首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Tenascin-C (TN-C) is an extracellular matrix glycoprotein that is involved in tissue injury and repair processes. We analyzed TN-C expression in normal and osteoarthritic (OA) human cartilage, and evaluated its capacity to induce inflammatory and catabolic mediators in chondrocytes in vitro. The effect of TN-C on proteoglycan loss from articular cartilage in culture was also assessed.

Methods

TN-C in culture media, cartilage extracts, and synovial fluid of human and animal joints was quantified using a sandwich ELISA and/or analyzed by Western immunoblotting. mRNA expression of TN-C and aggrecanases were analyzed by Taqman assays. Human and bovine primary chondrocytes and/or explant culture systems were utilized to study TN-C induced inflammatory or catabolic mediators and proteoglycan loss. Total proteoglycan and aggrecanase -generated ARG-aggrecan fragments were quantified in human and rat synovial fluids by ELISA.

Results

TN-C protein and mRNA expression were significantly upregulated in OA cartilage with a concomitant elevation of TN-C levels in the synovial fluid of OA patients. IL-1 enhanced TN-C expression in articular cartilage. Addition of TN-C induced IL-6, PGE2, and nitrate release and upregulated ADAMTS4 mRNA in cultured primary human and bovine chondrocytes. TN-C treatment resulted in an increased loss of proteoglycan from cartilage explants in culture. A correlation was observed between TN-C and aggrecanase generated ARG-aggrecan fragment levels in the synovial fluid of human OA joints and in the lavage of rat joints that underwent surgical induction of OA.

Conclusions

TN-C expression in the knee cartilage and TN-C levels measured in the synovial fluid are significantly enhanced in OA patients. Our findings suggest that the elevated levels of TN-C could induce inflammatory mediators and promote matrix degradation in OA joints.  相似文献   

2.

Background

Microfracture is a first-line treatment option for cartilage repair. In microfracture, subchondral mesenchymal cortico-spongious progenitor cells (CSP) enter the defect and form cartilage repair tissue. The aim of our study was to investigate the effects of joint disease conditions on the in vitro chondrogenesis of human CSP.

Methods

CSP were harvested from the subchondral bone marrow. CSP characterization was performed by analysis of cell surface antigen pattern and by assessing the chondrogenic, osteogenic and adipogenic differentiation potential, histologically. To assess the effect of synovial fluid (SF) on chondrogenesis of CSP, micro-masses were stimulated with SF from healthy (ND), osteoarthritis (OA) and rheumatoid arthritis donors (RA) without transforming growth factor beta 3.

Results

CSP showed the typical cell surface antigen pattern known from mesenchymal stem cells and were capable of osteogenic, adipogenic and chondrogenic differentiation. In micro-masses stimulated with SF, histological staining as well as gene expression analysis of typical chondrogenic marker genes showed that SF from ND and OA induced the chondrogenic marker genes aggrecan, types II and IX collagen, cartilage oligomeric matrix protein (COMP) and link protein, compared to controls not treated with SF. In contrast, the supplementation with SF from RA donors decreased the expression of aggrecan, type II collagen, COMP and link protein, compared to CSP treated with SF from ND or OA.

Conclusion

These results suggest that in RA, SF may impair cartilage repair by subchondral mesenchymal progenitor cells in microfracture, while in OA, SF may has no negative, but a delaying effect on the cartilage matrix formation.  相似文献   

3.

Summary

The combination of cytokines present in the circulation of patients with active rheumatoid arthritis might contribute to the generalized bone loss that commonly occurs in these patients, by directly inhibiting osteoblast proliferation and differentiation, but especially by enhancing endogenous cytokine (i.e., receptor activator of nuclear factor-kappa B ligand (RANKL) and interleukin-6 (IL)-6) production by osteoblasts, thereby stimulating osteoclastogenesis.

Introduction

Generalized bone loss, as occurs in patients with rheumatoid arthritis (RA), is related to elevated levels of circulating cytokines. Individual cytokines have deleterious effects on proliferation and differentiation of osteoblast cell lines, but little is known about the effect of the interaction between inflammatory factors in the circulation of patients with active RA on human osteoblast function, including their communication towards other bone cells. We investigated whether serum from patients with active RA enhances cytokine production by osteoblasts, thereby effectively altering osteoblast-stimulated osteoclastogenesis.

