首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five heretofore undescribed analogues of methotrexate (MTX) and aminopterin (AMT) were synthesized and tested as dihydrofolate reductase (DHFR) inhibitors and tumor cell growth inhibitors. The meta isomer of AMT was obtained from 2,4-diamino-6-(bromomethyl)pteridine and m-(aminobenzoyl)-L-glutamic acid, while the ortho isomer was obtained via the same route by using alpha-methyl gamma-tert-butyl o-(aminobenzoyl)-L-glutamate instead of the free acid. Analogues of MTX and AMT containing a double bond in the side chain were prepared from dimethyl D,L-2-amino-4-hexenedioate and 4-amino-4-deoxy-N10-methylpteroic acid and 4-amino-4-deoxy-N10-formylpteroic acid, respectively. Finally, a positional isomer of MTX with the CH2CH2COOH moiety moved from the alpha-carbon to the adjacent carboxamide nitrogen was synthesized from 3-[N-(carboxymethyl)amino]propanoic acid diethyl ester and 4-amino-4-deoxy-N10-methylpteroic acid. The positional isomers of AMT were weak DHFR inhibitors and showed very little growth-inhibitory activity against L1210 murine leukemia cells or the MTX-resistant L1210/R81 mutant line in culture. The MTX and AMT analogues with the CH2CH2COOH moiety replaced by a CH2CH = CHCOOH side chain showed anti-DHFR activity similar to that of the previously described saturated compound N-(4-amino-4-deoxy-N10-methylpteroyl)-L-2-aminoadipic acid, but were less potent than the parent drugs. The MTX analogue with the CH2CH2COOH side chain displaced from C to N was weakly bound to DHFR, confirming the importance of an intact CONH moiety, and showed greatly diminished cell growth inhibitory potency relative to MTX. None of the compounds was a substrate for folylpolyglutamate synthetase (FPGS) from mouse liver. Furthermore, inhibition of folic acid polyglutamylation in vitro at equimolar 500 microM concentrations of drug and substrate was negligible. The structural changes embodied in these five novel compounds are therefore too great for binding to the FPGS active site.  相似文献   

2.
Eight previously unreported methotrexate (MTX) and aminopterin (AMT) analogues with the L-glutamate moiety replaced by DL-2-aminoalkanedioic acids containing up to 10 CH2 groups were synthesized from 4-amino-4-deoxy-N10-methylpteroic or 4-amino-4-deoxy-N10-formylpteroic acid. All the compounds were potent inhibitors of purified L1210 mouse leukemia dihydrofolate reductase (DHFR), with IC50's of 0.023-0.034 microM for the MTX analogues and 0.054-0.067 microM for the AMT analogues. The compounds were not substrates for, but were inhibitors of, partially purified mouse liver folylpolyglutamate synthetase (FPGS). Activity was correlated with the number of CH2 groups in the side chain. The IC50's for inhibition of cell growth in culture by the chain-extended MTX analogues were 0.016-0.64 microM against CEM human leukemic lymphoblasts and 0.0012-0.026 microM against L1210 mouse leukemia cells. However, the optimal chain length for growth-inhibitory activity was species-dependent. Our results suggested that CEM cells were inhibited most actively by the analogue with nine CH2 groups, while L1210 cells were most sensitive to the analogue with six CH2 groups. Among the AMT analogues, on the other hand, the most active compound against L1210 cells was the one with nine CH2 groups, which had an IC50 of 0.000 65 microM as compared with 0.0046 microM for MTX and 0.002 microM for AMT. A high degree of cross-resistance was observed between MTX and the chain-extended compounds in two MTX-resistant cell lines, CEM/MTX and L1210/R81. All the MTX analogues were active against L1210 leukemia in mice on a qd X 9 schedule, with optimal increases in lifespan (ILS) of 75-140%. Notwithstanding their high in vitro activity, the AMT analogues were more toxic and less therapeutically effective than MTX analogues of the same chain length even though neither series of compounds possessed FPGS substrate activity. These MTX and AMT analogues are an unusual group of compounds in that they retain the dicarboxylic acid structure of classical antifolates yet are more lipophilic than the parent compounds because they have more CH2 groups and are almost equivalent in vivo to MTX on the same schedule even though they do not form polyglutamates.  相似文献   

