首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies, focused on the hypothalamus, have recently implicated endocannabinoids (EC) as orexigenic factors in the central control of food intake. However, the EC system is also highly expressed in the hindbrain autonomic integrator of food intake regulation, i.e. the dorsal vagal complex (DVC). Previous studies have shown that exogenous cannabinoids, by acting on cannabinoid 1 receptor (CB1R), suppress GABAergic and glutamatergic neuronal transmission in adult rat dorsal motor nucleus of the vagus nerve (DMNV), the principal efferent compartment of the DVC. However, no endogenous release of EC has been demonstrated in DVC to date. Using patch-clamp techniques on mouse coronal brainstem slices, we confirmed that both inhibitory and excitatory neurotransmission were depressed by WIN 55,212-2, a CB1R agonist. We demonstrated that DMNV neurons exhibited a rapid and reversible depolarization-induced suppression of electrically evoked GABAergic IPSCs (eIPSCs), classically known as DSI (depolarization-induced suppression of inhibition), while spontaneous or miniature IPSCs activity remained unaltered. Further, no depolarization-induced suppression of glutamatergic eEPSCs (DSE) occurred. Our results indicate that DSI was blocked by SR141716A (Rimonabant), a selective CB1R antagonist, and was dependent on calcium elevation in DMNV neurons, suggesting a release of EC in the DVC. Moreover, the analysis of the paired-pulse ratio, of the coefficient of variation and of the failure rate of eIPSCs support the fact that EC-mediated suppression of GABAergic inhibition takes place at the presynaptic level. These results show for the first time that DMNV neurons release EC in an activity-dependent manner, which in turn differentially regulates their inhibitory and excitatory synaptic inputs.  相似文献   

2.
Dopamine modulates the function of glutamatergic synapses in prefrontal cortex, modifying synaptic strength and influencing synaptic plasticity. Here we have explored the ability of endogenous dopamine, present in slices containing the prefrontal cortex, to influence excitatory synaptic transmission. We found that 10 microM amphetamine, which releases and blocks the reuptake of dopamine from dopaminergic nerve terminals, significantly depressed excitatory field potentials recorded in layer V during stimulation of layer II/III. The depression was reversible, dose dependent and correlated with increased paired pulse facilitation, suggesting that amphetamine inhibits the presynaptic release of glutamate. Pharmacological dissection of this response showed that dopamine D1 receptors are likely to mediate the effects of endogenous dopamine on excitatory synaptic transmission, with little effect of alpha2 adrenergic receptors, serotonin receptors, or D2 dopamine receptors. The time to peak amphetamine effect was longer than expected based on diffusion, suggesting that to raise dopamine levels in brain slices amphetamine may need to be transported into the presynaptic terminals. These results provide evidence that D1/D5 receptors depress glutamate release at this cortical synapse, and suggest that amphetamine will have profound and persistent effects on PFC functioning in vivo. Dysregulation of this mechanism could contribute to the impairment in cognitive performance associated with abnormal PFC dopamine receptor activation.  相似文献   

3.
1. Synapse plasticity, defined as an activity dependent change in the strength of synapses, was first described in 1973 and, since those seminal experiments were reported, the field of synapse plasticity has expanded into one of the most widely studied areas in neuroscience. 2. Significant effort has been focused on determining the expression mechanisms of the changes in synapse strength. The present review will focus on the changes in the post-synaptic expression of glutamate receptors that have been shown to occur during the expression of synapse plasticity. 3. Biochemical studies of excitatory synapses in the central nervous system have revealed a high density of proteins concentrated at dendritic spines. These proteins appear to play critical roles in synaptic structure, plasticity and in trafficking receptors to synapses. 4. There is growing evidence that synapse plasticity could be the cellular basis of certain forms of learning and memory. Determining the behavioural correlates of this fundamental synaptic process will continue to be addressed in current and future research.  相似文献   

