首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated whether intestinal lipoprotein overproduction in a fructose-fed, insulin-resistant hamster model is prevented with insulin sensitization. Syrian Golden hamsters were fed either chow, 60% fructose for 5 wk, chow for 5 wk with the insulin sensitizer rosiglitazone added for the last 3 wk, or 60% fructose plus rosiglitazone. In vivo Triton studies showed a 2- to 3-fold increase in the large (Svedberg unit > 400) and smaller (Sf 100-400) triglyceride-rich lipoprotein particle apolipoprotein B48 (apoB48) but not triglyceride secretion with fructose feeding in the fasted state (P < 0.01) and partial normalization with rosiglitazone in fructose-fed hamsters. Ex vivo pulse-chase labeling of enterocytes confirmed the oversecretion of apoB48 lipoproteins with fructose feeding. Intestinal lipoprotein oversecretion was associated with increased expression of microsomal triglyceride transfer protein expression. With rosiglitazone treatment of fructose-fed hamsters, there was approximately 50% reduction in apoB48 secretion from primary cultured enterocytes and amelioration of the elevated microsomal triglyceride transfer protein mass and activity in fructose-fed hamsters. In contrast, in the postprandial state, the major differences between nutritional and drug intervention protocols were evident in triglyceride-rich lipoprotein triglyceride and not apoB48 secretion rates. The data suggest that intestinal lipoprotein overproduction can be ameliorated with the insulin sensitizer rosiglitazone.  相似文献   

2.
A novel animal model of insulin resistance, the fructose-fed Syrian golden hamster, was employed to investigate the efficacy and mechanisms of action of rosuvastatin, a HMG-CoA reductase inhibitor, in ameliorating metabolic dyslipidemia in insulin-resistant states. Fructose feeding for a 2-week period induced insulin resistance and a significant increase in hepatic secretion of VLDL. This was followed by a fructose-enriched diet with or without 10 mg/kg rosuvastatin for 14 days. Fructose feeding in the first 2 weeks caused a significant increase in plasma total cholesterol and triglyceride in both groups (n=6, p<0.001). However, there was a significant decline (30%, n=8, p<0.05) in plasma triglyceride levels following rosuvastatin feeding (10 mg/kg). A significant decrease (n=6, p<0.05) was also observed in VLDL-apoB production in hepatocytes isolated from drug-treated hamsters, together with an increased apoB degradation (n=6, p<0.05). Similar results were obtained in parallel cell culture experiments in which primary hepatocytes were first isolated from chow-fed hamsters, and then treated in vitro with 15 microM rosuvastatin for 18 h. Rosuvastatin at 5 microM caused a substantial reduction in synthesis of unesterified cholesterol and cholesterol ester (98 and 25%, n=9, p<0.01 or p<0.05) and secretion of newly synthesized unesterified cholesterol, cholesterol ester, and triglyceride (95, 42, and 60% reduction, respectively, n=9, p<0.01 or p<0.05). This concentration of rosuvastatin also caused a significant reduction (75% decrease, n=4, p<0.01) in the extracellular secretion of VLDL-apoB100, accompanied by a significant increase in the intracellular degradation of apoB100. There was a 12% reduction (not significant, p>0.05) in hepatic MTP and no changes in ER-60 (a chaperone involved in apoB degradation) protein levels. Taken together, these data suggest that the assembly and secretion of VLDL particles in hamster hepatocytes can be acutely inhibited by rosuvastatin in a process involving enhanced apoB degradation. This appears to lead to a significant amelioration of hepatic VLDL-apoB overproduction observed in the fructose-fed, insulin-resistant hamster model.  相似文献   