3.
Analogues of the antitumor antifolate methotrexate (MTX) were synthesized in which the glutamate (Glu) moiety was replaced by ornithine (Orn), 2,4-diaminobutyric acid (Dab), or 2,3-diaminopropionic acid (Dap). An aminopterin (AMT) analogue with Orn in place of Glu was also synthesized. The MTX analogues were obtained by reaction of 4-amino-4-deoxy-N10-methylpteroic acid (mAPA) and N omega-Boc-alpha,omega-diaminoalkanoic acids in the presence of diethyl phosphorocyanidate, followed by deprotection with trifluoroacetic acid (TFA) or by reaction of p-nitrophenyl-mAPA and N omega-Boc-alpha,omega-diaminoalkanoic acids and subsequent treatment with TFA. The AMT analogue (APA-Orn) was synthesized by reaction of p-nitrophenyl 4-amino-4-deoxy-N10-formylpteroate with silylated N delta-Boc-L-ornithine in DMF at 55 degrees C for 3 days (45% yield), saponification (83%), and TFA cleavage (89%). APA-Orn was a potent inhibitor of both dihydrofolate reductase (DHFR) from L1210 mouse leukemia (IC50 = 0.072 microM) and partly purified folylpolyglutamate synthetase (FPGS) from mouse liver (Ki = 0.15 +/- 0.06 microM). The MTX analogue (mAPA-Orn) was likewise active against both enzymes, with an IC50 of 0.160 microM for DHFR and a Ki of 20.4 +/- 7.7 microM for FPGS inhibition. The other MTX analogues and the previously reported lysine derivative (mAPA-Lys) showed DHFR affinity similar to that of mAPA-Orn but lacked activity as FPGS inhibitors. The positively charged amino group appears to be detrimental to cellular uptake, as evidenced by the low cytotoxicity of these compounds (IC50 = 0.40-2.4 microM) in comparison with MTX and AMT (IC50 = 0.002 microM) against wild-type L1210 cells. On the other hand, mAPA-Orn and APA-Orn were both more potent than the corresponding Glu derivatives MTX and AMT against L1210/R81 cells, suggesting that in these MTX-resistant cells there may occur a "self-potentiation" process involving enhanced antifolate activity via interference with the polyglutamylation of reduced folates. APA-Orn is the most potent dual inhibitor of DHFR and FPGS discovered to date, but its effectiveness as a therapeutic agent may require some form of prodrug modification to neutralize the terminal amino group of the side chain.  相似文献   