4.
Cannabinoids inhibit excitatory synaptic transmission between hippocampal neurons in culture. Delta9-tetrahydrocannabinol (THC), the principal psychoactive component in marijuana, acts as a partial agonist at these synapses. Thus, THC inhibited but did not block synaptic transmission when applied alone and, when applied in combination with WIN552212-2, it partially reversed the effects of this full agonist. Here, we address the question of how THC might interact with endocannabinoid signaling. Reducing the extracellular Mg2+ concentration to 0.1 mM elicited a repetitive pattern of glutamatergic synaptic activity that produced intracellular Ca2+ concentration spikes that were measured by indo-1-based microfluorimetry. The endocannabinoid, 2-arachidonyl glycerol (2-AG) produced a concentration-dependent and complete inhibition of spike frequency with an EC50 of 63 +/- 13 nM. 2-AG (1 microM) inhibition of spiking was blocked by SR141716A (1 microM). THC (100 nM) antagonized the actions of 2-AG producing a parallel shift in the concentration-response relationship for 2-AG (EC50 of 1430 +/- 254 nM). The attenuation of 2-AG (1 microM) inhibition of synaptic activity by THC was concentration-dependent with an IC50 of 42 +/- 9 nM. These results demonstrate that THC can antagonize endocannabinoid signaling. Thus, the effects of THC on synaptic transmission are predicted to depend on the level of endocannabinoid tone.  相似文献   

5.
Luo YY  Zhu DM  Ruan DY 《Toxicology》2011,289(1):45-51
Chronic lead exposure causes a variety of impairments in learning and memory and cognitive function. Synaptic plasticity in hippocampus is an extensively studied cellular model of learning and memory, which includes long-term potentiation (LTP) and long-term depression (LTD) in two forms. Depotentiation (DP) is another form of synaptic plasticity. Previous studies show that chronic lead exposure can damage the induction of LTP/LTD in hippocampal CA1 and dentate gyrus (DG) areas. In the present study, we investigated the repair and protection on lead-caused synaptic plasticity impairment by galantamine, using field potential recording on chronic lead exposure rats. The results showed that chronic lead exposure impaired LTP/DP induction in DG area of the hippocampus, and galantamine caused a significant increase on the amplitudes of LTP/DP of lead-exposed rats, but only a small increase in non-exposed group. These results suggest that galantamine could reverse the lead-induced impairments of synaptic plasticity in rats and might be an effective medicine to cure the cognitive deficits induced by lead.  相似文献   

6.
Wu J  Rowan MJ  Anwyl R 《Neuropharmacology》2004,46(3):311-317
The induction of long-term potentiation (LTP) under conditions of blockade of the N-methyl-D-aspartate receptor (NMDAR) was studied in the medial perforant path to granule cell synapse in the dentate gyrus. A small amplitude NMDAR-independent potentiation was induced by a single brief high frequency stimulation (HFS), and a summated larger LTP was induced by repeated spaced HFS. The NMDAR-independent LTP was mediated by activation of group II mGluR as it was inhibited by the group II antagonists EGLU and also low concentrations of LY341495, but not the group I mGluR antagonist MPEP. Perfusion of the group II mGluR agonist DCG-IV induced NMDAR-independent LTP in media containing an NMDAR antagonist. The NMDAR-independent LTP induced by HFS was mediated via activation of p42/44 MAP kinase as it was blocked by the selective inhibitor PD98059.  相似文献   

7.
Anandamide and 2-arachidonoyl glycerol, referred to as endocannabinoids (eCBs), are the endogenous agonists for the cannabinoid receptor type 1 (CB1). Several pieces of evidence support a role for eCBs in the attenuation of anxiety-related behaviours, although the precise mechanism has remained uncertain. The fatty acid amid hydrolase (FAAH), an enzyme responsible for the degradation of eCBs, has emerged as a promising target for anxiety-related disorders, since FAAH inhibitors are able to increase the levels of anandamide and thereby induce anxiolytic-like effects in rodents. The present study adopted both genetic and pharmacological approaches and tested the hypothesis that FAAH-deficient (FAAH(-/-)) mice as well as C57BL/6N mice treated with an FAAH inhibitor (URB597) would express reduced anxiety-like responses. Furthermore, as it is known that anandamide can bind several other targets than CB1 receptors, we investigated whether FAAH inhibition reduces anxiety via CB1 receptors. FAAH(-/-) mice showed reduced anxiety both in the elevated plus maze and in the light-dark test. These genotype-related differences were prevented by the CB1 receptor antagonist rimonabant (3mg/kg). Moreover, URB597 (1mg/kg) induced an anxiolytic-like effect in C57BL/6N mice exposed to the elevated plus maze, which was prevented by rimonabant (3mg/kg). The present work provides genetic and pharmacological evidence supporting the inhibition of FAAH as an important mechanism for the alleviation of anxiety. In addition, it indicates an increased activation of CB1 receptors as a mechanism underlying the effects of FAAH inhibition in two models of anxiety.  相似文献   