3.
We have recently shown that the fructose-fed Syrian Golden hamster, a non-diabetic animal model of nutritionally-induced insulin resistance and hyperlipidemia, is characterized by intestinal lipoprotein overproduction. In order to determine whether intestinal lipoprotein overproduction is specific to fructose feeding or applies generally to other models of insulin resistance, we studied intestinal lipoprotein production and the response to insulin sensitization in the high fat-fed Syrian Golden hamster. Syrian Golden Hamsters were fed either (1). chow (CHOW), (2). 60% fat (FAT) or (3). 60% fat with rosiglitazone, 20 micromol/kg per day (FAT + RSG) for 5 weeks. Euglycemic hyperinsulinemic clamp studies confirmed that FAT is a good model of insulin resistance and rosiglitazone treatment resulted in a significant improvement in insulin sensitivity. In addition, there was a significant approx. two- to four-fold increase in intestinal apoB48 particle production in FAT. Rosiglitazone treatment resulted in partial normalization of apoB48-containing intestinal lipoprotein secretion. In summary: (1). the fat-fed Syrian Golden Hamster is a good model of nutritionally-induced insulin resistance, (2). intestinal overproduction of lipoproteins appear to contribute to the hypertriglyceridemia of insulin resistance in this animal model and (3). insulin sensitization with rosiglitazone ameliorates intestinal apoB48 particle overproduction in the fat-fed Syrian Golden Hamster. These data further support the link between insulin resistance and intestinal lipoprotein overproduction.  相似文献   

4.
An important complication of insulin-resistant states, such as obesity and type 2 diabetes, is an atherogenic dyslipidemia profile characterized by hypertriglyceridemia, low plasma high-density lipoproteins (HDL) cholesterol and a small, dense low-density lipoprotein (LDL) particle profile. The physiological basis of this metabolic dyslipidemia appears to be hepatic overproduction of apoB-containing very low-density lipoprotein (VLDL) particles. This has focused attention on the mechanisms that regulate VLDL secretion in insulin-resistant states. Recent studies in animal models of insulin resistance, particularly the fructose-fed hamster, have enhanced our understanding of these mechanisms, and certain key factors have recently been identified that play important roles in hepatic insulin resistance and dysregulation of the VLDL secretory process. This review focuses on these recent developments as well as on the hypothesis that an interaction between enhanced flux of free fatty acids from peripheral tissues to liver, chronic up-regulation of de novo lipogenesis by hyperinsulinemia and attenuated insulin signaling in the liver may be critical to the VLDL overproduction state observed in insulin resistance. It should be noted that the focus of this review is on molecular mechanisms of the hypertriglyceridemic state associated with insulin resistance and not that observed in association with insulin deficiency (e.g., in streptozotocin-treated animals), which appears to have a different etiology and is related to a catabolic defect rather than secretory overproduction of triglyceride-rich lipoproteins.  相似文献   

5.
Statin-treatment of fructose-fed/insulin resistant hamsters was recently shown to ameliorate metabolic dyslipidemia and hepatic VLDL overproduction. Here, we provide evidence that rosuvastatin treatment of insulin resistant hamsters can induce improvements in hepatic and whole body insulin sensitivity. Treatment with 10 mg/kg/day rosuvastatin for 10 days significantly reduced fasting insulin (−59%) and triglyceride (−50%) levels in fructose-fed hamsters (p < 0.05). Following an intraperitoneal (IP) glucose challenge, rosuvastatin-treated hamsters exhibited enhanced glucose clearance compared to untreated hamsters maintained on the high-fructose diet (area under curve (AUC) = 1772 ± 223 mM min vs. 2413 ± 253 mM min, respectively; p < 0.002) with a significant reduction in 2 h post-challenge glucose (n = 5, p < 0.02). Rosuvastatin-treatment also significantly improved sensitivity to an IP insulin challenge (AUC = 314 ± 39 mM min vs. 195 ± 22 mM min for rosuvastatin-treated and fructose-fed hamsters, respectively; p < 0.04, n = 3). At the molecular level, significant increases in tyrosine-phosphorylation of the hepatic insulin receptor and IRS-1 were observed for rosuvastatin-treated hamsters (+37% and +58%, respectively) compared to fructose-fed controls following an intravenous (IV) bolus of insulin (p < 0.05). Increases in insulin receptor and IRS-1 phosphorylation were also observed in muscle and adipose tissue. Analysis of hepatic Akt phosphorylation and mass revealed a small (25%) increase in serine phosphorylation of Akt with no significant change in Akt mass, although serine-phosphorylation and mass of Akt2 were significantly increased (+32%, p = 0.03, and +42%, p = 0.01, respectively). Interestingly, expression of PTP-1B, a key negative regulator of insulin signaling, showed a non-significant trend toward reduction in liver and was significantly reduced in adipose tissue (−20% and −37%, respectively). Taken together, these data suggest that statin-treatment increases whole body and peripheral tissue insulin sensitivity via improved cellular insulin signal transduction.  相似文献   