4.
Lipophilic gamma-monoamide derivatives of aminopterin (AMT) were synthesized in high overall yield from 4-amino-4-deoxy-N10-formylpteroic acid and gamma-N-tert-alkyl-, gamma-N-aralkyl-, or gamma-N-arylamides of alpha-benzyl L-glutamate via a modification of the mixed carboxylic-carbonic anhydride coupling method. Coupling was also accomplished with p-nitrophenyl 4-amino-4-deoxy-N10-formylpteroate. Compounds obtained in this manner included the gamma-tert-butylamide, gamma-(1-adamantylamide), gamma-benzylamide, gamma-(3,4-dichlorobenzylamide), gamma-(2,6-dichlorobenzylamide), gamma-anilide, gamma-(3,4-methylenedioxyanilide), and gamma-(3,4-dihydroxanilide) derivatives of AMT. Also prepared, from 4-amino-4-deoxy-N10-methylpteroic acid via diethyl phosphorocyanidate coupling, was the gamma-(3,4-methylenedioxyanilide) of MTX. The methylenedioxyanilides were cleaved smoothly to dihydroxyanilides with boron tris(trifluoroacetate) in trifluoroacetic acid. All the gamma-monoamides were tested as inhibitors of purified dihydrofolate reductase (DHFR) from murine L1210 leukemia cells and as inhibitors of the growth of wild-type L1210 cells and a subline (L1210/R81) with high-level resistance to MTX and AMT based mainly on a defect in drug uptake via active transport. Several compounds were also tested against human leukemic lymphoblasts (CEM cells) and a resistant subline (CEM/MTX) whose resistance is likewise based on uptake. The IC50 of the gamma-monoamides against DHFR was 1.5- to 5-fold higher than that of the parent acids, but the IC50 against cultured cells varied over a much broader range, suggesting that uptake and/or metabolism rather than DHFR binding are principal determinants of in vitro growth inhibitory activity for these compounds. gamma-N-Aryl and gamma-N-aralkyl derivatives appeared to be more potent than gamma-N-tert-alkyl derivatives. Where comparison could be made, AMT gamma-monoamides were more potent than MTX gamma-monoamides. Several of the gamma-monoamides showed potency comparable to that of the parent acid against wild-type L1210 and CEM cells; all of them were more potent than MTX against the L1210/R81 subline; and some of the AMT gamma-monoamides were also more potent than the parent acid against resistant CEM/MTX cells. As a group, however, the gamma-monoamides were considerably more active against the murine cells than against the human cells, suggesting that the former may take up the amides better or may be able to metabolize them more efficiently than the parent acids. All the gamma-monoamides were tested in vivo against L1210 leukemia in mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Methotrexate (MTX) and aminopterin (AMT) analogues containing L-homocysteic acid or L-cysteic acid in place of L-glutamic acid were synthesized and tested as inhibitors of dihydrofolate reductase from L1210 cells and folyl polyglutamate synthetase from mouse liver. The ID50 against dihydrofolate reductase was comparable for the MTX and AMT analogues (0.04-0.07 microM), whereas the ID50 against folyl polyglutamate synthetase was 3- to 4-fold lower for the AMT analogues (40-60 microM) than for the MTX analogues (100-200 microM). Thus, N10-substitution has a greater effect on binding to folyl polyglutamate synthetase than dihydrofolate reductase. The cytotoxicity of these compounds was assayed in vitro against L1210 cells, and the AMT analogues again proved more potent (ID50 = 0.03-0.05 microM) than the MTX analogues (ID50 = 0.1-0.4 microM). A similarly increased potency was observed for the AMT analogues against L1210 leukemia in vivo. Though differential cell uptake cannot be ruled out as the basis of increased potency, it is possible that part of the activity of the AMT analogues involves interference with the intracellular polyglutamation of reduced folate cofactors, i.e., that they are "self-potentiating antifolates". Of the four compounds reported, the most active was N-(4-amino-4- deoxypteroyl )-L-homocysteic acid, which produced a 138% increase in life span (ILS) in L1210 leukemic mice when given on a modified bid X 10 schedule at a dose of 2 mg/kg. A comparable ILS was obtained with AMT itself at 0.24 mg/kg. Thus, replacement of gamma-CO2H by gamma-SO3H in the side chain does not decrease therapeutic effect. However, a higher dose is required, presumably to offset pharmacological differences reflecting the inability of the sulfonate group to be polyglutamated .  相似文献   