8.
The nucleus accumbens (NAc) is a critical component of the reward circuitry, and dysfunction of the NAc may account for anhedonia and other symptoms of depression. Here, we investigated whether alterations in endocannabinoid (eCB) signaling in the NAc contribute to depression-like behaviors induced by chronic unpredictable stress (CUS) in mice. We compared three types of eCB/CB1 receptor-mediated synaptic plasticity in slices prepared from the NAc core of control and stress-exposed mice: depolarization-induced suppression of excitation, long-term depression, and the depression of field excitatory postsynaptic potentials (fEPSPs) induced by group I metabotropic glutamate receptor agonist DHPG. CUS (5–6-week exposure to stressors), but not sub-CUS (1 week exposure to stressors), induces depression-like behaviors and impairs these forms of eCB/CB1 receptor-mediated plasticity examined in the NAc core. Neither sub-CUS nor CUS altered the tissue contents of the eCBs, anandamide and 2-arachidonoylglycerol in the striatum. However, exposure to CUS, but not to sub-CUS, attenuated the depression of fEPSPs induced by the CB1 receptor agonist WIN 55 212-2. CUS exposure reduced the maximal effect without affecting the EC50 of WIN 55 212-2 to induce fEPSP depression. Thus, impaired CB1 receptor function could account for CUS-induced deficiency in eCB signaling in the NAc. Both CUS-induced deficiency in eCB signaling and depression-like behaviors were reversed by in vivo administration of antidepressant fluoxetine. These results suggest that downregulation of eCB signaling in the NAc occurs after CUS and contributes to the pathophysiology of depression.  相似文献   

9.
Summary The possible localization of excitatory amino acid (EAA) receptors on dopaminergic neurons was studied by microdialysis in conscious male rats. Varying concentrations of 3 specific EAA agonists, N-methyl-D-aspartate (NMDA), kainate and amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), were infused into the striatum or into the substantia nigra, and the extracellular dopamine (DA) was recorded by the same probe. All 3 compounds induced a dose-dependent increase in both striatal and nigral extracellular DA. Kainate and AMPA were more potent than NMDA. Nigral DA release was stimulated by lower concentrations of kainate and AMPA than striatal DA release.The effects of two concentrations of NMDA and kainate on the release of DA were analyzed in terms of tetrodotoxin (TTX) dependency and sensitivity to ibotenic acid-induced striatal lesion. It appeared that NMDA and kainate stimulated DA release by 3 different mechanisms. The first mechanism is seen at low concentrations of kainate, it fulfills the criteria for a functional receptor-interaction: it is TTX-sensitive and independent of the ibotenic acid lesion. The second mechanism was observed when relatively low concentrations of NMDA stimulate the release of DA; in this effect postsynaptic structures are involved. The third mechanism lacks specificity as it is seen after high concentrations of kainate as well as of NMDA. The latter mechanism is TTX-independent and is probably of a toxic nature. Finally NMDA and kainate were infused into the nigra, whereas DA was recorded with a second probe implanted into the striatum. Kainate and NMDA induced an increase of striatal DA, but kainate was about 100 times more potent in this model than NMDA.The present data therefore support localization of kainate and (probably) AMPA-receptors on nigrostriatal dopaminergic neurons. The receptors on the somatoden-dritic sites were observed to be more sensitive than those on the nerve terminals. Send offprint requests to B. H. C. Westerink at the above address  相似文献   

10.
Increasing evidence indicates that the gut peptide ghrelin facilitates learning behavior and memory tasks. The present study demonstrates a cellular signaling mechanism of ghrelin in the hippocampus. Ghrelin stimulated CREB (cAMP response-element binding protein) through the activation of cAMP, protein kinase A (PKA), and PKA-dependent phosphorylation of NR1 subunit of the NMDA receptor. Ghrelin increased phalloidin-binding to F-actin suggesting CREB-induced gene expression might include reorganization of cytoskeletal proteins. The effect was blocked by the antagonist of the ghrelin receptor in spite of the receptor’s primary coupling to Gq proteins. We also discovered inhibitory effect of endocannabinoids on ghrelin-induced NR1 phosphorylation and CREB activity. 2-arachidonoylglycerol (2-AG) exerted its inhibitory effect in the Type 1 cannabinoid receptor (CB1R)-dependent manner, while anandamide’s inhibitory effect persisted in the presence of antagonists of CB1R and the vanilloid receptor, suggesting that anandamide might directly inhibit NMDA receptor/channels. Our findings may explain how ghrelin and endocannabinoids regulate hippocampal appetitive learning and plasticity.  相似文献   