Methods

Serum was obtained from 20 patients with active RA (active RA sera) and from the same patients in clinical remission (remission RA sera). To determine osteoclastogenesis, RA serum-pretreated primary human osteoblast cultures were established in direct contact with human osteoclast precursors in the presence or absence of osteoprotegerin (OPG) or IL-6 inhibitor.

Results

Compared to remission RA sera, active RA sera inhibited osteoblast proliferation and differentiation in vitro as demonstrated by a reduced DNA content and gene expression of KI-67, collagen type 1, osteopontin, and osteocalcin. Active RA sera inhibited OPG expression and enhanced RANKL and IL-6 expression but did not alter IL-8 expression in osteoblasts. IL-1β, IL-17, and tumor necrosis factor-α (TNF-α) expression were undetectable. In coculture, active RA sera treatment of osteoblasts stimulated while addition of OPG or IL-6 inhibitory antibodies significantly reduced the number of osteoclasts.

Conclusion

Active RA sera contain circulating factors, likely cytokines and chemokines, that might contribute to bone loss by directly inhibiting osteoblast proliferation and differentiation, but especially, these factors modulate endogenous cytokine production by osteoblasts, thereby affecting osteoclastogenesis.  相似文献   

4.

Purpose

Functional results of reversed total prostheses (RTP) have—to a very limited degree—been compared with those of other shoulder prosthesis types. The aim of our study was to compare results of four different types of shoulder prostheses in terms of function, pain, and quality of life (QoL).

Methods

Questionnaires were completed by 859 patients with shoulder prostheses registered in the Norwegian Arthroplasty Register. Patients with osteoarthritis (OA), rheumatoid arthritis (RA), or fracture sequela (FS) were included. Symptoms and function were assessed using the Oxford Shoulder Score (OSS, scale 0–48), and the EuroQoL-5D (EQ-5D) was used to assess QoL.

Results

Best functional results were obtained using conventional total prostheses (TPs) and RTPs —mean OSS improvement 18 and 16 units, respectively, vs 11 with hemiprostheses (HPs). For patients with OA, TPs performed best; for those with RA and FS, RTPs performed best; and those with HPs had the worst results in all diagnostic groups. The greatest improvement in QoL was seen in patients with TPs and RTPs.

Conclusions

Conventional TPs provide the best improvement in pain, function and QoL in OA patients; RTPs are superior in patients with RA and FS.  相似文献   

5.

Background

Rheumatoid arthritis (RA) is a chronic and refractory autoimmune joint disease. Fibroblast-like synoviocytes (FLS) produce inflammatory cytokines and are involved in the migration and invasion of panuus tissue, which leads to the destruction of joints in RA. Receptor for hyaluronan mediated motility (RHAMM), is known to be one of the important receptors for hyaluronic acid. It has the ability to regulate migration of fibrocytes and infiltration of inflammatory cells. Here,we explored the mechanisms of RHAMM in RAFs.

Methods

Quantitative PCR and western blot were performed to test the expression of RHAMM in synoviocytes of RA patients and osteoarthritis (OA) controls. Collagen antibody-induced arthritis (CAIA) was used to investigate the RHAMM expression in mouse synovial issues. RHAMM siRNA was used to detect the function of RHAMM in FLS.

Results

RA-FLS has a significantly higher expression of RHAMM than OA-FLS. Expression of RHAMM in joint synovial tissue was markedly increased in the CAIA mice compared with the controls. RHAMM silencing using SiRNA was not only decreased the production of IL-6 and IL-8, but also inhibited the migration and invasion of RA-FLS.

Conclusions

RHAMM has an important role in the FLS induced modulation of inflammation and destruction of joints in RA.
  相似文献   

6.

Purpose

Cordycepin, a nucleoside derivative isolated from Cordyceps, has been reported to exert anti-inflammatory, antitumor, antidiabetic and renoprotective effects. Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. This study aimed to assess the effects of cordycepin on human OA chondrocytes.

Methods

In this study, human OA chondrocytes were pretreated with cordycepin at 10, 50 or 100 μM and subsequently stimulated with interleukin-1β (IL-1β) (5 ng/ml) for 24 h. Production of prostaglandin E2 (PGE2) and nitric oxide (NO) were evaluated by the Griess reaction and an enzyme-linked immunosorbent assay (ELISA). Gene expression of matrix metalloproteinase (MMP)-13, IL-6, inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX-2) was measured by real-time polymerase chain reaction (PCR). MMP-13 and IL-6 proteins in culture medium were determined using cytokine-specific ELISA. Western immunoblotting was used to analyse the iNOS and COX-2 protein production in culture medium. Nuclear factor kappa-B (NF-κB) activity regulation was explored using Western immunoblotting.