6.
N delta-Acyl derivatives of the potent folylpolyglutamate synthetase (FPGS) inhibitor N alpha-(4-amino-4-deoxypteroyl)-L-ornithine (APA-L-Orn) were synthesized from N alpha-(4-amino-4-deoxy-N10-formylpteroyl)-L-ornithine by reaction with an N-(acyloxy)succinimide or acyl anhydride, followed by deformylation with base. The N delta-hemiphthaloyl derivative was also prepared from 4-amino-4-deoxy-N10-formylpteroic acid by reaction with persilylated N delta-phthaloyl-L-ornithine, followed by simultaneous deformylation and ring opening of the N delta-phthaloyl moiety with base. The products were potent inhibitors of purified dihydrofolate reductase (DHFR) from L1210 murine leukemia cells, with IC50's ranging from 0.027 and 0.052 microM as compared with 0.072 microM for APA-L-Orn. Several of the N delta-acyl-N10-formyl intermediates also proved to be good DHFR inhibitors. One of them, N alpha-(4-amino-4-deoxy-N10-formylpteroyl)-N delta-(4-chlorobenzoyl)-L- ornithine, had a 2-fold lower IC50 than its deformylated product, confirming that the N10-formyl group is well tolerated for DHFR binding. While N delta-acylation of APA-L-Orn did not significantly alter anti-DHFR activity, inhibition of FPGS was dramatically diminished, supporting the view that the basic NH2 on the end of the APA-L-Orn side chain is essential for the activity of this compound against FPGS. N delta-Acylation of APA-L-Orn markedly enhanced toxicity to cultured tumor cells. However, N delta-acyl derivatives also containing an N10-formyl substituent were less cytotoxic than the corresponding N10-unsubstituted analogues even though their anti-DHFR activity was the same, suggesting that N10-formylation may be unfavorable for transport. Two compounds, the N delta-benzoyl and N delta-hemiphthaloyl derivatives of APA-L-Orn, with IC50's against L1210 cells of 0.89 and 0.75 nM, respectively, were more potent than either methotrexate (MTX) or aminopterin (AMT) in this system. These compounds were also more potent than MTX against CEM human lymphoblasts and two human head and neck squamous cell carcinoma cell lines (SCC15, SCC25) in culture. Moreover, in assays against SCC15/R1 and SCC25/R1 sublines with 10-20-fold MTX resistance, the N delta-hemiphthaloyl derivative of APA-L-Orn showed potency exceeding that of MTX itself against the parental cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Analogues of methotrexate (MTX) and aminopterin (AMT) with aminophosphonoalkanoic, aminoalkanesulfonic, and aminoalkanephosphonic acid side chains in place of glutamate were synthesized and tested as inhibitors of folylpolyglutamate synthetase (FPGS) from mouse liver. The aminophosphonoalkanoic acid analogues were also tested as inhibitors of dihydrofolate reductase (DHFR) from L1210 murine leukemia cells and as inhibitors of the growth of MTX-sensitive (L1210) and MTX-resistant (L1210/R81) cells in culture. The optimal number of CH2 groups in aminophosphonoalkanoic acid analogues of AMT was found to be two for both enzyme inhibition and cell growth inhibition but was especially critical for activity against FPGS. Deletion of the alpha-carboxyl also led to diminished anti-FPGS activity in comparison with previously studied homocysteic acid and 2-amino-4-phosphonobutyric acid analogues. In the aminoalkanesulfonic acid analogues of MTX without an alpha-carboxyl, anti-FPGS activity was low and showed minimal variation as the number of CH2 groups between the carboxamide and sulfonate moieties was changed from one to four. In similar aminoalkanephosphonic acid analogues of MTX, anti-FPGS activity was also low, was comparable for two and three CH2 groups between the carboxamide and phosphonate moieties, and was diminished by monoesterification of the phosphonate group. These effects demonstrate that the alpha-carboxyl group of folate analogues is involved in binding to the active site of FPGS, and that an alpha-carboxyl group should be retained as part of the structure of FPGS inhibitors.  相似文献   

8.
The activity of a series of folic acid analogues as substrates for partially purified mouse liver folylpolyglutamate synthetase was determined and the effects of substituents on the binding to, and catalytic processes of, this enzyme were inferred. A 4-amino group improved substrate activity primarily by decreasing the apparent Km while N10-methyl substitution substantially diminished utilization as a substrate, again, by effects on Km. Isosteric replacement of N-10 altered substrate activity. A free alpha-carboxyl group in the amino acid side chain was required for catalysis as was the presence of the side chain amide carbonyl group. Modification of the amino acid side chain length profoundly affected activity. Several observations were made that may be relevant to chemotherapy with folate antimetabolites: 1) 7-hydroxymethotrexate was a substrate for this enzyme; 2) substrate activity and substrate inhibition were observed with CB 3717, a potent inhibitor of thymidylate synthase; 3) potent classical dihydrofolate reductase inhibitors were identified that were either not substrates for mouse liver folylpolyglutamate synthetase (e.g., 4-amino-4-deoxy-N10-methylpteroyl-L-alpha-aminoadipate) or were much better substrates than methotrexate for this enzyme (e.g., aminopterin); and 4) leucovorin and methotrexate appeared to be substrates for the same synthetase, but leucovorin saturated the reaction at much lower concentrations. These results have implications for the design of folylpolyglutamate synthetase inhibitors and for the selection of dihydrofolate reductase inhibitors that are either not polyglutamated or are efficiently polyglutamated in vivo.  相似文献   

9.
Six new 5,8-dideaza analogues of folic acid and aminopterin containing a terminal L-ornithine residue were prepared by using multistep synthetic sequences. Each was evaluated as an inhibitor of hog liver folylpolyglutamate synthetase and human dihydrofolate reductase. Structural modifications at positions 2, 4, 5, and 10 were included to help define structure-activity relationships for compounds of this type. The compound N alpha-(4-amino-4-deoxy-5-chloro-5,8-dideazapteroyl)-L-ornithine (3f) was identified as the most potent inhibitor of mammalian folylpolyglutamate synthetase reported thus far (Ki congruent to 2 nM). Its 4-oxy counterpart, N alpha-(5-chloro-5,8-dideazapteroyl)-L-ornithine, was only 5-fold less inhibitory than 3f toward folylpolyglutamate synthetase but was found to be a much weaker inhibitor of dihydrofolate reductase than 3f.  相似文献   