11.
Summary We have studied the effect of serotonin on synaptic transmission in rat hippocampal subiculum slices. Electrical stimulation of the alveus induced a field potential in the subiculum. The non-NMDA glutamate receptor antagonist, NBQX (3 × 10–6 mol/l) suppressed the response by 78%, indicating that the signal involves glutamatergic neurons. Application of serotonin suppressed (EC50 = 3.6 × 10–6 mol/l) the amplitude of he evoked potentials in a reversible, concentration-dependent manner. The responses to 5-HT were not altered after pretreatment with the 5-HT uptake blocker, fluvoxamine (10–5 mol/l) or a combination of the MAO inhibitor pargyline (10–5 mol/l) and ascorbic acid (10–4 mol/l). The responses to 5-HT were also unaffected by pretreatment with the 5-HT1A selective antagonist NAN-190 (10–6 mol/l), the 5-HT2A antagonist ketanserin (10–6 mol/l) or the 5-HT3/5-HT4 antagonist ICS 205–930 (10–6 mol/l).The 5-HT1B selective agonist CP 93,129 mimicked the effects of serotonin, but was more potent (EC50 4.1 × 10–7 mol/l). The 5-HT1B receptor antagonist, (±)21-009 (3 × 10–7 mol/l), antagonized the response to 5-HT and CP 93,129 with a pKB value of 7.1 and 7.2, respectively. These results suggest that the effect of 5-HT in the rat subiculum is mediated by 5-HT1B receptors.Correspondence to: H.W.G.M. Boddeke at the above address  相似文献   

12.
Lim MS  Birnir B 《Neuropharmacology》2001,40(8):1034-1043
We examined if the drug sensitivity of GABAA receptors in dentate gyrus granule neurons changed during the whole-cell current time-course. Effects of drugs on currents evoked immediately (the peak current) upon drug application and currents remaining about two seconds later (semi-plateau current) were compared. The apparent affinity for GABA (EC50) of the peak and the semi-plateau current were 14 and 4 μM, respectively. Bicuculline inhibited 50% of the peak and the semi-plateau current (IC50) at 7 and 36 μM, respectively, while 100 μM was required for full inhibition of the 100 μM GABA-evoked current. Zinc inhibited about 50% of the peak current with an IC50 value of 94 μM whereas biphasic, but complete inhibition of the semi-plateau current was recorded with IC50 values of 3 and 558 μM. The decay phase of the 100 μM GABA-evoked current was fitted by a fast (τ1, 100–300 ms) and a slow (τ2, 1–2 s) time-constants in all cells. The relative current amplitude associated with the fast (A1) and the slow (A2) component varied. The A1 current amplitude appeared more sensitive to bicuculline than the A2 current while the opposite was true for zinc. The results are consistent with heterogenous population of functional GABAA receptors in the dentate gyrus granule neurons.  相似文献   

13.
Huang CC  Hsu KS 《Neuropharmacology》2003,44(7):968-981
We tested a proposal that the hyperpolarization-activated cation channel (I(h) channel) is involved in the induction of short- and long-term plasticity at the hippocampal mossy fiber-CA3 synapses. Bath application of a specific I(h) channel blocker ZD 7288, at a concentration at which it blocked I(h) channels, substantially depressed mossy fiber synaptic transmission, and this inhibition was occluded by previous blockade of these channels by CsCl. In addition, ZD 7288 attenuated the amplitude of both AMPA and NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) equally and caused a coincident increase in the failure rate of single-fiber EPSCs and paired-pulse facilitation (PPF). It also blocked long-term potentiation (LTP) induction when applied before high-frequency tetanic stimulation (TS), and reversed LTP when applied afterwards. Continuous application of CsCl, which efficiently blocks I(h) channels, mimicked ZD 7288 in inhibiting LTP. Furthermore, ZD 7288 blocked both forskolin- and Sp-8-CPT-cAMPS-mediated enhancements of synaptic transmission. However, it did not affect the frequency facilitation induced by increasing the stimulus frequency from 0.05-1 Hz and the expression of the long-term depression (LTD) induced by low-frequency stimulation (LFS) or DCG-IV. Perforated patch-clamp recordings from granule cells revealed that the voltage for half-maximal activation (V(1/2)) of I(h) was significantly shifted towards the depolarizing direction following forskolin or Sp-8-CPT-cAMPS treatment. This enhanced I(h) current was not due to persistent activation of protein kinase A (PKA), because PKA inhibitor KT5720 did not abolish the difference between the activation curves. Therefore, we conclude that I(h) channels may contribute to the development and regulation of short- and long-term plasticity at the mossy fiber-CA3 synapses.  相似文献   

