   

13.
14.
Human chromosome 21 is the smallest of the 22 autosomes and 2 sex chromosomes. Hybridization of the human repetitive sequence Alu to pulsed-field gel-fractionated Not I-digested genomic DNA from a human-mouse hybrid cell line containing chromosome 21 as the sole human component identified chromosome 21 Not I restriction fragments. A Not I restriction map of regions of the chromosome was constructed, by identifying neighboring Alu bands with Not I linking clones. This approach simplifies the task of physical mapping and avoids ambiguities in Not I fragment assignments that arise from gel-to-gel mobility variations. A contiguous map was constructed with six Not I linking clones that covers at least the proximal one-third of the long arm of chromosome 21 and spans 20 megabases. A more detailed restriction map revealed 11 likely CpG islands in this region and localized 11 additional DNA markers.  相似文献   

15.
A system for assaying human interchromosomal recombination in vitro was developed, using a cell line containing two different mutant thymidine kinase genes (TK) on chromosomes 17. Heteroalleles were generated in the TK+/+ parent B-lymphoblast cell line WIL-2 by repeated exposure to the alkylating nitrogen mustard ICR-191, which preferentially causes +1 or -1 frameshifts. Resulting TK-/- mutants were selected in medium containing the toxic thymidine analog trifluorothymidine. Mutations were characterized by exon-specific polymerase chain reaction amplification and direct sequencing. In two lines, heterozygous frameshifts were located in exons 4 and 7 of the TK gene separated by approximately 8 kilobases. These lines undergo spontaneous reversion to TK+ at a frequency of less than 10(-7), and revertants can be selected in cytidine/hypoxanthine/aminopterin/thymidine medium. The nature and location of these heteroallelic mutations make large deletions, rearrangements, nondisjunction, and reduplication unlikely mechanisms for reversion to TK+. The mode of reversion to TK+ was specifically assessed by DNA sequencing, use of single-strand conformation polymorphisms, and analysis of various restriction fragment length polymorphisms (RFLPs) linked to the TK gene on chromosome 17. Our data suggest that a proportion of revertants has undergone recombination and gene conversion at the TK locus, with concomitant loss of frameshifts and allele loss at linked RFLPs. Models are presented for the origin of two recombinants.  相似文献   

16.
Previous theoretical considerations and some experimental data have suggested a role for DNA methylation in the maintenance of mammalian X chromosome inactivation. The isolation of specific X-encoded sequences makes it possible to investigate this hypothesis directly. We have used cloned fragments of the human hypoxanthine phosphoribosyltransferase (HPRT) gene and methylation-sensitive restriction enzymes to study methylation patterns in genomic DNA of individuals with different numbers of X chromosomes and in somatic cell hybrid lines containing human X chromosomes that are either active or inactive or have been reactivated by treatment with 5-azacytidine. The results of these analyses show that there is hypomethylation of active X chromosomes relative to inactive X chromosomes in the 5' region of this gene. In the middle region of the gene, however, a site that is consistently undermethylated on inactive X chromosomes was identified. Taken together, the data suggest that the overall pattern of methylation, rather than methylation of specific sites, plays a role in the maintenance of X chromosome inactivation.  相似文献   

17.
A panel of 26 mouse-human somatic cell hybrids containing different human chromosome complements was analyzed with a cloned human pepsinogen cDNA probe to determine the chromosomal location and the number of genes encoding these proteins. A complex containing variable numbers of pepsinogen genes was localized to the centromeric region of human chromosome 11 (p11----q13). Examination of somatic cell hybrids containing single copies of chromosome 11 and the corresponding human parental cell lines revealed a restriction fragment length polymorphism determined by pepsinogen haplotypes that contained two or three genes, respectively. Concurrent studies of DNA from individuals exhibiting the most common pepsinogen electrophoretic phenotypes with exon-specific probes demonstrated that the absence of one gene among the different restriction fragment patterns correlated with the absence of one specific isozymogen (Pg 5). Thus, our studies demonstrate that this genetic polymorphism involving intensity variation of individual pepsinogen isozymogens results from chromosome haplotypes that contain different numbers of genes. The regional localization of this polymorphic gene complex will facilitate detailed linkage analysis of human chromosome 11.  相似文献   

18.
A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding alpha-subunit proteins, two different beta subunits, and one gamma subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The beta subunits were also assigned--GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extent of the G alpha gene family and may help in attempts to correlate specific genetic diseases with genes corresponding to G proteins.  相似文献   

19.
A clone that cross-hybridizes with a mouse p53 probe has been isolated from a cDNA library of simian virus 40-transformed human fibroblasts. This cloned human p53 cDNA was used as a probe to examine DNAs obtained from human-rodent somatic cell hybrids that have segregated human chromosomes. The results show that the human p53 gene is located on chromosome 17. In addition, Southern analysis of hybrids prepared from human cells containing a chromosome 17 translocation allowed regional localization of the human p53 gene to the most distal band on the short arm of this chromosome (17p13). Localization of the p53 gene to 17p13 was confirmed by in situ hybridization of metaphase spreads with the human p53 probe.  相似文献   

20.
A cDNA clone encoding a human receptor for the Fc portion of IgG (Fc gamma R), Fc gamma RIII or CD16, was isolated from a human leukocyte library by a transient expression-immunoselection procedure. This cDNA (pGP5) encodes a 46-kDa phosphatidylinositol-linked cell surface protein with CD16 determinants and affinity for human IgG. The deduced protein sequence is most homologous to the murine receptor Fc gamma RII alpha, with slightly less homology to the human receptors Fc gamma RII and Fc epsilon RI. The cDNA hybridizes to a 2.2 kilobase mRNA in human leukocytes and a cloned human natural killer cell line. Fc gamma RIII is mapped to chromosome 1 by spot-blot analysis of sorted human chromosomes. Hybridization of Fc gamma RII and Fc gamma RIII probes to restriction digests of human genomic DNA separated by pulsed-field gel electrophoresis demonstrates physical linkage of the two genes within a maximum distance of 200 kilobases. The results identify a locus for at least two Fc gamma R genes on human chromosome 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号