6.
Although angiotensin II receptor blockers (ARBs) have been recommended as a first line of anti-hypertensive agents in patients with diabetes, it remains unclear whether ARBs have a favorable effect on insulin action and triglyceride (TG) metabolism, both of which are impaired in type 2 diabetes. In this study we addressed this issue by investigating how a newly developed ARB, olmesartan medoxomil, influenced insulin sensitivity and TG metabolism in fructose-fed rats, a representative animal model of insulin resistance. Olmesartan was administrated as a 0.01% drinking solution ad libitum to rats either fed normal chow or fructose-enriched chow (60%) for 21 days. Olmesartan treatment markedly decreased both systolic and diastolic blood pressure in both chow-fed and fructose-fed animals. The area under the curve of insulin (AUCI) was substantially greater in fructose-fed rats in the intravenous glucose tolerance test, and olmesartan treatment significantly reduced the AUCI. Olmesartan significantly improved the insulin sensitivity index in fructose-fed rats assessed by Bergman's minimal model without affecting insulin-independent glucose disposal. Olmesartan significantly decreased plasma TG and non-esterified fatty acid levels in fructose-fed rats without affecting lipoprotein lipase mass. The TG secretion rate determined by the triton WR1339 technique was two-fold higher in fructose-fed rats, but olmesartan restored the TG secretion to a normal rate. Olmesartan did not affect plasma parameters, insulin sensitivity or TG metabolism in chow-fed rats. Olmesartan ameliorates insulin resistance and overproduction of TG in fructose-fed rats, and these effects appear to be independent of its hypotensive action.  相似文献   

7.
Nonalcoholic fatty liver disease (NAFLD) and insulin resistance have recently been found to be associated with increased plasma concentrations of apolipoprotein CIII (APOC3) in humans carrying single nucleotide polymorphisms within the insulin response element of the APOC3 gene. To examine whether increased expression of APOC3 would predispose mice to NAFLD and hepatic insulin resistance, human APOC3 overexpressing (ApoC3Tg) mice were metabolically phenotyped following either a regular chow or high-fat diet (HFD). After HFD feeding, ApoC3Tg mice had increased hepatic triglyceride accumulation, which was associated with cellular ballooning and inflammatory changes. ApoC3Tg mice also manifested severe hepatic insulin resistance assessed by a hyperinsulinemic-euglycemic clamp, which could mostly be attributed to increased hepatic diacylglycerol content, protein kinase C-? activation, and decreased insulin-stimulated Akt2 activity. Increased hepatic triglyceride content in the HFD-fed ApoC3Tg mice could be attributed to a ≈ 70% increase in hepatic triglyceride uptake and ≈ 50% reduction hepatic triglyceride secretion. CONCLUSION: These data demonstrate that increase plasma APOC3 concentrations predispose mice to diet-induced NAFLD and hepatic insulin resistance.  相似文献   

8.
Previous results from our laboratory demonstrated that chronic administration of fructose to normal rats led to both hyperinsulinemia and in vivo insulin resistance. To localize the major tissue site of insulin resistance in fructose-fed animals, we compared glucose uptake by perfused hindlimb skeletal muscle and liver from rats fed either a 60% fructose diet or laboratory chow. Glucose uptake by perfused muscle from chow and fructose-fed rats was comparable at perfusate insulin levels of 0 μU/ml (15.2 versus 15.5 μl/min/g muscle), 100 μU/ml (18.3 versus 19.8), and >500 μU/ml (35.5 versus 33.4). In contrast, glucose outflow from livers of fructose-fed rats was significantly greater (p < .02) than chow-fed animals perfused in the absence of added insulin (52.1 versus 36.5 μmol/g). Furthermore, the ability of insulin to suppress glucose outflow was less in livers from fructose-fed rats at perfusate insulin levels of 165 μU/ml (13.2 versus 41.4% as well as at insulin concentration >900 μU/ml, (32.5% versus 62.2%). These findings suggest that the insulin resistance resulting from chronic fructose feeding is due to the diminished ability of insulin to suppress hepatic glucose output, and not to a decrease in insulin-stimulated glucose uptake by muscle.  相似文献   