Results

Pretreatment with cordycepin significantly inhibited the production of PGE2 and NO induced by IL-1β. Cordycepin also significantly decreased the IL-1β-stimulated gene expression and production of MMP-13, IL-6, iNOS and COX-2 in OA chondrocytes. Pretreatment with cordycepin attenuated IL-1β-induced activation of NF-κB by suppressing degradation of its inhibitory protein nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) in the cytoplasm.

Conclusions

We show for the first time the anti-inflammatory activity of cordycepin in human OA chondrocytes. Thus, with this unique profile of actions, cordycepin may prove to be a potentially attractive and new therapeutic/preventive agent for OA.  相似文献   

7.

Background and purpose

Little is known about biochemical mediators that correlate with the initiation and progression of knee osteoarthritis (OA). We therefore valuated the roles of cytokines and metalloenzymes in knee OA in relation to OA grading, age, and BMI.

Patients and methods

A multiplex ELISA-based immunoassay (Luminex technology) was used to measure biochemical mediators in the synovial fluid (SF) of 82 patients undergoing knee surgery. All patients were classified according to age, BMI, and OA grade. 24 patients had no signs of OA (knee reconstruction surgeries). The mediators that were tested for included interleukins (IL-1Ra, IL-6, IL-7, and IL-18), chemokines (CCL2 (MCP-1), CCL3 (MIP-1a), and CXCL8 (IL-8)), growth factors (HGF and VEGF), and matrix metalloproteinases (MMP-1, MMP-2, MMP-9, and MMP-13).

Results

There was a correlation between IL-7 levels in SF and age (p < 0.01). The 11 highest IL-7 levels were seen in patients who were aged between 59 and 72 but had different OA grades. In contrast, all patients who had severe OA in all 3 knee compartments (pan-OA) had only low or medium IL-7 levels. There was a negative correlation between MMP-1 levels in synovial fluid and grade of OA (p < 0.001). Correlation studies between pairs of mediators revealed two groups of mediators that are important in OA progression, dominated by MCP-1 and IL-1Ra.

Interpretation

IL-7 levels in SF are elevated in elderly people suffering from OA of different grades, but they are depressed in patients with severe 3-compartment OA, possibly due to widely impaired chondrocytes embedded in the affected cartilage tissue. The observed decrease in MMP-1 levels in SF, which is dependent on the severity of OA, may be caused by deterioration of superficial cartilage layers during progression of OA.

List of abbreviations

BMI
body mass index
CCL
chemokine (C-C motif) ligand
CXCL
chemokine (C-X-C motif) ligand
HGF
hepatocyte growth factor
ICRS
International Cartilage Repair Society
IL
interleukin
IL-1Ra
IL-1 receptor antagonist
MCP
monocyte chemoattractant protein
MIP
macrophage inflammatory protein
MMP
matrix metalloproteinase
OA
osteoarthritis
SF
synovial fluid
VEGF
vascular endothelial growth factor
Progression of knee OA is often driven by biomechanical forces (Englund 2010), whereas the etiology of OA in other joints is less affected by mechanical stress. Biochemical mediators such as cytokines, growth factors, and matrix metalloproteinases—acting individually or in networks—profoundly influence cellular responses in joint tissues, modifying both catabolic and anabolic activities involved in the pathogenesis of OA (Goldring and Goldring 2007). Ageing is the most prominent risk factor for OA, and chondrocyte senescence and aging-related changes in the matrix, such as articular surface fibrillation and proteoglycan changes, are most likely to contribute to joint ageing (Martin and Buckwalter 2002, Shane Anderson and Loeser 2010). However, despite intensive research efforts, little is known about biochemical factors whose levels may correlate with the severity of knee OA (Belo et al. 2007). Also, age-related changes in cytokine production in body fluids have not been investigated completely (Gardner and Murasko 2002).Biochemical mediators found in synovial fluid (SF) that affect the cellular functions of tissues of the knee joint include interleukins (ILs), chemokines, growth factors, and matrix metalloproteinases (MMPs). Interleukins, both pro- and anti-inflammatory, have a pivotal role in arthritic diseases and are potential targets of OA therapy. Chemokines, which are small, chemoattractant cytokines, have key roles in the accumulation of inflammatory cells at the site of inflammation. Growth factors produced by chondrocytes and subchondral bone regulate the growth of blood vessels in the joint. Some recent studies have supported the notion that inhibition of abnormal angiogenesis will provide effective therapeutic strategies for treatment of OA (Ashraf and Walsh 2008). MMPs and pro-inflammatory cytokines are involved in a collagen II-dependent feed-forward mechanism of matrix degradation in human articular cartilage (Klatt et al. 2009).To improve our understanding of the molecular and cellular processes involved in joint ageing and in the initiation and progression of OA, we wanted to determine the levels of biochemical mediators that correlate with the severity of knee OA or patient age.  相似文献   

