首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Precise daily target localization is necessary to achieve highly conformal radiation delivery. In helical tomotherapy, setup verification may be accomplished just prior to delivering each fraction by acquiring a megavoltage CT scan of the patient in the treatment position. This daily image set may be manually or automatically registered to the image set on which the treatment plan was calculated, in order to determine any needed adjustments. The system was tested by acquiring 104 MVCT scans of an anthropomorphic head phantom to which translational displacements had been introduced with respect to the planning image set. Registration results were compared against an independent, optically guided positioning system. The total experimental uncertainty was within approximately 1 mm. Although the registration of phantom images is not fully analogous to the registration of patient images, this study confirms that the system is capable of phantom localization with sub-voxel accuracy. In seven registration problems considered, expert human observers were able to perform manual registrations with comparable or inferior accuracy to automatic registration by mutual information. The time to compute an automatic registration is considerably shorter than the time required for manual registration. However, human evaluation of automatic results is necessary in order to identify occasional outliers, and to ensure that the registration is clinically acceptable, especially in the case of deformable patient anatomy.  相似文献   

2.
In many radiotherapy clinics, geometric uncertainties in the delivery of 3D conformal radiation therapy and intensity modulated radiation therapy of the prostate are reduced by aligning the patient's bony anatomy in the planning 3D CT to corresponding bony anatomy in 2D portal images acquired before every treatment fraction. In this paper, we seek to determine if there is a frequency band within the portal images and the digitally reconstructed radiographs (DRRs) of the planning CT in which bony anatomy predominates over non-bony anatomy such that portal images and DRRs can be suitably filtered to achieve high registration accuracy in an automated 2D-3D single portal intensity-based registration framework. Two similarity measures, mutual information and the Pearson correlation coefficient were tested on carefully collected gold-standard data consisting of a kilovoltage cone-beam CT (CBCT) and megavoltage portal images in the anterior-posterior (AP) view of an anthropomorphic phantom acquired under clinical conditions at known poses, and on patient data. It was found that filtering the portal images and DRRs during the registration considerably improved registration performance. Without filtering, the registration did not always converge while with filtering it always converged to an accurate solution. For the pose-determination experiments conducted on the anthropomorphic phantom with the correlation coefficient, the mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters were Theta(x):0.18(0.19) degrees, Theta(y):0.04(0.04) degrees, Theta(z):0.04(0.02) degrees, t(x):0.14(0.15) mm, t(y):0.09(0.05) mm, and t(z):0.49(0.40) mm. The mutual information-based registration with filtered images also resulted in similarly small errors. For the patient data, visual inspection of the superimposed registered images showed that they were correctly aligned in all instances. The results presented in this paper suggest that robust and accurate registration can be achieved with intensity-based methods by focusing on rigid bony structures in the images while diminishing the influence of artifacts with similar frequencies as soft tissue.  相似文献   

3.
In prostate radiotherapy, setup errors with respect to the patient's bony anatomy can be reduced by aligning 2D megavoltage (MV) portal images acquired during treatment to a reference 3D kilovoltage (kV) CT acquired for treatment planning purposes. The purpose of this study was to evaluate a fully automated 2D-3D registration algorithm to quantify setup errors in 3D through the alignment of line-enhanced portal images and digitally reconstructed radiographs computed from the CT. The line-enhanced images were obtained by correlating the images with a filter bank of short line segments, or "sticks" at different orientations. The proposed methods were validated on (1) accurately collected gold-standard data consisting of a 3D kV cone-beam CT scan of an anthropomorphic phantom of the pelvis and 2D MV portal images in the anterior-posterior (AP) view acquired at 15 different poses and (2) a conventional 3D kV CT scan and weekly 2D MV AP portal images of a patient over 8 weeks. The mean (and standard deviation) of the absolute registration error for rotations around the right-lateral (RL), inferior-superior (IS), and posterior-anterior (PA) axes were 0.212 degree (0.214 degree), 0.055 degree (0.033 degree) and 0.041 degree (0.039 degree), respectively. The corresponding registration errors for translations along the RL, IS, and PA axes were 0.161 (0.131) mm, 0.096 (0.033) mm, and 0.612 (0.485) mm. The mean (and standard deviation) of the total registration error was 0.778 (0.543) mm. Registration on the patient images was successful in all eight cases as determined visually. The results indicate that it is feasible to automatically enhance features in MV portal images of the pelvis for use within a completely automated 2D-3D registration framework for the accurate determination of patient setup errors. They also indicate that it is feasible to estimate all six transformation parameters from a 3D CT of the pelvis and a single portal image in the AP view.  相似文献   