9.
Several studies have demonstrated an association in humans between plasma levels or production capacity of the antiinflammatory cytokine IL-10 and insulin sensitivity. The aim of our study was to investigate the protective role of endogenous IL-10 availability in the development of diet-induced insulin resistance. We compared parameters of glucose and lipid metabolism between IL-10(-/-) mice and wild-type (wt) mice fed a high-fat diet for 6 wk. This diet has previously been shown to induce steatosis and insulin resistance. After 6 wk on the high-fat diet, no differences in body weight, basal metabolism (measured by indirect calorimetry), or plasma levels of glucose, triglycerides, or cholesterol were observed between IL-10(-/-) and wt mice. Nonetheless, in IL-10(-/-) mice, plasma free fatty acid levels were 75% increased compared with wt mice after overnight fasting (P < 0.05). In addition, hepatic triglyceride content was 54% increased in IL-10(-/-) mice (P < 0.05). During a hyperinsulinemic euglycemic clamp, no differences were observed in whole-body or hepatic insulin sensitivity between both groups. We conclude that basal IL-10 production protects against hepatic steatosis but does not improve hepatic or whole-body insulin sensitivity, during high-fat feeding.  相似文献   

10.
Ezetimibe inhibits intestinal cholesterol absorption, thereby reducing serum cholesterol. Recent studies suggest that ezetimibe affects liver steatosis and insulin resistance. We investigated the impact of ezetimibe on insulin sensitivity and glucose metabolism in C57BL/6 mice. We analyzed 4 mouse groups fed the following diets: normal chow (4% fat) for 12 weeks, normal chow for 10 weeks followed by normal chow plus ezetimibe for 2 weeks, high-fat chow (32% fat) for 12 weeks, and high-fat chow for 10 weeks followed by high-fat chow plus ezetimibe for 2 weeks. In the normal chow + ezetimibe group, ezetimibe had no impact on body weight, fat mass, lipid metabolism, liver steatosis, glucose tolerance, or insulin sensitivity. In the high-fat chow + ezetimibe group, ezetimibe had no impact on body weight or fat mass but significantly decreased serum low-density lipoprotein cholesterol, triglyceride, and glutamate pyruvate transaminase levels; liver weight; hepatic triglyceride content; and hepatic cholesterol content and increased the hepatic total bile acid content. In association with increases in IRS-2 and Akt phosphorylation, ezetimibe ameliorated hepatic insulin resistance in the high-fat chow + ezetimibe group, but had no effect on insulin sensitivity in primary cultured hepatocytes. A DNA microarray and Taqman polymerase chain reaction revealed that ezetimibe up-regulated hepatic SREBP2 and SHP expression and down-regulated hepatic SREBP-1c expression. SHP silencing mainly in the liver worsened insulin resistance, and ezetimibe protected against insulin resistance induced by down-regulation of SHP. Ezetimibe down-regulated SREBP-1c in the liver and reversed hepatic insulin resistance in mice fed a high-fat diet.  相似文献   

11.
Previous studies have shown that energy restriction (ER) or low-fat (LF) diets have beneficial effects on high-fat (HF) diet-induced obesity and non-insulin-dependent diabetes. However, comparison between ER and low-fat diet regarding the effect on insulin resistance and lipid metabolism has not been reported. After inducing insulin resistance by HF feeding for 20 weeks, male C57BL/6J mice were divided into 3 groups. For a period of 12 weeks, group 1 received energy restriction (70% of ad libitum, HF diet), group 2 LF diet, and group 3 maintained on HF diet. Body weight and energy intake were reduced equally in ER and LF feeding. Plasma insulin levels were decreased on LF feeding, but were unchanged on ER, when compared with HF feeding. Glucose tolerance and insulin sensitivity tests revealed that insulin sensitivity was improved more efficiently by LF feeding than on ER. Plasma triglyceride (TG) levels were lower on LF feeding compared with ER and HF feeding. Measurement of hepatic very low-density lipoprotein (VLDL)-TG production revealed a lower production after LF diet feeding or ER compared with HF diet feeding. In summary, our data show that LF diet has a higher potential than ER to improve HF diet-induced insulin resistance, and that there is an association between improvement of insulin resistance and decrease of TG levels.  相似文献   