10.
The previously undescribed 2-desamino and 2-desamino-2-methyl analogues of aminopterin (AMT) and methotrexate (MTX) were synthesized from 2-amino-5-(chloromethyl)pyrazine-3-carbonitrile. The AMT analogues were obtained via a three-step sequence consisting of condensation with di-tert-butyl N-(4-aminobenzoyl)-L-glutamate, heating with formamidine or acetamidine acetate, and mild acidolysis with trifluoroacetic acid. The MTX analogues were prepared similarly, except that 2-amino-5-(chloromethyl)pyrazine-3-carbonitrile was condensed with 4-(N-methylamino)benzoic acid and the resulting product was annulated with formamidine or acetamidine acetate to obtain the 2-desamino and 2-desamino-2-methyl analogues, respectively, of 4-amino-4-deoxy-N10-methylpteroic acid. Condensation with di-tert-butyl L-glutamate in the presence of diethyl phosphorocyanidate followed by ester cleavage with trifluoroacetic acid was then carried out. Retention of the L configuration in the glutamate moiety during this synthesis was demonstrated by rapid and essentially complete hydrolysis with carboxypeptidase G1 under conditions that likewise cleaved the L enantiomer of MTX but left the D enantiomer unaffected. The 2-desamino and 2-desamino-2-methyl analogues of AMT and MTX inhibited the growth of tumor cells, but were very poor inhibitors of dihydrofolate reductase (DHFR). These unexpected results suggested that activity in intact cells was due to metabolism of the 2-desamino compounds to polyglutamates.  相似文献   

11.
A series of "stretched" methotrexate (MTX) analogues containing up to five 4-aminobutyryl (Gab) spacers between the 4-amino-4-deoxy-N10-methylpteroyl (MeAPA) moiety and the glutamate (Glu) side chain was prepared. Interest in these compounds stemmed from their relationship to MTX gamma-polyglutamates, from which they differ only in lacking "internal" alpha-carboxyl groups. The ability of the MeAPA-Gabn-Glu derivatives to inhibit dihydrofolate reductase (DHFR) and thymidylate synthase (TS) in vitro and to inhibit the growth of tumor cells in culture was evaluated. The IC50 for DHFR inhibition increased progressively from 0.082 to 0.84 microM as the number of Gab spacers was varied from one to five. At the same time the introduction of Gab spacers was found to produce substantial TS inhibition (Ki 0.1-0.4 microM) similar to that reported for MTX polyglutamates. Despite the activity of the MeAPA-Gabn-Glu derivatives as combined inhibitors of TS and DHFR, there was a steep loss of cell growth inhibitory potency as the number of Gab spacers was increased. This most likely reflects low cell uptake and the fact that when n greater than 1 there is almost total abolition of substrate activity for folylpolyglutamate synthetase, which had previously been observed with n = 1.  相似文献   

12.
Analogues of methotrexate (MTX) and aminopterin (AMT) modified at the gamma-position of the glutamate side chain were synthesized and evaluated as dihydrofolate reductase (DHFR) inhibitors and tumor cell growth inhibitors. Condesations of 4-amino-4-deoxy-N10-methylpteroic acid (mAPA) with dimethyl DL-4-methyleneglutamate in the presence of diethyl phosphorocyanidate (DEPC) followed by alkaline hydrolysis yielded N-(4-amino-4-deoxy-N10-methylpteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneMTX). Condensation of 4-amino-4-deoxy-N10-formylpteroic acid (fAPA) with dimethyl-DL-4-methyleneglutamate by the mixed carboxylic-carbonic anhydride method yielded N-4-amino-4-deoxypteroyl)-DL-4-methyleneglutamic acid (gamma-methyleneAMT). Also prepared via DEPC coupling was a mixture of the four possible diastereomers of N-(4-amino-4-deoxy-N10-methylpteroyl)-4-cyanoglutamic acid (gamma-cyanoMTX). The requisite intermediate gamma-tert-butyl alpha-methyl 4-cyanoglutamate, as a DL-threo/DL-erythro mixture, was prepared from methyl N alpha-Boc-O-tosyl-L-serinate by reaction with sodium tert-butyl cyanoacetate followed by mild trifluoroacetic treatment to selectively remove the Boc group. The gamma-methylene derivatives of MTX and AMT are attractive because of their potential to act as Michael acceptors within the DHFR active site. gamma-CyanoMTX may be viewed as a congener of the nonpolyglutamated MTX analogue gamma-fluoroMTX. In vitro bioassay data for the gamma-methylene and gamma-cyano compounds support the idea that the active site of DHFR, already known for its ability to tolerate modification of the gamma-carboxyl group of MTX and AMT, can likewise accommodate substitution on the gamma-carbon itself.  相似文献   