4.
In external beam radiotherapy, portal imaging is applied for verification of the patient setup. Current automatic methods for portal image registration, which are often based on segmentation of anatomical structures, are especially successful for images of the pelvic region. For portal images of more complicated anatomical structures, e.g., lung, these techniques are less successful. It is desirable to have a method for image registration that is applicable for a wide range of treatment sites. In this study, a registration method for two-dimensional (2D) registration of portal and reference images based on intensity values was tested on portal images of various anatomical sites. Tests were performed with and without preprocessing (unsharp mask filtering followed by histogram equalization) for 96 image pairs and six cost functions. The images were obtained from treatments of the rectum, salivary gland, brain, prostate, and lung. To get insight into the behavior of the various cost functions, cost function values were computed for each portal image for 20,000 transformations of the corresponding reference image, translating the reference image in a range of +/- 1 cm and rotating +/- 10 degrees with respect to the clinical match. The automatic match was defined as the transformation associated with the global minimum (found by an exhaustive search). Without preprocessing, the registration reliability was low (less than 27%). With preprocessing, about 90% of the matches were successful, with a difference with our gold standard (manual registration) of about 1 mm and 1 degree SD. All tested cost functions performed similarly. However, the number of local minima using mutual information was larger than for the other tested cost functions. A cost function based on the mean product of the corresponding pixel values had the least number of local minima. In conclusion, gray value based registration of portal images is applicable for a wide range of treatment sites. However, pre-processing of the images is essential.  相似文献   

5.
The paper presents a computationally efficient 3D-2D image registration algorithm for automatic pre-treatment validation in radiotherapy. The novel aspects of the algorithm include (a) a hybrid cost function based on partial digitally reconstructed radiographs (DRRs) generated along projected anatomical contours and a level set term for similarity measurement; and (b) a fast search method based on parabola fitting and sensitivity-based search order. Using CT and orthogonal x-ray images from a skull and a pelvis phantom, the proposed algorithm is compared with the conventional ray-casting full DRR based registration method. Not only is the algorithm shown to be computationally more efficient with registration time being reduced by a factor of 8, but also the algorithm is shown to offer 50% higher capture range allowing the initial patient displacement up to 15 mm (measured by mean target registration error). For the simulated data, high registration accuracy with average errors of 0.53 mm +/- 0.12 mm for translation and 0.61 +/- 0.29 degrees for rotation within the capture range has been achieved. For the tested phantom data, the algorithm has also shown to be robust without being affected by artificial markers in the image.  相似文献   

6.
Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung lesions with MV portal images (PIs) to obtain the displacement of the tumour before irradiation. The verification of the tumour position was performed by rigid intensity based registration and three different merit functions such as the sum of squared pixel intensity differences, normalized cross correlation and normalized mutual information. The registration process then provided a translation vector that defines the displacement of the target in order to align the tumour with the isocentre. To evaluate the registration algorithms, 163 test images were created and subsequently, a lung phantom containing an 8 cm(3) tumour was built. In a further step, the registration process was applied on patient data, containing 38 tumours in 113 fractions. To potentially improve registration outcome, two filter types (histogram equalization and display equalization) were applied and their impact on the registration process was evaluated. Generated test images showed an increase in successful registrations when applying a histogram equalization filter whereas the lung phantom study proved the accuracy of the selected algorithms, i.e. deviations of the calculated translation vector for all test algorithms were below 1 mm. For clinical patient data, successful registrations occurred in about 59% of anterior-posterior (AP) and 46% of lateral projections, respectively. When patients with a clinical target volume smaller than 10 cm(3) were excluded, successful registrations go up to 90% in AP and 50% in lateral projection. In addition, a reliable identification of the tumour position was found to be difficult for clinical target volumes at the periphery of the lung, close to backbone or diaphragm. Moreover, tumour movement during shallow breathing strongly influences image acquisition for patient positioning. Recapitulating, 2D/3D image registration for lung tumours is an attractive alternative compared to conventional CT verification of the tumour position. Nevertheless, size and location of the tumour are limiting parameters for an accurate registration process.  相似文献   