12.
It remains open to debate whether hyperinsulinemia leads to the development of hypertension. We addressed this issue by investigating the effect of chronic insulin infusion on blood pressure and related parameters in hypertensive fructose-fed rats. Rats were given either normal chow or a fructose-rich diet, and insulin or saline was infused through mini-pumps in the same animals for 14 days. The chronic insulin infusion exerted no effect on the blood pressure of the chow-fed rats. Fructose feeding increased the blood pressure and levels of insulin, triglyceride and fatty acid. Insulin infusion augmented the hyperinsulinemia but normalized the blood pressure and plasma lipids. Plasma angiotensin II was elevated in the fructose-fed rats, while insulin infusion left it unchanged. The expression of angiotensin II type 1 receptor (AT1R) mRNA was doubled in both the aorta and epididymal fat of the fructose-fed rats, while that of angiotensin II type 2 receptor (AT2R) was unaltered. Insulin infusion completely rectified the over-expression of the AT1R gene. Our findings indicate that chronic insulin infusion exacerbates hyperinsulinemia while normalizing blood pressure and the gene expressions of AT1R in insulin-resistant fructose-fed rats, suggesting that endogenous hyperinsulinemia caused by insulin resistance is associated with the development of hypertension, whereas exogenous hyperinsulinemia attenuates hypertension probably due to amelioration of insulin resistance.  相似文献   

13.
OBJECTIVES: To examine the relationship between insulin resistance (IR) and the reduction of oxidative stress in vivo by the statin atorvastatin. METHODS: This study included 40 patients with hypercholesterolemia without a history of diabetes mellitus (21 males, 19 females, mean age 62 +/- 11 years). Homeostasis assessment insulin resistance (HOMA-IR) was used as a marker for insulin resistance. The patients were divided into two groups [IR group (n = 24) and non-IR group (n = 16), using the cut off level of 1.73]. Urinary 8-iso-prostaglandin F2alpha (U-8-iso) excretion was used as an oxidative stress marker. The subjects were treated with atorvastatin (10 mg/day) for 12 weeks. RESULTS: The IR group had significantly higher U-8-iso levels than the non-IR group before atorvastatin administration (211 +/- 112 vs 137 +/- 33 pg/mg Cr, p = 0.01). Low-density lipoprotein cholesterol, triglyceride, and 8-iso levels were significantly reduced in both groups after 12 weeks, U-8-iso levels were significantly higher in the IR group than the non-IR group (178 +/- 61 vs 110 +/- 38 pg/mg Cr, p = 0.003), and HOMA-IR showed no significant change. Multiple regression analysis after 12 weeks showed that HOMA-IR and triglyceride levels were independent variables for U-8-iso levels (standard regression coefficient = 0.60, 0.59, p < 0.0001, p = 0.0002). CONCLUSIONS: Insulin resistance is important in the occurrence of oxidative stress in patients with hypercholesterolemia. Since atorvastatin does not reduce insulin resistance, further therapy to reduce insulin resistance is necessary for early prevention of cardiovascular events during atorvastatin treatment.  相似文献   

14.
Hypertriglyceridemia is associated insulin resistance in obese people. Recently identified apolipoprotein A5 (apoA5) is involved in triglyceride (TG) metabolism. This study was to investigate the role of apoA5 in insulin resistance-related hypertriglyceridemia in obesity. 682 participants including 340 non-obese individuals and 342 obese individuals were recruited in this study. Plasma apoA5 levels were measured. The insulin resistance in participants was assessed by homeostasis model assessment of insulin resistance (HOMA-IR). An insulin resistant and hypertriglyceridemic rat model was established by high-fructose diet with obese Zucker rats as positive controls. Besides, two insulin resistant models in vitro were induced by insulin and tumor necrosis factor-α (TNFα) in HepG2 cells. Obese participants had lower plasma apoA5 levels. Plasma apoA5 levels were inversely correlated with TG, body mass index and HOMA-IR in humans. Furthermore, hepatic and plasma apoA5 reduced in fructose-fed rats whereas no significant changes of apoA5 were observed in obese Zucker rats. In addition, treatment of HepG2 cells with insulin and TNFα decreased apoA5 expression and increased TG content. Thus, decreased apolipoprotein A5 is implicated in insulin resistance-related hypertriglyceridemia in obesity.  相似文献   