14.
We examined if the drug sensitivity of GABAA receptors in dentate gyrus granule neurons changed during the whole-cell current time-course. Effects of drugs on currents evoked immediately (the peak current) upon drug application and currents remaining about two seconds later (semi-plateau current) were compared. The apparent affinity for GABA (EC50) of the peak and the semi-plateau current were 14 and 4 μM, respectively. Bicuculline inhibited 50% of the peak and the semi-plateau current (IC50) at 7 and 36 μM, respectively, while 100 μM was required for full inhibition of the 100 μM GABA-evoked current. Zinc inhibited about 50% of the peak current with an IC50 value of 94 μM whereas biphasic, but complete inhibition of the semi-plateau current was recorded with IC50 values of 3 and 558 μM. The decay phase of the 100 μM GABA-evoked current was fitted by a fast (τ1, 100–300 ms) and a slow (τ2, 1–2 s) time-constants in all cells. The relative current amplitude associated with the fast (A1) and the slow (A2) component varied. The A1 current amplitude appeared more sensitive to bicuculline than the A2 current while the opposite was true for zinc. The results are consistent with heterogenous population of functional GABAA receptors in the dentate gyrus granule neurons.  相似文献   

15.
The effects of acute and repeated treatment with the 5-HT1A receptor ligand gepirone on hippocampal excitatory synaptic transmission were investigated. Recordings of the electrically evoked field population excitatory postsynaptic potentials (e.p.s.p.s.) were made in the stratum radiatum of the CA1 region of the dorsal hippocampus of alert male Wistar rats. Acute injection of gepirone reduced the e.p.s.p. amplitude in a transient dose-dependent (0.5 – 10 mg/kg, i.p.) manner. This effect was blocked by the 5-HT1A receptor antagonist MDL 73005EF (8-[2,3-dihydro-1,4-benzodioxin-2-yl methylaminoethys]-8-azaspirol[4,5]decane-7,9-dione methyl sulphonate, 2 mg/kg, i.p.). Gepirone (1 mg/kg per day, i.p.) administered for 7 days produced a gradual reduction in the daily pre-injection baseline e.p.s.p. amplitude coupled with a concomitant reduction of the acute response to the drug. The chronic baseline reduction was transiently reversed by the 5-HT1A receptor antagonist spiroxatrine and complete recovery to pretreatment levels was observed 48 h after the last gepirone dose. The data indicate that with repeated administration, a prolongation and enhancement of the 5-HT1A receptor-mediated reduction in the e.p.s.p. by gepirone occurs. This delayed effect may contribute to the slow onset of therapeutic action of gepirone.  相似文献   

16.
The cAMP/protein kinase A (PKA) signaling cascade is crucial for synaptic plasticity in a wide variety of species. PKA regulates Ca2+ permeation through NMDA receptors (NMDARs) and induction of NMDAR-dependent synaptic plasticity at the Schaffer collateral to CA1 pyramidal cell synapse. Whereas the role of PKA in induction of NMDAR-dependent LTP at CA1 synapses is established, the identity of PKA isoforms involved in this phenomenon is less clear. Here we report that protein synthesis-independent NMDAR-dependent LTP at the Schaffer collateral-CA1 synapse in the hippocampus is deficient, but NMDAR-dependent LTD is normal, in young (postnatal day 10 (P10)-P14) mice lacking PKA RIIβ, the PKA regulatory protein that links PKA to NMDARs at synaptic sites. In contrast, in young adult (P21-P28) mice lacking PKA RIIβ, LTP is normal and LTD is abolished. These findings indicate that distinct PKA isoforms may subserve distinct forms of synaptic plasticity and are consistent with a developmental switch in the signaling cascades required for LTP induction.  相似文献   

