首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tardive dyskinesia (TD) has been considered as a major clinical issue in the treatment of schizophrenia. Various animal studies have indicated the role of oxidative stress and nitric oxide pathway in haloperidol-induced TD. The present study investigated the effect of NO donors (molsidomine and l-arginine) in haloperidol-induced TD in rats. Chronic administration of haloperidol (1 mg/kg i.p. for 21 days) significantly increased vacuous chewing movements (VCMs), tongue protrusions, and facial jerking in rats which was dose dependently inhibited by NO donors. Besides, haloperidol also increased striatal superoxide anion levels and decreased striatal NO and citrulline levels which were prevented by molsidomine and l-arginine. On chronic administration of haloperidol, there was a decrease in the striatal levels of dopamine, which was again reversed by treatment with NO donors. The findings of the present study suggested for the involvement of NO in the development of neuroleptic-induced TD and indicated the potential of NO donors as a possible therapeutic option. Furthermore, a sub-study on a possible schizophrenic phenotype, i.e. a possible clinical worsening in the animals receiving NO donors and neuroleptics will substantiate the clinical utility of the study.  相似文献   

2.
Recent studies have suggested that first and second generation antipsychotics (FGAs and SGAs) have different neuroprotective effects. However, the molecular mechanisms of SGAs are not fully understood, and investigations into changes in intracellular signaling related to their neuroprotective effects remain scarce. In the present study, we compared the SGA aripiprazole with the FGA haloperidol in SH-SY5Y human neuroblastoma cells via brain-derived neurotrophic factor (BDNF)-mediated signaling, notably BDNF, glycogen synthase kinase-3β (GSK-3β), and B cell lymphoma protein-2 (Bcl-2). We examined the effects of aripiprazole (five and 10 μM) and haloperidol (one and 10 μM) on BDNF gene promoter activity in SH-SY5Y cells transfected with a rat BDNF promoter fragment (− 108 to + 340) linked to the luciferase reporter gene. The changes in BDNF, p-GSK-3β, and Bcl-2 levels were measured by Western blot analysis. The haloperidol was not associated with a significant difference in BDNF promoter activity. In contrast, aripiprazole was associated with increased BDNF promoter activity only with a dose of 10 μM (93%, p < 0.01). Treatment with aripiprazole at 10 μM increased the levels of BDNF by 85%, compared with control levels (p < 0.01), whereas haloperidol had no effect. Moreover, cells treated with aripirazole effectively increased the levels of GSK-3β phosphorylation and Bcl-2 at doses of five and 10 μM (30% and 58% and 31% and 80%, respectively, p < 0.05 or p < 0.01). However, haloperidol had no effects on p-GSK-3 β and Bcl-2 expression. This study showed that aripiprazole, but not haloperidol, appeared to offer neuroprotective effects on human neuronal cells. The actions of signaling systems associated with BDNF may represent key targets for both aripiprazole and haloperidol, but the latter may be associated with distinct effects. These differences might be related to the different therapeutic effects of FGAs and SGAs in patients with schizophrenia.  相似文献   

3.
The major brain noradrenergic nucleus locus coeruleus (LC) has long been thought to be involved in states of alertness and cognitive processes. These functional characteristics make this nucleus interesting with regard to the signs of schizophrenia, especially the negative symptoms of the disease. In the present in-vivo electrophysiological study we analyse a putative interaction between endogenous kynurenic acid (KYNA) and the antipsychotic drugs clozapine and haloperidol on noradrenergic LC neurons. Previous studies have shown that systemically administered antipsychotic drugs increase the neuronal activity of LC noradrenaline (NA) neurons. In line with these findings, our results show that clozapine (1.25-10 mg/kg i.v.) and haloperidol (0.05-0.08 mg/kg i.v.) increased the firing rate of LC NA neurons in anaesthetized rats. Pretreatment with PNU 156561A (40 mg/kg i.v., 3 h), a potent inhibitor of kynurenine 3-hydroxylase, produced a 2-fold increase in rat brain KYNA levels. This treatment prevented the increase in firing rate of LC NA neurons induced by haloperidol (0.05-0.08 mg/kg i.v.) and clozapine in high doses (2.5-10 mg/kg i.v.). However, the excitatory action of the lowest dose of clozapine (1.25 mg/kg i.v.) was not abolished by elevated levels of brain KYNA. Furthermore, pretreatment with L-701,324 (4 mg/kg i.v.) a selective antagonist at the glycine site of the NMDA receptor prevented the excitatory effects of both clozapine and haloperidol. The present results suggest that the excitation of LC NA neurons by haloperidol and clozapine involves a glutamatergic component.  相似文献   