15.
Type 2 diabetes mellitus is frequently accompanied by fatty liver/nonalcoholic fatty liver disease. Hence, accumulation of lipids in the liver is considered to be one of the risk factors for insulin resistance and metabolic syndrome. Ursodeoxycholic acid (UDCA) is widely used for the treatment of liver dysfunction. We investigated the therapeutic effects of UDCA on type 2 diabetes mellitus exacerbating hepatic steatosis and the underlying mechanisms of its action using KK-A(y) mice fed a high-fat diet. KK-A(y) mice were prefed a high-fat diet; and 50, 150, and 450 mg/kg of UDCA was orally administered for 2 or 3 weeks. Administration of UDCA decreased fasting hyperglycemia and hyperinsulinemia. Hyperinsulinemic-euglycemic clamp analyses showed that UDCA improved hepatic (but not peripheral) insulin resistance. Hepatic triglyceride and cholesterol contents were significantly reduced by treatment with UDCA, although the genes involved in the synthesis of fatty acids and cholesterol, including fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, were upregulated. Fecal levels of bile acids, neutral sterols, fatty acids, and phospholipids were significantly increased by UDCA treatment. The gene expression levels and protein phosphorylation levels of endoplasmic reticulum stress markers were not changed by UDCA treatment. These results indicate that UDCA ameliorates hyperglycemia and hyperinsulinemia by improving hepatic insulin resistance and steatosis in high-fat diet-fed KK-A(y) mice. Reduction of hepatic lipids might be due to their excretion in feces, followed by enhanced utilization of glucose for the synthesis of fatty acids and cholesterol. Ursodeoxycholic acid should be effective for the treatment of type 2 diabetes mellitus accompanying hepatic steatosis.  相似文献   

16.
Insulin resistance is strongly associated with metabolic dyslipidemia, which is largely a postprandial phenomenon. Though previously regarded as a consequence of delayed triglyceride-rich lipoprotein clearance, emerging evidence present intestinal overproduction of apoB-48-containing lipoproteins as a major contributor to postprandial dyslipidemia. The majority of mechanistic information is however derived from animal models, namely the fructose-fed Syrian Golden hamster, and extension to human studies to date has been limited. Work in our laboratory has established that aberrant insulin signalling exists in the enterocyte, and that inflammation appears to induce intestinal insulin resistance. The intestine is a major site of lipid synthesis in the body, and upregulated intestinal de novo lipogenesis and cholesterogenesis have been noted in insulin resistant and diabetic states. There is also enhanced dietary lipid absorption attributable to changes in ABCG5/8, NPC1L1, CD36/FAT, and FATP4. Proteins that are involved in chylomicron assembly and secretion, including MTP, MGAT, DGAT, apoAI-V, and Sar1 GTPase, show evidence of increased expression and activity levels. Increased circulating free fatty acids, typically observed in insulin resistant states, may serve to deliver lipid substrates to the intestine for enhanced chylomicron assembly and secretion. To compound the dysregulation of intestinal lipid metabolism, there are changes in the secretion of gut-derived peptides, which include GLP-1, GLP-2, and GIP. Thus, accumulating evidence presents intestinal lipoprotein secretion as a highly regulated process that is sensitive to perturbations in whole body energy homeostasis, and is severely perturbed in insulin resistant states.  相似文献   

17.
目的探讨n-3脂肪酸对饱和脂肪酸诱导的大鼠胰岛素抵抗(IR)肝脏和骨骼肌胰岛素受体(InsR)及葡萄糖转运蛋白4(GluT-4)的作用。方法45只雄性Wistar大鼠分为对照组、高脂组和n-3脂肪酸组。各组饲养11周后测定有关指标。结果(1)与对照组比较,高脂组大鼠体内脂肪相对含量、空腹血糖(FBG)、血清胰岛素(Ins)、甘油三酯(TG)、胆固醇(TC)、胰岛素抵抗指数(IRI)、肝脏TC和TG含量、肌肉中TG含量均显著升高;而肌肉组织中TC含量无显著改变,高脂组肝脏和肌肉InsR含量、肌肉Glut-4蛋白的相对含量均明显下降。(2)n-3脂肪酸组体内脂肪相对含量、FBG、Ins、TG、TC、IRI、肝脏TC和TG含量、肌肉组织中TG含量较高脂组均明显降低,肝脏InsR含量和肌肉GluT-4较高脂组明显升高。结论适量n-3脂肪酸代替饱和脂肪酸的一部分热量后,可增加IR大鼠肝脏InsR含量和肌肉GluT-4蛋白表达。  相似文献   