17.
Group II metabotropic glutamate (mGlu) receptors can act as presynaptic autoinhibitory receptors at perforant path inputs to the hippocampus under conditions of high frequency synaptic activation. We have used mGlu2 -/- mice to examine the relative roles of mGlu2 and mGlu3 in the regulation of perforant path synaptic transmission mediated by both the selective group II receptor agonist, DCG-IV, and by synaptically released glutamate. Field excitatory postsynaptic potentials evoked by stimulation of either the perforant path inputs to the dentate gyrus mid-moleculare or the CA1 stratum lacunosum moleculare were inhibited by DCG-IV with IC(50) values and maximum percentage inhibition of: 169 nM (60%) and 41 nM (72%) in wild-type mice and 273 nM (19%) and 116 nM (49%) in mGlu2 -/- mice, respectively. Activation of presynaptic group II mGlu autoreceptors by synaptically released glutamate, as revealed by a LY341495-mediated increase in the relative amplitude of a test fEPSP evoked after a conditioning burst, was observed in both the dentate gyrus and the stratum lacunosum of wild-type, but not mGlu2 -/- mice. These observations demonstrate that activation of mGlu3 receptors can regulate synaptic transmission at perforant path synapses but suggest that mGlu2 is the major presynaptic group II autoreceptor activated by synaptically released glutamate.  相似文献   

18.
N-methyl-D-aspartate (NMDA) receptors play several essential roles in the physiology and pathophysiology of the brain. Their activation results in long-term changes in glutamatergic synaptic transmission in several brain areas, but excessive activation of these receptors induces neurotoxicity. Some of NMDA-mediated actions are critically dependent on functional interactions with the neuromodulator adenosine. In the present study, we have examined whether pharmacological activation of NMDA receptors induces long-term changes in synaptic strength in the striatum. We found that NMDA depressed the amplitude of the field excitatory postsynaptic potential/population spike (fEPSP/PS) recorded in corticostriatal mouse brain slices in a concentration-dependent manner. Inhibition of synaptic transmission was more pronounced at room temperature (22 degrees C) than at 32 degrees C and long lasting (> 2 h) depression of the fEPSP/PS was observed only at room temperature. NMDA-induced depression of the fEPSP/PS was reduced or abolished in the presence of an A1 receptor antagonist and in A1 receptor knockout mice. In addition, exogenous application of adenosine depressed fEPSP/PS amplitude in wild-type mice, but not in A1 receptor knockout mice, in a concentration-dependent manner. Our results demonstrate that NMDA depresses synaptic transmission in a concentration- and temperature-dependent manner via release of adenosine and activation of adenosine A1 receptors.  相似文献   

19.
Tobacco and cannabis are among the most widely abused drugs in humans, and recently, the functional interaction between nicotine and cannabinoids has been reported. The aim of the present studies is to evaluate the role of CB1 cannabinoid receptors in the reinstatement of nicotine-induced conditioned place preference. Nicotine-induced conditioned place preference was established (threeday nicotine sessions, 0.5 mg/kg), extinguished and reinstated by a priming dose of nicotine. It was shown that the CB1 receptor antagonist AM 251 (0.25 and 0.5 mg/kg) in a dose-dependent manner attenuates the reinstatement of nicotine place conditioning. These studies suggest a role for CB1 cannabinoids receptors in preventing the reinstatement of nicotine addiction.  相似文献   

20.
The effects of S 24795, a newly developed partial agonist at alpha7 nAChRs, were tested on synaptic transmission and plasticity using extracellular field excitatory postsynaptic potentials (fEPSPs) evoked in the CA1 region by Schaffer collateral stimulation in hippocampal slices obtained from adult mice. S 24795 reduced the amplitude of the fEPSPs in a concentration-dependent manner with an IC(50) of 127 microM and a Hill coefficient of 1.1. The reduction in amplitude of the fEPSPs started at S 24795 concentrations higher than 3muM and reached 71% of controls at 300 microM. This effect was mediated by alpha7 nAChRs since it was blocked by nAChR antagonists and was not observed in alpha7 -/- mice. This effect was probably due to a reduction in glutamate release from presynaptic terminals since it was associated with a significant increase in the paired pulse ratio. In addition, S 24795 (100 microM) significantly reduced the frequency, but not the amplitude of spontaneous excitatory postsynaptic currents, recorded in the whole cell configuration of the patch clamp technique (in voltage clamp mode), further supporting a presynaptic site of action of S 24795. In addition, S 24795 at 3 microM, a concentration that did not affect basic synaptic transmission, potentiated LTP. This effect was mediated by alpha7 nAChRs since it was prevented by MLA (10 nM) and was absent in alpha7 -/- mice. Galantamine an allosteric modulator of nAChRs, at the concentrations of 0.3-3 microM, failed to potentiate LTP. In view of its powerful effect on LTP and on cognitive function, S 24795 can be considered a novel useful tool for the treatment of AD patients and other senile forms of dementia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号