4.
Recent clinical studies have suggested that treatment with atypical antipsychotic drugs, such as olanzapine, may slow progressive changes in brain structure in patients with schizophrenia. To investigate the possible neural basis of this effect, we sought to determine whether treatment with olanzapine would inhibit the loss of hippocampal neurons associated with the administration of the excitotoxin, kainic acid, in neonatal rats. At post-natal day 7 (P7), rats were exposed to kainic acid via intracerebroventricular administration. Neuronal loss within the CA2 and CA3 subfields of the hippocampus and neurogenesis within the dentate gyrus of the hippocampus were then assessed at P14 by Fluoro-Jade B and BrdU labeling, respectively. Daily doses of olanzapine (2, 6, or 12 mg/day), haloperidol (1.2 mg/kg), melatonin (10 mg/kg), or saline were administered between P7 and P14. Melatonin is an anti-oxidant drug and was included in this study as a positive control, since it has been observed to have neuroprotective effects in a variety of animal models. The highest dose of olanzapine and melatonin, but not haloperidol, ameliorated the hippocampal neuronal loss triggered by kainic acid administration. However, drug administration did not have a significant effect on the rate of neurogenesis. These results suggest that olanzapine has neuroprotective effects in a rat model of neurodevelopmental insult, and may be relevant to the observed effects of atypical antipsychotic drugs on brain structure in patients with schizophrenia.  相似文献   

5.
Opioid abuse and dependency are international problems. Studies have shown that neuronal inflammation and degeneration might be related to the development of opioid addiction. Thus, using neuroprotective agents might be beneficial for treating opioid addiction. Memantine, an Alzheimer's disease medication, has neuroprotective effects in vitro and in vivo. In this study, we evaluated whether a low dose of memantine prevents opioid-induced drug-seeking behavior in rats and analyzed its mechanism. A conditioned-place-preference test was used to investigate the morphine-induced drug-seeking behaviors in rats. We found that a low-dose (0.2-1?mg/kg) of subcutaneous memantine significantly attenuated the chronic morphine-induced place-preference in rats. To clarify the effects of chronic morphine and low-dose memantine, serum and brain levels of cytokines and brain-derived neurotrophic factor (BDNF) were measured. After 6?days of morphine treatment, cytokine (IL-1β, IL-6) levels had significantly increased in serum; IL-1β and IL-6 mRNA levels had significantly increased in the nucleus accumbens and medial prefrontal cortex, both addiction-related brain areas; and BDNF levels had significantly decreased, both in serum and in addiction-related brain areas. Pretreatment with low-dose memantine significantly attenuated chronic morphine-induced increases in serum and brain cytokines. Low-dose memantine also significantly potentiated serum and brain BDNF levels. We hypothesize that neuronal inflammation and BDNF downregulation are related to the progression of opioid addiction. We hypothesize that the mechanism low-dose memantine uses to attenuate morphine-induced addiction behavior is its anti-inflammatory and neurotrophic effects.  相似文献   

6.
In schizophrenia, studies indicate that apoptotic susceptibility in cortex may be increased. A role for apoptosis in schizophrenia could potentially contribute to post-mortem evidence of reduced cortical neuropil and neuroimaging studies showing progressive cortical gray matter loss. Interestingly, antipsychotic treatment has been associated with higher cortical levels of anti-apoptotic Bcl-2 protein in rat cortex and preliminary data has suggested a similar association in schizophrenia and bipolar disorder. To better understand the effects of antipsychotics on apoptotic regulation, rats were administered haloperidol, clozapine, quetiapine, or saline daily for 4 weeks. Multiple apoptotic markers, including Bcl-2, pro-apoptotic Bax, anti-apoptotic XIAP, and the downstream protease caspase-3 were measured in frontal cortex using Western blot. Caspase-3 activity, activated caspase-3-positive cell number, and DNA/histone fragmentation levels were also determined. Western blot showed that immunoreactivity of Bax and Bcl-2 bands were unchanged with treatment. However, mean density of the 19 kD activated caspase-3 band was 55% higher with haloperidol (p<0.001), 40% higher with clozapine (p<0.05), and 48% higher with quetiapine (p<0.01) compared to saline control. Specific activity of caspase-3 was also increased across all treatments (p<0.0001), while DNA fragmentation rates remained unchanged. These data suggest that sub-chronic antipsychotic treatment is associated with non-lethal caspase-3 activity. The findings do not support a prominent Bcl-2-mediated neuroprotective role for antipsychotics. Although the association between antipsychotic treatment and increased pro-apoptotic caspase-3 is intriguing, further study is needed to understand its potential effects.  相似文献   