8.

Background

Type 1 Modic changes are characterized by edema, vascularization, and inflammation, which lead to intervertebral disc degeneration. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine closely related to the inflammatory cytokines detected in degenerative intervertebral disc tissues. However, the existence and role of MIF and its receptor CD74 in intervertebral disc degeneration have not been elucidated.

Questions/purposes

We asked whether (1) MIF and its receptor CD74 are expressed in cartilage end plates with Type 1 Modic changes, (2) MIF is associated with cartilage end plate degeneration, (3) the MIF antagonist (S, R)-3(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) suppresses MIF-induced inflammatory cytokine release, and (4) inflammatory cytokines are released by cartilage end plate chondrocytes via CD74 by activating the CD74 antibody (CD74Ab).

Methods

We examined MIF and CD74 expression by human cartilage end plate chondrocytes and tissues with Type 1 Modic changes from eight patients using immunocytofluorescence and immunohistochemistry. MIF production by the chondrocytes was assessed by ELISA and PCR. We compared cytokine release by chondrocytes treated with MIF in the presence or absence of exogenous ISO-1 by ELISA. Cytokine release by chondrocytes after treatment with CD74Ab was determined by ELISA.

Results

MIF was expressed in degenerated human cartilage end plate tissues and chondrocytes. Lipopolysaccharide and tumor necrosis factor α (TNF-α) upregulated MIF expression and increased MIF secretion in chondrocytes in a dose-dependent manner. MIF increased the secretion of IL-6, IL-8, and prostaglandin E2 (PGE2) in a dose-dependent manner. ISO-1 reduced the secretion of IL-6, IL-8, and PGE2. CD74Ab activated CD74 and induced release of inflammatory cytokines.

Conclusions

Chondrocytes in cartilage end plate with Type 1 Modic changes express MIF and its receptor CD74. MIF might promote the inflammatory response through CD74. MIF-induced cytokine release appears to be suppressed by ISO-1, and CD74Ab could induce cytokine release.

Clinical Relevance

The MIF/CD74 pathway may represent a crucial target for treating disc degeneration since inhibiting the function of MIF with its antagonist ISO-1 can reduce MIF-induced inflammation and exert potent therapeutic effects.  相似文献   

9.

Purpose

Osteoarthritis (OA) is an age-related joint disease that is characterised by the degeneration of articular chondrocytes. Ginsenosides, the most important pharmacological ingredients of ginseng, have been proven to provide effective therapy for neurodegenerative diseases and can inhibit cell apoptosis. We investigated whether ginsenoside Rb1 can modulate inflammation and apoptosis in human chondrocytes.

Methods

Chondrocytes were isolated from OA patients undergoing total knee replacement surgery. Apoptosis was assessed by TUNEL (terminal deoxyribonucleotide transferasemediated dUTP nick end-labelling)-positive staining. Levels of PGE2 and NO2- were detected by ELISA. Gene expression levels were measured for type II collagen (Col2A1), aggrecan, MMP-13, COX-2, iNOS, caspase-3, and PARP.

Results

The results showed that TUNEL-positive staining chondrocytes were decreased by Rb1 compared with IL-1β. Both 10 or 100 μg/ml Rb1 inhibited the effect of IL-1β on chondrocytes by decreasing levels of PGE2, NO2-, MMP-13, COX-2, iNOS, caspase-3 and PARP and increasing aggrecan and Col2A1 gene expression levels, to block IL-1β-induced cell inflammation and apoptosis.