13.
Five analogues of methotrextate (MTX), 10-deazaaminopterin (10-DAM), and 10-ethyl-10-deazaaminopterin (10-EDAM) in which the glutamate moiety was replaced by either a gamma-methyleneglutamate or beta-hydroxyglutamate were synthesized and evaluated for their antifolate activity. These analogous are 4-amino-4-deoxy-N10-methylpteroyl-beta-hydroxyglutamic acid (1), 4-amino-4-deoxy-10-deazapteroyl-beta-hydroxyglutamic acid (2), 4-amino-4-deoxy-N10-methylpteroyl-gamma-methyleneglutamic acid (3, MMTX), 4-amino-4-deoxy-10-deazapteroyl-gamma-methyleneglutamic acid (4, MDAM), and 4-amino-4-deoxy-10-ethyl-10-deazapteroyl-gamma-methyleneglutamic acid (5, MEDAM). None of these compounds were metabolized to the respective polyglutamate derivative as judged by their inability to serve as substrates for CCRF-CEM human leukemia cell folylpolyglutamate synthetase (FPGS) in vitro. All compounds inhibited recombinant human-dihydrofolate reductase (DHFR) at nearly equivalent magnitude as MTX. Growth-inhibition studies with H35 hepatoma, Manca human lymphoma, and CCRF-CEM human leukemia cells established greater cytotoxic effects with compounds 3-5 than with compounds 1 and 2. gamma-Methyleneglutamate derivatives 3-5 were transported to H35 hepatoma cells better than MTX or beta-hydroxyglutamate derivatives 1 and 2. Compound 3 was 2.5 times better than MTX in competing with folinic acid transport in H35 hepatoma cells. Compound 1 did not have a significant inhibitory effect on folinic acid transport even at 50 microM under identical conditions. The IC50 for compound 1 against H35-hepatoma cell growth was 8.5-fold higher than MTX. Compounds with the gamma-methyleneglutamate moiety (3-5) exhibited almost equal or lower IC50 values than MTX against the growth of CCRF-CEM human leukemia cells. These studies show that on continuous exposure, the non-polyglutamylatable inhibitors DHFR (3-5) can exhibit superior antifolate activity compared to the polyglutamylatable methotrexate, presumably due to their enhanced transport to these cell lines. Compounds 3-5 appear to be excellent models to study the role of polyglutamylation of antifolates in antitumor activity and host toxicity.  相似文献   

14.
The properties of a series of methotrexate analogs containing 2,omega-diaminoalkanoic acids have been investigated. The compounds were potent inhibitors of dihydrofolate reductase but, unlike methotrexate, they were also inhibitors of mammalian folylpolyglutamate synthetases. The potency of synthetase and reductase inhibition increased with increasing length of the 2,omega-diaminoalkanoate moiety. The most cytotoxic compound and the most potent inhibitor of both dihydrofolate reductase (I50 = 2.5 to 4 nM) and folylpolyglutamate synthetase (Ki ca. 4 microM) contained 2,5-diaminopentanoic acid (ornithine). These compounds were 70- to 100-fold less cytotoxic than methotrexate to human leukemia cell lines; however, they retained their potency against sublines resistant to methotrexate via defective transport. Their dual loci of enzyme inhibition and their efficacy against methotrexate transport-defective cell lines indicate that these compounds may be an important new class of antifol.  相似文献   

15.
A new analogue of methotrexate was synthesized from 4-amino-4-deoxy-N10-methylpteroic acid and D,L-homocysteic acid. The product (mAPA-HCysA) was bound tightly to L1210 mouse leukemia dihydrofolate reductase (IC50 = 1 nM), inhibited L1210 cell proliferation in culture (IC50 = 0.3 microM), and prolonged the survival of L1210 leukemic mice (98% increase in lifespan at 120 mg/kg, qdx9). Studies on the interaction of mAPA-HCysA with partially purified mouse liver folyl polyglutamate synthetase revealed that mAPA-HCysA was not a substrate. Hence, the increased dose of mAPA-HCysA required to inhibit tumor growth in vitro and in vivo relative to methotrexate may reflect, in part, the inability of this compound to form non-effluxing polyglutamates. Folyl polyglutamate synthetase was competitively inhibited by mAPA-HCysA (K1 = 190 +/- 70 microM) when folate was the variable substrate. Thus, mAPA-HCysA is the first known compound to inhibit both mammalian dihydrofolate reductase and mammalian folyl polyglutamate synthetase.  相似文献   