7.
Proton magnetic resonance spectroscopy (1H-MRS) studies of schizophrenia suggest an effect of the disease or of antipsychotic medications on brain N-acetyl aspartate (NAA), a marker of neuronal viability. We studied in rat the effect of haloperidol on NAA, glutamate, and glutamine in several brain regions where metabolite reductions have been reported in chronically medicated patients with schizophrenia. Two groups of 16 rats each were treated with haloperidol depo (38 mg/kg/month) and vehicle for 6 months and were killed. Concentrations of metabolites were determined by high-resolution magic angle proton magnetic resonance spectroscopy (HR-MAS 1H-MRS) at 11.7 T in ex-vivo punch biopsies from the following brain regions: medial frontal and cingulate cortex, striatum, nucleus accumbens, dorsal and ventral hippocampus, amygdala, and temporal cortex. Factorial ANOVA of NAA concentrations revealed no significant effect of drug group (F(1,212) = 1.5; p = 0.22) or a group by brain region interaction (F(7,212) = 1.0; p = 0.43). There was a significant main effect of region (F(7,212) = 17.8; p < 0.001) with lower NAA in the striatum. A prolonged exposure to the dopamine D2 receptor blockade effects of haloperidol does not result in changes in NAA, glutamate, glutamine, and other metabolites in the proton spectrum. These results are consistent with the only other two studies of the effect of antipsychotic drugs on NAA in the rat brain. The documented lower NAA in chronically treated schizophrenia patients is most likely not a simple effect of antipsychotic medications.  相似文献   

8.
Park SW  Seo MK  Cho HY  Lee JG  Lee BJ  Seol W  Kim YH 《Neuropharmacology》2011,61(4):761-769
Dopamine D2 receptors (D2R) are the primary target of antipsychotic drugs and have been shown to regulate Akt/glycogen synthase kinase-3β (GSK-3β) signaling through scaffolding protein β-arrestin 2. Amisulpride, an atypical antipsychotic drug, and haloperidol, a typical antipsychotic drug, are both potent D2R antagonists, but their therapeutic effects differ. In the present study, we compared the effects of amisulpride and haloperidol on the β-arrestin 2-mediated Akt/GSK-3β pathway in SH-SY5Y cells. To determine whether these drugs affected neuronal morphology in SH-SY5Y cells, we investigated the effects of amisulpride and haloperidol on neurite outgrowth using immunostaining. We examined the effects of these drugs on Akt and GSK-3β and its well-known downstream regulators, cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), and Bcl-2 levels using Western blot analysis. Amisulpride, but not haloperidol, was found to enhance neurite outgrowth. Small interfering RNA (siRNA) for β-arrestin 2 knockdown blocked the increase in amisulpride-induced neurite outgrowth. Furthermore, amisulpride increased the levels of Akt and GSK-3β phosphorylation, while haloperidol had no effect. The elevation of Akt phosphorylation induced by amisulpride was reduced by β-arrestin 2 siRNA. Moreover, amisulpride effectively increased the levels of phospho-CREB, BDNF, and Bcl-2. However, haloperidol had no effect on the levels of these proteins. Additionally, wortmannin, a phosphatidylinositol 3-kinase (PI3 K) inhibitor, blocked the stimulatory effect of amisulpride on phosphorylated Akt. Together, these results suggest that regulation of the β-arrestin 2-dependent pathway via blockade of the D2R in SH-SY5Y cells is one mechanism underlying the neuroprotective effect of amisulpride, but not haloperidol.  相似文献   