Conclusions

The results suggest that Rb1 possesses potential anti-inflammatory and anti-apoptotic properties in human chondrocytes, possibly by binding to oestrogen receptors to exert its pharmacological effects.  相似文献   

10.

Purpose

Recent evidence suggests that angiogenesis and inflammation contribute to the development and progression of osteoarthritis (OA). The purpose of this study was to investigate vascular endothelial growth factor (VEGF) levels in plasma and synovial fluid of patients with knee OA and to determine the relationship of VEGF levels with disease severity in knee OA.

Methods

A total of 100 subjects were enrolled in this study (80 knee OA patients and 20 healthy controls). Plasma and synovial fluid VEGF levels were analysed using enzyme-linked immunosorbent assay. VEGF expressions in synovial membrane and articular cartilage samples were assessed using immunohistochemistry.

Results

VEGF level in synovial fluid of knee OA patients was tenfold higher than that in paired plasma (P < 0.001). Both plasma and synovial fluid VEGF exhibited a positive correlation with radiographic severity (r = 0.454 and r = 0.727, P < 0.001, respectively). VEGF expression was highly detectable in synovial lining cells and articular chondrocytes of knee OA patients.

Conclusions

VEGF levels in both plasma and synovial fluid were positively correlated with the severity of knee OA. Therefore, VEGF may be useful for monitoring OA severity and could play a substantial role in the development and progression of knee OA.  相似文献   

11.
12.

Background  

Nitric oxide (NO) is a messenger implicated in the destruction and inflammation of joint tissues. Cartilage and synovial membrane from patients with rheumatoid arthritis (RA) and osteoarthritis (OA) have high levels of NO. NO is known to modulate various cellular pathways and, thus, inhibit the activity of the mitochondrial respiratory chain (MRC) of chondrocytes and induce the generation of reactive oxygen species (ROS) and cell death in multiple cell types. For these reasons, and because of the importance of the synovial membrane in development of OA pathology, we investigated the effects of NO on survival, mitochondrial function, and activity of fibroblastic human OA synovial cells.  相似文献   

13.

Purpose

Much research is now being conducted in order to understand the role of cytokines in the development of the inflammatory response following trauma. The purpose of this study was to evaluate whether serum levels of certain cytokines, measured immediately after initial injury, can be used as potential biomarkers for predicting the development and the degree of severity of the systemic inflammatory response (SIRS) in patients with moderate and severe trauma.

Methods

We conducted a prospective study with 71 individuals of whom 13 (18.3 %) were healthy controls and 58 (81.7 %) were traumatized orthopaedic patients who were categorized into two groups: 31 (43.6 %) with moderate injuries and 27 (38.1 %) patients with severe orthopaedic trauma. Thirty cc of heparinized blood were drawn from each individual within a few hours after the injury. Serum levels of pro-inflammatory, regulatory and anti-inflammatory cytokines were measured in each individual participant.

Results

High levels of pro-inflammatory cytokines IL-1β,-6,-8,-12, tumour necrosis factor alpha and interferon gamma were found in all injured patients compared to healthy controls. Only IL-6 and IL-8 were significantly higher in the injured patients. Levels of the regulatory cytokines, transformed growth factor beta (TGF-β) and IL-10 were higher in the injured patients, but significant only for TGF-β. Levels of IL-4 were significantly lower in the injured groups as compared to the controls.

Conclusions

Secretion of large amounts of pro-inflammatory cytokines and decreased level of anti-inflammatory cytokines during the acute phase of trauma may lead to the development of systemic inflammatory response syndrome (SIRS) in unstable polytraumatized patients. SIRS may result in life threatening conditions as acute respiratory distress syndrome (ARDS) and multiple organ failure (MOF). High levels of IL-6, IL-8, TGFβ and low levels of IL-4 were found to be reliable markers for the existence of immune reactivity in trauma patients. More research is needed to study pattern of cytokine levels along the acute period of injury, after surgical interventions and during recovery.  相似文献   

14.
15.
16.

Background

Although relatively uncommon, spontaneous healing from a meniscus injury has been observed even within the avascular area. This may be the result of the existence of mesenchymal stem cells in synovial fluid.

Questions/purposes

The purpose of this study was to investigate whether mesenchymal stem cells existed in the synovial fluid of the knee after meniscus injury.