18.
用雄性Sprague-Dawley大鼠建立胰岛素抵抗高血压大鼠模型,探讨胰岛素抵抗和血清瘦素水平的变化对血脂的影响.采用高果糖饲料喂雄性Sprague-Dawley大鼠,观察其血压、胰岛素、瘦素和血脂水平的变化,用稳态模型评估胰岛素抵抗,并对上述指标进行相关性分析.结果发现,喂养8周后,与对照组相比,模型组血压、血清胰岛素和胰岛素抵抗明显升高,血清瘦素、总胆固醇和甘油三酯水平升高,高密度脂蛋白降低.模型组中,胰岛素抵抗与血压、血清瘦素和甘油三酯呈显著正相关,与高密度脂蛋白呈显著负相关;血清瘦素与血压、血清胰岛素、胰岛素抵抗和甘油三酯呈显著正相关.结果提示,高果糖饲料可诱导雄性Sprague-Dawley大鼠发生胰岛素抵抗、高血压、高瘦素血症和脂代谢紊乱,胰岛素抵抗和瘦素对脂代谢有广泛影响.  相似文献   

19.
《Atherosclerosis》2014,232(2):390-396
ObjectiveIt is generally assumed that hepatic inflammation in obesity is linked to the pathogenesis of insulin resistance. Several recent studies have shed doubt on this view, which questions the causality of this association. This study focuses on Kupffer cell-mediated hepatic inflammation as a possible driver of insulin resistance in the absence and presence of obesity.MethodsWe used male mice deficient for the low-density lipoprotein receptor (Ldlr−/−) and susceptible to cholesterol-induced hepatic inflammation. Whole body and hepatic insulin resistance was measured in mice fed 4 diets for 2 and 15 weeks, i.e., chow, high-fat (HF), HF-cholesterol (HFC; 0.2% cholesterol) and HF without cholesterol (HFnC). Biochemical parameters in plasma and liver were measured and inflammation was determined using immunohistochemistry and RT-PCR.ResultsAt 2 weeks, we did not find significant metabolic effects in either diet group, except for the mice fed a HFC diet which showed pronounced hepatic inflammation (p < 0.05) but normal insulin sensitivity. At 15 weeks, a significant increase in insulin levels, HOMA-IR, and hepatic insulin resistance was observed in mice fed a HFC, HFnC, and HF diet compared to chow-fed mice (p < 0.05). Regardless of the level of hepatic inflammation (HFC > HF, HFnC; p < 0.05) insulin resistance in mice fed HFC was no worse compared to mice on a HFnC and HF diet.ConclusionThese data show that cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male Ldlr−/− mice. This study suggests that Kupffer cell-driven hepatic inflammation is a consequence, not a cause, of metabolic dysfunction in obesity.  相似文献   

20.
BackgroundFeeding a high-fructose diet induces hypertension and insulin-resistance in Sprague-Dawley rats.MethodsTo investigate whether insulin receptors contribute to abnormal glucose metabolism and whether their regulation is differentially regulated in different tissues, we evaluated the glycemic and insulinemic response to an oral glucose load, insulin receptor binding, and insulin receptor messengerRNA (mRNA) levels in tissues of rats that were fed either standard rat chow or a diet containing 66% fructose for 2 weeks.ResultsBlood pressure and plasma triglycerides increased significantly in the fructose-fed rats, whereas body weight, fasting plasma glucose, and plasma insulin did not differ significantly from controls. Plasma glucose and insulin responses to oral glucose were significantly greater in fructose-fed than in control rats. Insulin receptor-binding characteristics were determined by an in situ autoradiographic technique associated with computerized microdensitometry. The insulin receptor number was significantly lower in both skeletal muscle and liver of fructose-fed rats as compared to controls, whereas no difference was observed in the kidney. No significant differences were found in binding affinity. Insulin receptor mRNA levels were determined by slot-blot hybridization with a cRNA probe encoding the 5′ end of the rat insulin receptor cDNA. Consistent with binding data, mRNA levels were significantly lower in skeletal muscle and liver of fructose-fed rats as compared to controls, but not in the kidney.ConclusionsDecreased number of insulin receptors occurring at the level of gene expression is present in skeletal muscle and liver of fructose-fed rats and might contribute to insulin resistance in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号