9.
The aim of this study was to evaluate the possible effects of nicergoline, a semisynthetic ergot derivative, on the biochemical changes observed during chronic treatment with haloperidol in male Sprague-Dawley rats. Chronic treatment with haloperidol induced a significant decrease in the cellular glutathione (GSH) content in selected areas of the brain (cerebellum, striatum and cortex) and in the liver. Prolonged nicergoline administration was able to antagonize the haloperidol-induced GSH decrease, maintaining the GSH concentration at levels comparable to those observed in the control group. Analysis of the energy charge revealed changes similar to those observed for GSH: haloperidol induced a significant decrease in ATP and energy charge that was completely reversed by repeated nicergoline administration. In conclusion, chronic treatment with the classical antipsychotic haloperidol induces profound biochemical changes in the brain and in the liver. Nicergoline treatment is able to counteract the haloperidol-induced decrease in GSH levels and energy charge, suggesting a potential role of the drug in the treatment of neuroleptic-induced side effects.  相似文献   

10.
Haloperidol as a potent dopamine D2 receptor (D2R) antagonist was a major tranquilizer to treat schizophrenia patients. However, the D2R blocking action in dorsal striatum is thought to cause extrapyramidal symptoms as adverse effects. However, the pathophysiological mechanism underlying extrapramidal symptoms induced by chronic treatment of haloperidol remains unclear. We recently found that lacking of heart-type fatty acid binding protein (H-FABP) in the brain aggravate catalepsy behavior induced by haloperidol. Here, we examined neuronal mechanism of augmentation of haloperidol-induced catalepsy in H-FABP null mice. Notably, catalepsy induced by haloperidol, a D2 antagonist, is augmented, whereas catalepsy induced by SCH23390, a D1 antagonist, was not affected in H-FABP null mice. Interestingly, haloperidol-induced acetylcholine (ACh) release in the dorsal striatum was markedly enhanced in H-FABP null mice compared to wild mice. We also defined the co-localization of D2R with H-FABP in the ACh interneurons in the striatum. Taken together, H-FABP regulates dopaminergic neuronal activity through interaction with D2R in rodent brain. The increased ACh release in the striatum accounts for haloperidol-induced catalepsy.  相似文献   

11.
1. The influence of (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on haloperidol-induced increases in the dopamine metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 4-hydroxy-3-methoxyphenylacetic acid (HVA), was measured in three microdissected brain regions of the rat following a quantitative assessment of catalepsy. 2. Haloperidol alone (2.66 mumol kg-1, i.p.) caused a robust cataleptic response. Given 30 min after haloperidol, 8-OH-DPAT (76 or 760 nmol kg-1, s.c.) prevented catalepsy in 30% and 100% of rats, respectively. 3. Haloperidol significantly increased the DOPAC (by 2 to 4 fold) and HVA (by 3 to 7 fold) contents of the caudate-putamen, nucleus accumbens and medial prefrontal cortex. Given alone, only the lower dose of 8-OH-DPAT caused a significant biochemical change, a doubling of cortical DOPAC. 4. In the cases where catalepsy was prevented by either dose of 8-OH-DPAT, the haloperidol-induced increases in DOPAC and HVA were consistently lower in the caudate-putamen. This pattern was true for the rise in cortical HVA but only in response to the lower dose of 8-OH-DPAT. In contrast, neither dose of 8-OH-DPAT was able to influence the haloperidol-induced rises in cortical DOPAC. In the nucleus accumbens, 8-OH-DPAT did not affect the haloperidol-induced increases in the dopamine metabolites, irrespective of the dose employed or the resulting behaviour. When catalepsy was not prevented, 8-OH-DPAT did not alter the neurochemical responses to haloperidol in any region. 5. These results suggest that part of the mechanism by which 8-OH-DPAT prevents haloperidol-induced catalepsy is reflected by a reversal of the compensatory increase in meso-striatal and/or meso-cortical dopamine neuronal activity that normally accompanies postsynaptic dopamine receptor blockade with haloperidol.  相似文献   

12.
Antipsychotic drugs have been shown to modulate immediate early gene (IEG) expression in rat brain regions that are associated with schizophrenia, which may be directly linked to their immediate therapeutic benefit. In this study, we analysed the expression profile of a series of IEGs (c-fos, c-jun, fra-1, Krox-20, Krox-24, arc, sgk-1, BDNF and NARP) in six rat brain regions (prefrontal cortex, hippocampus, striatum, nucleus accumbens, thalamus and cerebellum). Rats (n=5) were administered either clozapine (20 mg/kg i.p.), haloperidol (1 mg/kg i.p.) or the appropriate vehicle with pre-treatment times of 1, 6 and 24 h. IEG expression was analysed in these regions by Taqman RT-PCR. The spatial and temporal profile of IEG induction following antipsychotic drug treatment correlates with regions associated with the efficacy and side effect profile of each drug. In particular, sgk-1 expression levels after antipsychotic drug treatment may have predictive value when investigating the profile of a novel antipsychotic drug.  相似文献   