7.
Radiotherapy treatment planning integrating positron emission tomography (PET) and computerized tomography (CT) is rapidly gaining acceptance in the clinical setting. Although hybrid systems are available, often the planning CT is acquired on a dedicated system separate from the PET scanner. A limiting factor to using PET data becomes the accuracy of the CT/PET registration. In this work, we use phantom and patient validation to demonstrate a general method for assessing the accuracy of CT/PET image registration and apply it to two multi-modality image registration programs. An IAEA (International Atomic Energy Association) brain phantom and an anthropomorphic head phantom were used. Internal volumes and externally mounted fiducial markers were filled with CT contrast and 18F-fluorodeoxyglucose (FDG). CT, PET emission, and PET transmission images were acquired and registered using two different image registration algorithms. CT/PET Fusion (GE Medical Systems, Milwaukee, WI) is commercially available and uses a semi-automated initial step followed by manual adjustment. Automatic Mutual Information-based Registration (AMIR), developed at our institution, is fully automated and exhibits no variation between repeated registrations. Registration was performed using distinct phantom structures; assessment of accuracy was determined from registration of the calculated centroids of a set of fiducial markers. By comparing structure-based registration with fiducial-based registration, target registration error (TRE) was computed at each point in a three-dimensional (3D) grid that spans the image volume. Identical methods were also applied to patient data to assess CT/PET registration accuracy. Accuracy was calculated as the mean with standard deviation of the TRE for every point in the 3D grid. Overall TRE values for the IAEA brain phantom are: CT/PET Fusion = 1.71 +/- 0.62 mm, AMIR = 1.13 +/- 0.53 mm; overall TRE values for the anthropomorphic head phantom are: CT/PET Fusion = 1.66 +/- 0.53 mm, AMIR = 1.15 +/- 0.48 mm. Precision (repeatability by a single user) measured for CT/PET Fusion: IAEA phantom = 1.59 +/- 0.67 mm and anthropomorphic head phantom = 1.63 +/- 0.52 mm. (AMIR has exact precision and so no measurements are necessary.) One sample patient demonstrated the following accuracy results: CT/PET Fusion = 3.89 +/- 1.61 mm, AMIR = 2.86 +/- 0.60 mm. Semi-automatic and automatic image registration methods may be used to facilitate incorporation of PET data into radiotherapy treatment planning in relatively rigid anatomic sites, such as head and neck. The overall accuracies in phantom and patient images are < 2 mm and < 4 mm, respectively, using either registration algorithm. Registration accuracy may decrease, however, as distance from the initial registration points (CT/PET fusion) or center of the image (AMIR) increases. Additional information provided by PET may improve dose coverage to active tumor subregions and hence tumor control. This study shows that the accuracy obtained by image registration with these two methods is well suited for image-guided radiotherapy.  相似文献   

8.
Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergytrade mark linear accelerator produced an unattenuated beam for a central "target zone" and a partially attenuated beam for an outer "set-up zone". Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error.  相似文献   