16.
5-Deazafolate and 5-deazatetrahydrofolate (DATHF) analogues with the glutamic acid side chain replaced by homocysteic acid (HCysA), 2-amino-4-phosphonobutanoic acid (APBA), and ornithine (Orn) were synthesized as part of a larger program directed toward inhibitors of folylpolyglutamate synthetase (FPGS) as probes of the FPGS active site and as potential therapeutic agents. The tetrahydro compounds were also of interest as non-polyglutamatable inhibitors of the purine biosynthetic enzyme glycinamide ribonucleotide formyltransferase (GARFT). Reductive coupling of N2-acetamido-6-formylpyrido[2,3-d]pyrimidin-4(3H)-one with 4-aminobenzoic acid, followed by N10-formylation, mixed anhydride condensation of the resultant N2-acetyl-N10-formyl-5- deazapteroic acid with L-homocysteic acid, and removal of the N2-acetyl and N10-formyl groups with NaOH, afforded N-(5-deazapteroyl)-L-homocysteic acid (5-dPteHCysA). Mixed anhydride condensation of N2-acetyl-N10-formyl- 5-deazapteroic acid with methyl D,L-2-amino-4-(diethoxyphosphinyl)butanoic acid, followed by consecutive treatment with Me3SiBr and NaOH, yielded D,L-2-[(5-deazapteroyl)amino]-4-phosphonobutanoic acid (5-dPteAPBA). Treatment with NaOH alone led to retention of one ethyl ester group on the phosphonate moiety. Catalytic hydrogenation of N2-acetyl-N10-formyl-5-deazapteroic acid followed by mixed anhydride condensation with methyl L-homocysteate and deprotection with NaOH afforded N-(5,6,7,8-tetrahydro-5-deazapteroyl)-L-homocysteic acid (5-dH4PteHCysA). Similar chemistry starting from methyl D,L-2-amino-4-(diethoxyphosphinyl)butanoic acid and methyl N delta-(benzyloxycarbonyl)-L-ornithinate yielded D,L-2-[(5-deaza-5,6,7,8-tetrahydropteroyl)amino]-4-phosphonobut ano ic acid (5-dH4Pte-APBA) and N alpha-(5-deaza-5,6,7,8-tetrahydropteroyl)-L-ornithine (5-dH4PteOrn), respectively. The 5-deazafolate analogues were inhibitors of mouse liver FPGS, and the DATHF analogues inhibited both mouse FPGS and mouse leukemic cell GARFT. Analogues with HCysA and monoethyl APBA side chains were less active as FPGS inhibitors than those containing an unesterified gamma-PO(OH)2 group, and their interaction with the enzyme was noncompetitive against variable folyl substrate. In contrast, Orn and APBA analogues obeyed competitive inhibition kinetics and were more potent, with Ki values as low as 30 nM. Comparison of the DATHF analogues as GARFT inhibitors indicated that the Orn side chain diminished activity relative to DATHF, but that the compounds with gamma-sulfonate or gamma-phosphonate substitution retained activity, with Ki values in the submicromolar range. The best GARFT inhibitor was the 5-dH4PteAPBA diastereomer mixture, with a Ki of 47 nM versus 65 nM for DATHF. None of the compounds showed activity against cultured WI-L2 or CEM human leukemic lymphoblasts at concentrations of up to 100 microM.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The gamma-tert-butyl ester (1), gamma-hydrazide (2), gamma-n-butylamide (3), and gamma-benzylamide (4) derivatives of methotrexate (MTX) were synthesized from 4-amino-4-deoxy-N10-methylpteroic acid (APA) and the appropriate blocked L-glutamic acid precursors with the aid of the peptide bond forming reagent diethyl phosphorocyanidate. The affinity of these side chain modified products for dihydrofolate reductase (DHFR) from Lactobacillus casei and L1210 mouse leukemic cells was determined spectrophotometrically or by competitive radioligand binding assay, and their cytotoxicity was evaluated against L1210 leukemic cells in culture. The results provide continuing support for the view that the "gamma-terminal region" of the MTX side chain is an attractive site for molecular modification of this anticancer agent.  相似文献   