13.
14.
The mode of action by which the atypical antipsychotic drug clozapine exerts its superior efficacy to ameliorate both positive and negative symptoms is still unknown. In the present in vivo electrophysiological study, we investigate the effects of haloperidol (a typical antipsychotic drug) and clozapine on ventral tegmental area (VTA) dopamine (DA) neurons in a situation of hyperdopaminergic activity in order to mimic tentatively a condition similar to that seen in schizophrenia. Increased DA transmission was induced by elevating endogenous levels of the N-methyl-D-aspartate receptor and alpha7(*) nicotinic receptor antagonist kynurenic acid (KYNA; by means of PNU 156561A, 40 mg /kg, i.v.). In control rats, i.v. administered haloperidol (0.05-0.8 mg/kg) or clozapine (1.25-10 mg/kg) was associated with increased firing rate and burst firing activity of VTA DA neurons. However, in rats displaying hyperdopaminergia (induced by elevated levels of KYNA), the effects of clozapine on VTA DA neurons were converted into pure inhibitory responses, including decrease in burst firing activity. In contrast, haloperidol still produced an excitatory action on VTA DA neurons in rats with elevated levels of endogenous brain KYNA. The results of the present study suggest that clozapine facilitates or inhibits VTA DA neurotransmission, depending on brain concentration of KYNA. Such an effect of clozapine may be related to its unique effect in also ameliorating negative symptoms of schizophrenia.  相似文献   

15.
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are proteins involved in neuronal survival, neurite outgrowth and synapse formation. Recent observations suggest that treatment with typical and atypical antipsychotic drugs affect NGF and BDNF levels in the rat brain. The atypical antipsychotic olanzapine has a low incidence of side effects, such as extrapyramidal and anticholinergic symptoms. Since NGF and BDNF are involved in the regulation of cholinergic, dopaminergic and serotonergic neurons in the central nervous system (CNS) we hypothesized that chronic olanzapine treatment will influence the distribution of NGF and BDNF in the rat brain. To test this hypothesis we administered olanzapine for 29 days in the drinking water at the doses of 3 and 15 mg/kg body weight and measured the levels of NGF and BDNF in the brain of Wistar rats. Olanzapine increased NGF in the hippocampus, occipital cortex and hypothalamus. In contrast, olanzapine decreased BDNF in the hippocampus and frontal cortex. Although the significance of these findings is not clear, a heuristic hypothesis is that olanzapine's clinical effects and a favorable side effect profile are in part mediated by neurotrophins.  相似文献   

16.
孟玮  顾兵 《中国药理学通报》2011,27(12):1640-1643
重组人促红细胞生成素(recombinant human erythropoi-etin,rhEPO)目前在临床上主要用于治疗各种原因引起的贫血。大量研究表明,rhEPO除具有造血调节活性以外,还具有强大的神经保护作用。rhEPO对创伤性脑损伤、脑卒中、胎儿和新生儿脑损伤、脊髓损伤、神经病理性疼痛、精神分裂症、视神经损伤等多种神经疾病具有潜在的临床应用前景。该文就近年来rhEPO对以上各种神经疾病作用研究的最新进展进行了全面综述。  相似文献   

17.

Introduction

Epidemiological and clinical life cycle studies have indicated that the more favorable illness course and the better response to antipsychotic drugs (APDs) in women with schizophrenia correlate with high levels of estrogen, whereas increased vulnerability to exacerbation and relapse and reduced sensitivity to treatment are associated with low estrogen levels. Accordingly, the estrogen hypothesis of schizophrenia proposes that estrogen has a neuroprotective effect in women vulnerable to schizophrenia.

Materials and methods

Latent inhibition (LI), the capacity to ignore stimuli that received nonreinforced preexposure prior to conditioning, is disrupted in acute schizophrenia patients and in rats and humans treated with the psychosis inducing drug amphetamine. Disruption of LI is reversible by typical and atypical APDs. The present study tested whether low levels of estrogen induced by ovariectomy (OVX) would lead to disruption of LI in female rats and whether such disruption would be normalized by estrogen replacement treatment and/or APDs.