9.
The verification of intensity-modulated radiation therapy (IMRT) is necessary for adequate quality control of the treatment. Pretreatment verification may trace the possible differences between the planned dose and the actual dose delivered to the patient. To estimate the impact of differences between planned and delivered photon beams, a three-dimensional (3-D) dose verification method has been developed that reconstructs the dose inside a phantom. The pretreatment procedure is based on portal dose images measured with an electronic portal imaging device (EPID) of the separate beams, without the phantom in the beam and a 3-D dose calculation engine based on the Monte Carlo calculation. Measured gray scale portal images are converted into portal dose images. From these images the lateral scattered dose in the EPID is subtracted and the image is converted into energy fluence. Subsequently, a phase-space distribution is sampled from the energy fluence and a 3-D dose calculation in a phantom is started based on a Monte Carlo dose engine. The reconstruction model is compared to film and ionization chamber measurements for various field sizes. The reconstruction algorithm is also tested for an IMRT plan using 10 MV photons delivered to a phantom and measured using films at several depths in the phantom. Depth dose curves for both 6 and 10 MV photons are reconstructed with a maximum error generally smaller than 1% at depths larger than the buildup region, and smaller than 2% for the off-axis profiles, excluding the penumbra region. The absolute dose values are reconstructed to within 1.5% for square field sizes ranging from 5 to 20 cm width. For the IMRT plan, the dose was reconstructed and compared to the dose distribution with film using the gamma evaluation, with a 3% and 3 mm criterion. 99% of the pixels inside the irradiated field had a gamma value smaller than one. The absolute dose at the isocenter agreed to within 1% with the dose measured with an ionization chamber. It can be concluded that our new dose reconstruction algorithm is able to reconstruct the 3-D dose distribution in phantoms with a high accuracy. This result is obtained by combining portal dose images measured prior to treatment with an accurate dose calculation engine.  相似文献   

10.
A fully automatic method for on-line electronic portal image analysis is proposed. The method uses multiscale edge detection with wavelets for both the field outline and the anatomical structures. An algorithm to extract and combine the information from different scales has been developed. The edges from the portal image are aligned with the edges from the reference image using chamfer matching. The reference is the first portal image of each treatment. The matching is applied first to the field and subsequently to the anatomy. The setup deviations are quantified as the displacement of the anatomical structures relative to the radiation beam boundaries. The performance of the algorithm was investigated for portal images with different contrast and noise level. The automatic analysis was used first to detect simulated displacements. Then the automatic procedure was tested on anterior-posterior and lateral portal images of a pelvic phantom. In both sets of tests the differences between the measured and the actual shifts were used to quantify the performance. Finally we applied the automatic procedure to clinical images of pelvic and lung regions. The output of the procedure was compared with the results of a manual match performed by a trained operator. The errors for the phantom tests were small: average standard deviation of 0.39 mm and 0.26 degrees and absolute mean error of 0.31 mm and 0.2 degrees were obtained. In the clinical cases average standard deviations of 1.32 mm and 0.6 degrees were found. The average absolute mean errors were 1.09 mm and 0.39 degrees. Failures were registered in 2% of the phantom tests and in 3% of the clinical cases. The algorithm execution is approximately 5 s on a 168 MHz Sun Ultra 2 workstation. The automatic analysis tool is considered to be a very useful tool for on-line setup corrections.  相似文献   

11.
Electron beam treatments may benefit from techniques to verify patient positioning and dose delivery. This is particularly so for complex techniques such as mixed photon and electron beam radiotherapy and electron beam modulated therapy. This study demonstrates that it is possible to use the bremsstrahlung photons in an electron beam from a dual scattering foil linear accelerator to obtain portal images of electron beam treatments. The possibility of using Monte Carlo (MC) simulations to predict the electron beam treatment portal images was explored. The MC code EGSnrc was used to model a Varian CL21EX linear accelerator (linac) and to characterize the bremsstrahlung photon production in the linac head. It was found that the main sources of photons in the electron beam are the scattering foils, the applicator and the beam-shaping cut-out. Images were acquired using the Varian CL21EX linac and the Varian aS500 electronic portal imager (EPI); four electron energies (6, 9, 12, 16 MeV), and different applicator and cut-out sizes were used. It was possible to acquire images with as little as 10.7 MU per image. The contrast, the contrast-to-noise ratio (CNR), the signal-to-noise ratio (SNR), the resolution and an estimate of the modulated transfer function (MTF) of the electron beam portal images were computed using a quality assurance (QA) phantom and were found to be comparable to those of a 6 MV photon beam. Images were also acquired using a Rando anthropomorphic phantom. MC simulations were used to model the aS500 EPID and to obtain predicted portal images of the QA and Rando phantom. The contrast in simulated and measured portal images agrees within +/-5% for both the QA and the Rando phantom. The measured and simulated images allow for a verification of the phantom positioning by making sure that the structure edges are well aligned. This study suggests that the Varian aS500 portal imager can be used to obtain patient portal images of electron beams in the scattering foil linacs.  相似文献   