Methods

Synovial fluid was obtained from the knees of 22 patients with meniscus injury just before meniscus surgery and from 8 volunteers who had no history of knee injury. The cellular fraction of the synovial fluid was cultured for 14 days followed by analysis for multilineage potential and presentation of surface antigens characteristic of mesenchymal stem cells. Colony-forming efficiency and proliferation potential were also compared between the two groups.

Results

Cells with characteristics of mesenchymal stem cells were observed in the synovial fluid of injured knees to a much greater degree than in uninjured knees. The colony-forming cells derived from the synovial fluid of the knee with meniscus injury had multipotentiality and surface epitopes identical to mesenchymal stem cells. The average number of colony formation, obtained from 1 mL of synovial fluid, in meniscus-injured knees was 250, higher than that from healthy volunteers, which was 0.5 (p < 0.001). Total colony number per synovial fluid volume was positively correlated with the postinjury period (r = 0.77, p < 0.001).

Conclusions

Mesenchymal stem cells were found to exist in synovial fluid from knees after meniscus injury. Mesenchymal stem cells were present in higher numbers in synovial fluid with meniscus injury than in normal knees. Total colony number per synovial fluid volume was positively correlated with the postinjury period.

Clinical Relevance

Our current human study and previous animal studies suggest the possibility that mesenchymal stem cells in synovial fluid increase after meniscus injury contributing to spontaneous meniscus healing.  相似文献   

17.
18.

Background

The complex configuration of the thumb carpometacarpal (CMC-1) joint relies on musculotendinous and ligamentous support for precise circumduction. Ligament innervation contributes to joint stability and proprioception. Evidence suggests abnormal ligament innervation is associated with osteoarthritis (OA) in large joints; however, little is known about CMC-1 ligament innervation characteristics in patients with OA. We studied the dorsal radial ligament (DRL) and the anterior oblique ligament (AOL), ligaments with a reported divergent presence of mechanoreceptors in nonosteoarthritic joints.

Questions/purposes

This study’s purposes were (1) to examine the ultrastructural architecture of CMC-1 ligaments in surgical patients with OA; (2) to describe innervation, specifically looking at mechanoreceptors, of these ligaments using immunohistochemical techniques and compare the AOL and DRL in terms of innervation; and (3) to determine whether there is a correlation between age and mechanoreceptor density.

Methods

The AOL and DRL were harvested from 11 patients with OA during trapeziectomy (10 women, one man; mean age, 67 years). The 22 ligaments were sectioned in paraffin and analyzed using immunoflourescent triple staining microscopy.

Results

In contrast to the organized collagen bundles of the DRL, the AOL appeared to be composed of disorganized connective tissue with few collagen fibers and little innervation. Mechanoreceptors were identified in CMC-1 ligaments of all patients with OA. The DRL was significantly more innervated than the AOL. There was no significant correlation between innervation of the DRL and AOL and patient age.

Conclusions

The dense collagen structure and rich innervation of the DRL in patients with OA suggest that the DRL has an important proprioceptive and stabilizing role.

Clinical Relevance

Ligament innervation may correlate with proprioceptive and neuromuscular changes in OA pathophysiology and consequently support further investigation of innervation in disease prevention and treatment strategies.  相似文献   

19.

Background/purpose

In this study, cementless THA was performed for RA patients, and its clinical outcomes, as well as radiographic findings and implant survival rates, were examined more than 10 years after surgery in comparison with the outcomes of the same procedure performed for patients with hip osteoarthritis (OA) during the same period.

Method

We studied 28 cases of THA for RA clinically and radiologically at a minimum follow-up duration of 10 years. The patients consisted of 4 males and 22 females, with a mean age at the time of surgery of 53.1. The clinical and radiographic results were compared with an age-matched and sex-matched group of patients who had undergone THA for the diagnosis of primary or secondary OA.

Results

In the RA group, the mean Harris hip score was 48.3 before surgery, and improved to 76.8 at the time of the final survey. In the control group, the score also improved from 46.8 before to 86.5 after surgery, while revealing significant differences between the groups (p = 0.0002). In the RA group, 2 joints required revision THA on the acetabular side due to aseptic loosening, while such revision was not performed on the femoral side despite the presence of more than 2 mm of subsidence in 2 joints. The implant survival rate was 92.9 and 100 % in the RA and control groups, respectively, without significant differences (p = 0.493).

Conclusions

Although its clinical outcomes were significantly different from those for OA, a satisfactory implant survival rate was achieved, at 92.9 % in RA patients.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号