Results

Results showed that OVX led to LI disruption, which was reversed by 17β-estradiol (150 μg/kg) and the atypical APD clozapine (5 mg/kg), but not by the typical APD haloperidol (0.1, 0.2, 0.3 mg/kg). Haloperidol regained efficacy when administered with 17β-estradiol (50 μg/kg).

Discussion

These results provide the first demonstration in rats that low levels of hormones can induce a pro-psychotic state that is resistant to at least typical antipsychotic treatment. This constellation may mimic states seen in schizophrenic women during periods associated with low levels of hormones such as the menopause.  相似文献   

18.
Evidence is increasing for a role of brain 5-hydroxytryptamine (5-HT) systems in schizophrenia. We previously showed that brain 5-HT depletion causes disruption of prepulse inhibition, a measure of sensorimotor gating that is deficient in schizophrenia. Antipsychotic treatment has been reported to reverse these deficits in patients with schizophrenia. The present study was designed to investigate the ability of antipsychotic drugs to reverse prepulse inhibition deficits caused by lesions of the brain 5-HT system in rats. In male Sprague-Dawley rats, selected parts of the brain 5-HT systems were lesioned by micro-injection of the 5-HT neurotoxin 5,7-dihydroxytryptamine into the dorsal raphe nucleus (DRN) or median raphe nucleus (MRN). The effects of antipsychotic drugs on lesion-induced changes in prepulse inhibition were examined 2 weeks after the surgery. There was significant disruption of prepulse inhibition in the MRN-lesioned group compared to sham-operated controls. This deficiency in prepulse inhibition was restored by clozapine (1 and 5 mg kg(-1)) treatment, and by treatment with a relatively high dose of haloperidol (0.25 mg kg(-1)). There was no significant effect of the DRN lesions on prepulse inhibition compared with sham-operated controls. These results indicate that 5-HT depletion in MRN-innervated brain structures leads to disruption of prepulse inhibition. Treatment with both antipsychotic drugs, haloperidol and clozapine, significantly increased prepulse inhibition in these animals back to the level seen in sham-operated controls. The present findings highlight the importance of the 5-HT systems in cognitive models of schizophrenia.  相似文献   

19.
Lesions of the entorhinal cortex are now an accepted model for mimicking some of the neuropathological aspects of schizophrenia, since evidence has accumulated for the presence of cytoarchitectonic abnormalities within this cortex in schizophrenic patients. The present study was undertaken to address the functional consequences of bilateral entorhinal cortex lesions on antipsychotic-induced c-fos expression. After a 15-day recovery period, the effect of a typical antipsychotic, haloperidol (1 mg/kg), on c-fos mRNA expression was compared with that of an atypical one, olanzapine (10 mg/kg), in both sham-lesioned and entorhinal cortex-lesioned rats. In sham-lesioned rats, both haloperidol and olanzapine induced c-fos expression in the caudal cingulate cortex, dorsomedial and dorsolateral caudate-putamen, nucleus accumbens core and shell and lateral septum. In addition, olanzapine, but not haloperidol, increased c-fos expression within the central amygdala. In entorhinal cortex-lesioned rats, haloperidol-induced c-fos expression was markedly reduced in most areas. In contrast, the olanzapine-induced c-fos expression was not altered in the nucleus accumbens shell and lateral septum of the lesioned rats. These findings reveal that entorhinal cortex lesions affect c-fos expression in a compound- and regional-dependent manner. Our results further emphasize the importance of the exploration of the mechanisms of action of antipsychotic drugs in the context of an associated cortical pathology.  相似文献   

20.
The study aimed to evaluate the effect of acute and 14-day haloperidol treatment (2 mg/kg ip) on release of neuropeptide Y-like immunoreactivity (NPY-LI) in non-anesthetized, freely moving rats by means of push-pull perfusion of the lateral cerebral ventricle. Twenty four hours after a single haloperidol injection NPY-LI release decreased by 15% (p < 0.05). No alterations were detected after 14-day haloperidol treatment. The study has confirmed that haloperidol alters the activity of neuropeptide Y system in the rat brain and suggested that acute haloperidol treatment inhibits the activity of the neuropeptide Y system at least in some brain structures surrounding the cerebral ventricles. The presented results have been discussed in view of our previous findings describing the haloperidol-induced changes in NPY-LI and NPY mRNA levels in the rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号