12.
Reproducible positioning of the patient during fractionated external beam radiation therapy is imperative to ensure that the delivered dose distribution matches the planned one. In this paper, we expand on a 2D-3D image registration method to verify a patient's setup in three dimensions (rotations and translations) using orthogonal portal images and megavoltage digitally reconstructed radiographs (MDRRs) derived from CT data. The accuracy of 2D-3D registration was improved by employing additional image preprocessing steps and a parabolic fit to interpolate the parameter space of the cost function utilized for registration. Using a humanoid phantom, precision for registration of three-dimensional translations was found to be better than 0.5 mm (1 s.d.) for any axis when no rotations were present. Three-dimensional rotations about any axis were registered with a precision of better than 0.2 degrees (1 s.d.) when no translations were present. Combined rotations and translations of up to 4 degrees and 15 mm were registered with 0.4 degrees and 0.7 mm accuracy for each axis. The influence of setup translations on registration of rotations and vice versa was also investigated and mostly agrees with a simple geometric model. Additionally, the dependence of registration accuracy on three cost functions, angular spacing between MDRRs, pixel size, and field-of-view, was examined. Best results were achieved by mutual information using 0.5 degrees angular spacing and a 10 x 10 cm2 field-of-view with 140 x 140 pixels. Approximating patient motion as rigid transformation, the registration method is applied to two treatment plans and the patients' setup errors are determined. Their magnitude was found to be < or = 6.1 mm and < or = 2.7 degrees for any axis in all of the six fractions measured for each treatment plan.  相似文献   

13.
14.
A new fast method is presented for the quantification of patient set-up errors during radiotherapy with external photon beams. The set-up errors are described as deviations in relative position and orientation of specified anatomical structures relative to specified field shaping devices. These deviations are determined from parameters of the image transformations that make their features in a portal image align with the corresponding features in a simulator image. Knowledge of some set-up parameters during treatment simulation is required. The method does not require accurate knowledge about the position of the portal imaging device as long as the positions of some of the field shaping devices are verified independently during treatment. By applying this method, deviations in a pelvic phantom set-up can be measured with a precision of 2 mm within 1 minute. Theoretical considerations and experiments have shown that the method is not applicable when there are out-of-plane rotations larger than 2 degrees or translations larger than 1 cm. Inter-observer variability proved to be a source of large systematic errors, which could be reduced by offering a precise protocol for the feature alignment.  相似文献   

15.
Kubo HD  Shapiro EG  Seppi EJ 《Medical physics》1999,26(11):2410-2414
Current electronic portal imaging devices (EPID) are limited in their ability to provide direct and quick verification and monitoring of patients during both setup and treatment of breathing synchronized radiotherapy (BSRT, including breathing gated, voluntary and forced breath-hold radiotherapy treatment.) These limitations are largely due to their slow image capture rate and poor image quality. An amorphous silicon array flat panel electronic portal imaging device (si-EPID) is emerging to meet the challenge. The purpose of this study is threefold: (1) to characterize the performance of a prototype si-EPID; (2) to compare image quality against that of digitized films; and (3) to evaluate the device in terms of verification of patient setup and monitoring during BSRT. In this study a Varian prototype si-EPID detector array and Clinic accelerator at the University of California Davis Cancer Center were used for imaging. Three quality assurance phantoms: a Lutz PVC phantom, a modified "Las Vegas" phantom, and a RMI model 1151 phantom, were used to characterize the imaging system. A Rando head phantom was used for anthropomorphic imaging tests. Images were obtained with the si-EPID and a Fuji RX film in a Kodak X-Omatic cassette. To investigate the clinical application, two sets of si-EPID images were collected from a lung cancer patient during a 22 s breath-hold and normal breathing. The quality of images obtained with the fast mode was found to be comparable to that obtained with the digitized films. The images with the standard mode were found to be better than the digitized film images. With this prototype si-EPID, it is possible to collect the images at the beginning, middle, and end of each breath-hold for those patients who can hold their breath for longer than 15 s. The si-EPID images can provide a quick verification of the initial patient setup and subsequent treatment position throughout the daily fractionation.  相似文献   