18.
A series of folate analogs containing ornithine instead of glutamate was synthesized and tested for inhibition of folylpolyglutamate synthetase (FPGS) and other folate-dependent enzymes of human leukemia cell lines. Reduced derivatives of 2-amino-4-oxo-10-methyl-pteroyl-ornithine had dramatically increased inhibitory potency against FPGS compared to the oxidized parent. The amino-pterin analog (2,4-diamino-pteroylornithine) was a potent inhibitor of both dihydrofolate reductase and FPGS. It was a much more potent linear competitive inhibitor of human FPGS than the corresponding methotrexate derivative previously described (Ki = 0.15-0.26 and 3 microM respectively). A quinazoline folate analog, 2-amino-4-oxo-5,8-dideazapteroyl-ornithine, was a relatively poor inhibitor of isolated dihydrofolate reductase and thymidylate synthase; however, it is the most potent human FPGS inhibitor identified to date (Ki = 100-150 nM). Because of the lack of appreciable interaction with other folate-dependent enzymes, structures incorporating the 2-amino-4-oxo-5,8-dideazapteroate nucleus may thus lead to selective inhibition of FPGS. Substitution of ornithine for glutamate caused a profound decrease in cytotoxic potency for these analogs; this was apparently the result of poor transport. Together with earlier studies, these data indicate that the potency of FPGS inhibition by an analog containing ornithine closely parallels the relative substrate activity of its glutamate-containing counterpart. The substitution of ornithine apparently does not perturb the pterin specificity of FPGS. The close parallel between substrate and inhibitor specificity may thus allow the use of currently available structure-activity studies on FPGS to design more potent and more selective inhibitors of FPGS.  相似文献   

19.
The potent nonpolyglutamatable dihydrofolate reductase inhibitor N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-o rnithine (PT523) and six of its B-ring (5-deaza, 8-deaza, and 5,8-dideaza) analogues were compared in terms of their ability to: (a) inhibit the growth of CCRF-CEM human leukemic lymphoblasts, and (b) utilize the reduced folate carrier (RFC) in these cells as measured in a competition assay of [(3)H]methotrexate ([(3)H]MTX) influx. The IC(50) values of the hemiphthaloylornithine derivatives against CCRF-CEM cells after 72 hr of drug exposure varied from 0.64 to 1.3 nM as compared with 14 nM for MTX and 4.4 nM for aminopterin (AMT). The K(i) values of these compounds in the [(3)H]MTX influx assay were in the 0.3 to 0.7 microM range as compared with a K(i) of 5.4 microM for AMT and a K(t) of 7.1 microM for MTX. As a group, the affinities of these compounds for the RFC were approximately 10-fold greater than those of their respective glutamate analogues. These results indicate that, in addition to their previously reported tight binding to dihydrofolate reductase, a property contributing to the high potency of PT523 and its B-ring analogs as inhibitors of tumor cell growth is their strong affinity for the RFC.  相似文献   

20.
N alpha-(4-Amino-4-deoxy-N10-methylpteroyl)-N epsilon-(iodoacetyl)-L-lysine (1) was synthesized as a potential active-site-directed irreversible inhibitor of dihydrofolate reductase (DHFR). In an ultraviolet spectrophotometric assay of dihydrofolate reduction of Lactobacillus casei DHFR, 1 and methotrexate (MTX, 4-amino-4-deoxy-N10-methylpteroyl-L-glutamic acid) had ID50 values of 4.5 and 6.2 nM. The corresponding ID50 values in a competitive radioligand binding assay against [3H]MTX were 31 and 16 nM. Thus, as reversible inhibitors of this enzyme over a short exposure time, 1 and MTX had comparable activity. On the other hand, when L. casei DHFR was incubated for up to 6 h with 0.1 or 1.0 microM 1, a progressive decrease in the ability of [3H]MTX to subsequently displace the drug was observed. When MTX itself was used at the same concentrations, the extent of displacement of [3H]MTX did not decrease with time. These results were consistent with rapid reversible binding of 1 to the enzyme, followed more slowly by covalent bond formation near the active site. The pH profile for this effect followed a curve with a sigmoidal shape. The apparent inflection point near pH 7.2 was consistent with alkylation of a histidine residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号