16.
Wu J  Samant SS 《Medical physics》2007,34(6):2099-2112
In external beam radiation therapy, digitally reconstructed radiographs (DRRs) and portal images are used to verify patient setup based either on a visual comparison or, less frequently, with automated registration algorithms. A registration algorithm can be trapped in local optima due to irregularity of patient anatomy, image noise and artifacts, and/or out-of-plane shifts, resulting in an incorrect solution. Thus, human observation, which is subjective, is still required to check the registration result. We propose to use a novel image registration quality evaluator (RQE) to automatically identify misregistrations as part of an algorithm-based decision-making process for verification of patient positioning. A RQE, based on an adaptive pattern classifier, is generated from a pair of reference and target images to determine the acceptability of a registration solution given an optimization process. Here we applied our RQE to patient positioning for cranial radiation therapy. We constructed two RQEs-one for the evaluation of intramodal registrations (i.e., portal-portal); the other for intermodal registrations (i.e., portal-DRR). Mutual information, because of its high discriminatory ability compared with other measures (i.e., correlation coefficient and partitioned intensity uniformity), was chosen as the test function for both RQEs. We adopted 1 mm translation and 1 degree rotation as the maximal acceptable registration errors, reflecting desirable clinical setup tolerances for cranial radiation therapy. Receiver operating characteristic analysis was used to evaluate the performance of the RQE, including computations of sensitivity and specificity. The RQEs showed very good performance for both intramodal and intermodal registrations using simulated and phantom data. The sensitivity and the specificity were 0.973 and 0.936, respectively, for the intramodal RQE using phantom data. Whereas the sensitivity and the specificity were 0.961 and 0.758, respectively, for the intermodal RQE using phantom data. Phantom experiments also indicated our RQEs detected out-of-plane deviations exceeding 2.5 mm and 2.50. A preliminary retrospective clinical study of the RQE on cranial portal imaging also yielded good sensitivity > or = 0.857) and specificity (> or = 0.987). Clinical implementation of a RQE could potentially reduce the involvement of the human observer for routine patient positioning verification, while increasing setup accuracy and reducing setup verification time.  相似文献   

17.
The endorectal coil is being increasingly used in magnetic resonance imaging (MRI) and MR spectroscopic imaging (MRSI) to obtain anatomic and metabolic images of the prostate with high signal-to-noise ratio (SNR). In practice, however, the use of endorectal probe inevitably distorts the prostate and other soft tissue organs, making the analysis and the use of the acquired image data in treatment planning difficult. The purpose of this work is to develop a deformable image registration algorithm to map the MRI/MRSI information obtained using an endorectal probe onto CT images and to verify the accuracy of the registration by phantom and patient studies. A mapping procedure involved using a thin plate spline (TPS) transformation was implemented to establish voxel-to-voxel correspondence between a reference image and a floating image with deformation. An elastic phantom with a number of implanted fiducial markers was designed for the validation of the quality of the registration. Radiographic images of the phantom were obtained before and after a series of intentionally introduced distortions. After mapping the distorted phantom to the original one, the displacements of the implanted markers were measured with respect to their ideal positions and the mean error was calculated. In patient studies, CT images of three prostate patients were acquired, followed by 3 Tesla (3 T) MR images with a rigid endorectal coil. Registration quality was estimated by the centroid position displacement and image coincidence index (CI). Phantom and patient studies show that TPS-based registration has achieved significantly higher accuracy than the previously reported method based on a rigid-body transformation and scaling. The technique should be useful to map the MR spectroscopic dataset acquired with ER probe onto the treatment planning CT dataset to guide radiotherapy planning.  相似文献   

18.
目的:及时纠正放射治疗过程中患者的摆位误差,提高放射治疗效果.方法:本文对放疗中射野图像和参考图像的进行配准,应用Canny算子进行两幅图像的边缘提取,将提取的图像边缘作为配准的基准点,以射野图像与参考图像的最大互信息为配准准则,应用模拟退火法优化配准参数,搜索图像最大互信息.结果:本文对29例宫颈癌和前列腺癌患者的射野图像与参考图像进行了配准,结果表明该方法配准精度高,提高了配准的速度.结论:该配准方法适用于放疗临床摆位误差的在线分析.  相似文献   

19.
On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. Here we evaluate the achievable accuracy in using a kV CBCT for dose calculation. Relative electron density as a function of HU was obtained for both planning CT (pCT) and CBCT using a Catphan-600 calibration phantom. The CBCT calibration stability was monitored weekly for 8 consecutive weeks. A clinical treatment planning system was employed for pCT- and CBCT-based dose calculations and subsequent comparisons. Phantom and patient studies were carried out. In the former study, both Catphan-600 and pelvic phantoms were employed to evaluate the dosimetric performance of the full-fan and half-fan scanning modes. To evaluate the dosimetric influence of motion artefacts commonly seen in CBCT images, the Catphan-600 phantom was scanned with and without cyclic motion using the pCT and CBCT scanners. The doses computed based on the four sets of CT images (pCT and CBCT with/without motion) were compared quantitatively. The patient studies included a lung case and three prostate cases. The lung case was employed to further assess the adverse effect of intra-scan organ motion. Unlike the phantom study, the pCT of a patient is generally acquired at the time of simulation and the anatomy may be different from that of CBCT acquired at the time of treatment delivery because of organ deformation. To tackle the problem, we introduced a set of modified CBCT images (mCBCT) for each patient, which possesses the geometric information of the CBCT but the electronic density distribution mapped from the pCT with the help of a BSpline deformable image registration software. In the patient study, the dose computed with the mCBCT was used as a surrogate of the 'ground truth'. We found that the CBCT electron density calibration curve differs moderately from that of pCT. No significant fluctuation was observed in the calibration over the period of 8 weeks. For the static phantom, the doses computed based on pCT and CBCT agreed to within 1%. A notable difference in CBCT- and pCT-based dose distributions was found for the motion phantom due to the motion artefacts which appeared in the CBCT images (the maximum discrepancy was found to be approximately 3.0% in the high dose region). The motion artefacts-induced dosimetric inaccuracy was also observed in the lung patient study. For the prostate cases, the mCBCT- and CBCT-based dose calculations yielded very close results (<2%). Coupled with the phantom data, it is concluded that the CBCT can be employed directly for dose calculation for a disease site such as the prostate, where there is little motion artefact. In the prostate case study, we also noted a large discrepancy between the original treatment plan and the CBCT (or mCBCT)-based calculation, suggesting the importance of inter-fractional organ movement and the need for adaptive therapy to compensate for the anatomical changes in the future.  相似文献   

20.
This study aims to investigate the settings that provide optimum registration accuracy when registering megavoltage CT (MVCT) studies acquired on tomotherapy with planning kilovoltage CT (kVCT) studies of patients with lung cancer. For each experiment, the systematic difference between the actual and planned positions of the thorax phantom was determined by setting the phantom up at the planning isocenter, generating and registering an MVCT study. The phantom was translated by 5 or 10 mm, MVCT scanned, and registration was performed again. A root-mean-square equation that calculated the residual error of the registration based on the known shift and systematic difference was used to assess the accuracy of the registration process. The phantom study results for 18 combinations of different MVCT/kVCT registration options are presented and compared to clinical registration data from 17 lung cancer patients. MVCT studies acquired with coarse (6 mm), normal (4 mm) and fine (2 mm) slice spacings could all be registered with similar residual errors. No specific combination of resolution and fusion selection technique resulted in a lower residual error. A scan length of 6 cm with any slice spacing registered with the full image fusion selection technique and fine resolution will result in a low residual error most of the time. On average, large corrections made manually by clinicians to the automatic registration values are infrequent. Small manual corrections within the residual error averages of the registration process occur, but their impact on the average patient position is small. Registrations using the full image fusion selection technique and fine resolution of 6 cm MVCT scans with coarse slices have a low residual error, and this strategy can be clinically used for lung cancer patients treated on tomotherapy. Automatic registration values are accurate on average, and a quick verification on a sagittal MVCT slice should be enough to detect registration outliers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号